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Sparse Tensor Discriminant Analysis
Zhihui Lai, Yong Xu, Member, IEEE, Jian Yang, Jinhui Tang, and David Zhang, Fellow, IEEE

Abstract— The classical linear discriminant analysis has under-
gone great development and has recently been extended to differ-
ent cases. In this paper, a novel discriminant subspace learning
method called sparse tensor discriminant analysis (STDA) is pro-
posed, which further extends the recently presented multilinear
discriminant analysis to a sparse case. Through introducing the
L1 and L2 norms into the objective function of STDA, we can
obtain multiple interrelated sparse discriminant subspaces for
feature extraction. As there are no closed-form solutions, k-mode
optimization technique and the L1 norm sparse regression are
combined to iteratively learn the optimal sparse discriminant
subspace along different modes of the tensors. Moreover, each
non-zero element in each subspace is selected from the most
important variables/factors, and thus STDA has the potential
to perform better than other discriminant subspace methods.
Extensive experiments on face databases (Yale, FERET, and
CMU PIE face databases) and the Weizmann action database
show that the proposed STDA algorithm demonstrates the
most competitive performance against the compared tensor-based
methods, particularly in small sample sizes.

Index Terms— Linear discriminant analysis, feature extraction,
sparse projections, face recognition.

I. INTRODUCTION

AS the classical supervised subspace learning method,
Linear Discriminant Analysis (LDA) [1]–[3] has under-

gone continuous development for several decades. The tra-
ditional LDA algorithms treat the input image object as a
high-dimensional vector (1D vector) by concatenating the rows
or columns of the images. The image-to-vector transform
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procedure usually causes the so called “curse of dimension-
ality” [4] and the loss of some useful structural information
embedded in the original images.

However, some recent works show that to operate directly
on the image matrices for feature extraction can obtain better
classification performance. Yang et al. extended the classi-
cal Principal Component Analysis (PCA) [5]–[7] to image
matrices based representation and proposed the well-known
Two-Dimensional PCA (2DPCA) [8]. With the similar idea
of 2DPCA, researchers proposed Two Dimensional LDA
(2DLDA) [9], [10] for extracting features from the image
matrices. Since the size of the covariance matrices constructed
by the 2D methods is significantly smaller than the ones in the
classical PCA and LDA, they are more efficient and effective
than the corresponding traditional methods in small sample
size problems. A common disadvantage of these 2D methods
is that a single projection matrix is learned for dimensionality
reduction from one side of the image matrix, and thus more
coefficients are needed to represent the image matrix. In order
to solve this problem, Generalized Low Rank Approximations
of Matrices (GLRAM) [11] and bidirectional LDA [12] were
also developed for image feature extraction. For more details
of the 2D based methods, the readers are referred to see
[13]–[16].

High dimensional vector is the first order tensor, and one
projection matrix can be obtained. The image matrix is the
tensor of order 2, and thus we can obtain the bidirectional
projection matrices for feature extraction. A natural way is
to compute n projection matrices for nth-order tensor fea-
ture extraction. In recent years, there was great interest in
high-order tensor feature extraction, and higher order tensor
decomposition [17]–[19] has become an important technique
in computer vision and pattern recognition [20]–[23]. More
recently, Concurrent Subspaces Analysis [24], Multilinear
PCA (MPCA) [25] and its uncorrelated variation [26] were
proposed for face and gait recognition tasks. In order to
enhance the performance of the tensor-based method for
classification, Multilinear Discriminant Analysis (MDA) [27],
which generalized traditional LDA to tensor based LDA,
was also developed for face recognition. By considering the
uncorrelated property between the features, Lu et al. [28]
proposed uncorrelated multilinear discriminant analysis for
tensor object recognition. Unfortunately, as stated in [16], the
ratio-base multilinear discriminant analysis methods do not
converge and appear to be extremely sensitive to parameter
settings. Therefore, Tao et al. proposed General Tensor Dis-
criminant Analysis (GTDA) [29] for gait recognition using the
Differential Scatter Discriminant Criterion (DSDC) [30], and
Hu et al. proposed the Tensor Maximum Margin Criterion
(TMMC) [31] for object recognition using the Maximum
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Margin Criterion (MMC) [32]. Similarly, rank-one decompo-
sition method was also developed for tensor learning [33]. The
readers are referred to a survey [34] of multilinear subspace
learning for more information.

The tensor data contain large quantities of information
redundancy and thus not all the features/variables are impor-
tant for feature extraction and classification [25], [26], [35].
Therefore, a method that can remove the redundancy infor-
mation or “filter” out the unimportant features in feature
extraction step is much appreciated. It can be found from
the literature that using the sparse representation/learning
methods to perform the feature selection on the projection vec-
tors/matrices can achieve this end. The sparse representation
methods introduce the L1 norm, by which some representation
coefficients can be shrunk to be zero, to achieve the goal of
sparse feature selection and classifier design. For example,
the reconstruction errors can be used in sparse representation
classifier for robust face recognition [36]. In [37], Tibshirani
proposed the Least Absolute Shrinkage and Selection Operator
(LASSO) for feature selection and obtained better performance
than the ordinary least squares regression. By combining both
L1 and L2 norms penalty, the Elastic Net [38] proposed by
Zou and Hastie generalizes the LASSO and overcome some
potential drawbacks of LASSO by using Least Angle Regres-
sion (LARS) [39] to obtain the optimal solution path. Sparse
Principal Component Analysis (SPCA) [40] reformulates the
PCA as regression-type optimization and realizes the goal
of spare feature selection and dimensionality reduction with
interpretabilities. In SPCA, the most important/contributive
variables for scatter distribution are selected to form the
principal components. However, SPCA is an unsupervised
method and its performance in discriminant ability is relatively
poor. In order to enhance the classification performance,
Sparse Discriminant Analysis (SDA) [41] and Sparse Linear
Discriminant Analysis (SLDA) [42], which use the sparse
regression for discriminant features/variables selection, were
proposed to learn a sparse discriminant subspace for feature
extraction and classification in biological and medical data
analysis. These sparse regression based methods have been
proved to be effective for classification and prediction.

Although there are some related works on sparse tensor
learning such as tensor sparse coding [43] and sparse non-
negative tensor factorization [44], [45], until now, high order
tensor data analysis for feature extraction with sparse manner
has not been widely investigated and how to extend the
discriminant analysis algorithms with sparseness to the high
order tensor learning is unsolved. In this paper, motivated
by SPCA, SDA and the tensor-based GTDA algorithms, we
proposed Sparse Tensor Discriminant Analysis (STDA) for
feature extraction and classification. Our starting point is to
introduce the L1 and L2 norms penalty on the projection
vectors/matrices and use sparse regression method to select the
most discriminant features/variables to form the projections.
By doing this, a set of interrelated sparse projection vec-
tors/matrices formed by the important discriminant variables
are obtained, and thus the discriminant ability of the learned
subspaces are potentially more powerful than other methods’
on tensor data.

STDA has two significant properties that the previous
tensor-based feature extraction methods do not hold. Firstly,
different from the previous tensor-based methods such as
the MPCA, MDA and GTDA, all the projection matrices of
STDA derived from different modes are sparse. Secondly, the
optimal multi-linear sparse projections of STDA are obtained
by iterating the Elastic Net regression and Singular Value
Decomposition (SVD) instead of solving the eigenequations
as in MPCA, MDA and GTDA .

The main contributions of this paper are as follows: First,
we propose the sparse difference (tensor) scatter criterion
for sparse subspace learning. With the proposed criterion, all
the MMC-based or DSDC-based methods such as those in
[29]–[32], [46]–[48] can be similarly extended to sparse cases.
Thus, the proposed method can be used as a unified framework
for learning the sparse multi-linear projections. Second, the
relationships between STDA and other algorithms, i.e. MMC,
TMMC, GTDA etc., are theoretically analyzed. Third, STDA
outperforms the MMC-based or DSDC-based methods and
their higher order (second and third orders) extensions in
classification accuracy.

The rest of the paper is organized as follows.
In Section II, STDA algorithm and related analyses are
presented. In Section III, the theoretical analysis is performed
for exploring the relationships between STDA and the
previous methods. Experimental results to evaluate the STDA
algorithm are shown in Section IV, and the conclusions are
given in Section V.

II. SPARSE TENSOR DISCRIMINANT ANALYSIS

In this section, we briefly review some basic multilinear
notations, definitions and operations at first and then present
the STDA algorithm.

A. Preparations

In this paper, if there are no special instructions, lowercase
and uppercase italic letters, i.e. i, j, m, k, α, β, N etc., denote
scalars, bold lowercase letters, i.e. a, b, u etc., denote vectors,
and bold uppercase letters, i.e. A, B, S,� etc., denote the
matrices, and the Lucida calligraphy Italic letters, i.e. X ,Y
denote the tensors.

Assume that the training samples are represented as the nth-
order tensor {Xi ∈ Rm1×m2×···×mn , i = 1, 2, . . . , N}, where N
denotes the total number of the training samples. Moreover,
let Nc denote the total number of classes and Nci denote the
number of all the samples in the i th class.

Definition 1: The inner product of two tensors
X ,Y ∈ Rm1×m2×···×mn is defined as < X ,Y >=∑m1×m2×···mn

i1,=1,...,in=1 Xi1,...,inYi1,...,in . The norm of a tensor is
defined as ||X || = √

< X ,X >. The tensor distance between
two tensors X and Y is defined as D(X ,Y) = ||X − Y||.

Definition 2: The mode-k flattening of the nth-order tensor
X ∈ Rm1×m2×···×mn into a matrix X (k) ∈ Rmk×∏

i �=k mi , i.e.
X(k) ⇐�k X , is defined as X(k)

ik , j = Xi1,i2,...,in , where j =
1 + ∑n

l=1,l �=k(il − 1)
∏n

o=l+1,o �=k mo.
Definition 3: The mode-k product of tensor X with matrix

U ∈ Rm′
k×mk is defined as Y = X ×k U, where
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Yi1 , . . . , ik−1, i, ik+1, . . . , in = ∑m′
k

j=1 Xi1,...,ik−1 , j,ik+1,...,in Ui, j

( j = 1, . . . , m′
k) and Ui, j denotes the element in the matrix

U of coordinate (i, j).
Definition 4: The mode-k within-class tensor scatter matrix

S(k)
w is defined as

S(k)
w =

Nc∑

j=1

Nci∑

i=1

(
X(k)

i − X̄(k)
j

) (
X(k)

i − X̄(k)
j

)T

where X̄(k)
j denotes the mean value of the mode-k flattening

of the tensor samples in the j th class.
Definition 5: The mode-k between-class tensor scatter

matrix S(k)
B is defined as

S(k)
B =

Nc∑

i=1

NC1

(
X̄(k)

i − X̄(k)
) (

X̄(k)
i − X̄(k)

)T

where X̄(k) denotes the mean value of the mode-k flattening
of the tensor samples of all the training samples.

With the above preparations, we can directly present the
objective function of STDA in the following section.

B. The Objective Function of STDA

The purpose of the STDA is to obtain a set of sparse
projection matrix {Ui ∈ Rmi ×di , di ≤ mi , i = 1, 2, . . . , n}
that map the original high-order tensor data into a low-order
tensor space:

Yi = Xi ×1 UT
1 ×2 UT

2 · · · ×n UT
n . (1)

The objective function of STDA is to minimize the tensor
discriminant function of the L1 and L2 norms penalty opti-
mization problem with a set of constraints:

U∗
k = arg min tr(UT

k (S(k)
w − μS(k)

B )Uk) + αk ||Uk||2
+

∑

j

βkj|ukj| (2)

subject to UT
k Uk = Ik (3)

where k = 1, 2, . . . , n, μ is a suitable constant set by the user
and ukj is the j -th column of Uk, || · ||, and | · | denote the L2
and L1 norm, respectively. αks are the constants set by the
user and βkj s are the coefficients of L1 norm which can be
optimally determined by the Elastic Net. Similar techniques
exist in [40]–[42].

The above optimization problem uses the criterion negative
to MMC (or TMMC) but with the additional L1 and L2
norms for obtaining the sparse projections. Thus, we refer to
it as the sparse difference (tensor) scatter criterion. Though
it is formally different from MMC criterion, the intrinsic
geometric meanings of these two criterions are very similar.
To minimize the first term tr(UT

k (S(k)
w −μS(k)

B )Uk) also means
that the projections should enable the within-class scatter
and between-class scatter to be minimized and maximized,
respectively. If projections Uk can do so, they will be helpful
for discrimination.

To the best of our knowledge, there exist no closed-form
solutions for such complex objective function. Fortunately,

the optimization problem can be converted to a problem to
independently find n subspaces Uk(k = 1, 2, . . . , n) that can
minimize the scatter value of the mode-k flattening of the
nth-order tensors with L1 and L2 norms penalty. We can
further obtain the approximate sparse solutions by rewriting
the optimization problem as a set of independent SPCA
criterions. In the following sections, we first explore the
effective discriminant projections, and then we focus on the
mode-k flattening of the nth-order tensors to obtain the sparse
discriminant projections. The key problem is to convert the
sparse optimization model into the models that are easy to
solve.

Differing from the previous tensor discriminant analysis
methods in which each subspace is obtained by perform-
ing SVD or eigen decomposition, STDA uses the regres-
sion method with L1 and L2 norms penalty to obtain each
sparse projections/subspace. In the following two sections, the
sparse difference scatter criterion for discrimination is first
analyzed, and then the effective sparse discriminant projections
is obtained by combining the L1 and L2 norms penalty for
regression. At last, the local optimal solutions can be obtained
by alternative iterations.

C. Analysis on the Optimization Problem

At first, we analyze the first part of the sparse criterion
in (2). Since the optimization problem min tr(UT

k (S(k)
w −

μS(k)
B)Uk) is exactly the negative of max tr(UT

k (S(k)
B −

μS(k)
w )Uk) with the orthogonal constraint of UT

k Uk = Ik ,
the eigenvectors (or singular value vectors) corresponding to
the first di minimal eigenvalues of S(k)

w − μS(k)
B are exactly

the eigenvectors corresponding to the first di maximal eigen-
values of S(k)

B − μS(k)
w . Therefore, in the following sections,

we only focus on the minimum optimization problem to obtain
the optimal sparse projection for dimensionality reduction. The
reason for taking the minimum problem into consideration is
that the sparse projections are computed by the Elastic Net
which is also the minimum optimization problem and thus the
minimum optimization problem min tr(UT

k (S(k)
W − μS(k)

B )Uk)
and sparse regression problem can be integrated together.

Denote the SVD of S(k)
W − μS(k)

B as follows:

S(k)
W − μS(k)

B = �k�k�
T
k (4)

where �k and �k = diag[�1
k,�

2
k, . . . ,�

mk
k ] are the left

SVD matrix and the corresponding singular values sorted in
ascending order.

Let S(k) = S(k)
W − μS(k)

B = �k�k�
T
k , then S(k) can be

rewritten as

S(k) = �k�k�
T
k = �k

√
�k�

T
k (�k

√
�k�

T
k )T = X̂kX̂T

k (5)

where X̂k = �k
√

�k�
T
k and

√
�k is defined as (

√
�k)i =

{
√

�i
k, if�i

k ≥ 0

−
√

−�i
k, if�i

k < 0

}
, where (·)i denotes the i -th element

of the diagonal matrix. Then the first part of optimization
problem (2) can be equivalently represented as the following
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optimization problem to compute the projection matrix Uk

min tr(UT
k X̂kX̂T

k Uk)

subject to UT
k Uk = Ik (6)

It can be checked that Uk = �k is exactly the solution of the
above optimization problem (6). The optimal solution can be
obtained by performing SVD of X̂kX̂T

k or solving the standard
eigen-function X̂kX̂T

k Uk = �kUk . However, the SVD or eigen-
decomposition can not obtain the optimal sparse solution.
Thus, we will introduce the L1 and L2 norms penalty into
the optimization procedures to compute the sparse solution,
which is presented in the sections D and E.

D. Regression Analysis on the Discriminant Projections

Since directly solving the eigen-function cannot provide the
sparse solutions, one option is to convert the optimization
problem into regression forms such that the previous sparse
regression methods can be used to compute the sparse projec-
tion. For this end, the relationship between the optimization
problem of eigen-function (6) and the regression problem
should be firstly revealed. Let us take the following optimiza-
tion problem into consideration:

U∗
k = arg min

Uk

||�T
k X̂k − UT

k X̂k ||2 + αk ||Uk||2. (7)

The relationship between optimization problem (6) and (7)
can be revealed by the following theorem.

Theorem 1: The solution space of (6) is equivalent to the
one of (7). Moreover, let u∗

kj be the j -th column of U∗
k , then

u∗
kj ∝ ϕkj where ϕkj denotes the column vector in �k .

Proof: From (7) we have

||�T
k X̂k − UT

k X̂k ||2 + αk ||Uk ||2
= tr(�T

k X̂kX̂T
k �k − 2UT

k X̂kX̂T
k �k + UT

k X̂kX̂T
k Uk + αUT

k Uk)

Taking the derivation with respect to Uk be 0, we can rep-
resent the optimal solution of the above (regression) problem
as

U∗
k = (X̂kX̂T

k + αkI)−1X̂kX̂T
k �k

= (�k

√
�k�

T
k �k

√
�k�

T
k + αkI)−1

×�k

√
�k�

T
k �k

√
�k�

T
k �k

= (�k(�k + αkI)�T
k )−1�k�k

= �k
�k

�k + αkI

From the above equation, we can see that (6) and (7) have
the same solution space, i.e. u∗

kj ∝ ϕkj .
Corollary 1: In regression problem (7), if αk → 0, then

U∗
k → �k . If αk = 0, then U∗

k = �k .
Furthermore, we have the following theorem which gener-

alizes the representation of the problem in (6) or (7) when
αk = 0.

Theorem 2: Suppose Uk is an unknown mi × mi matrix
with unit column vector. For any given mi × mi matrix Ak

satisfying AT
k Ak = Ik , the following optimization problem

U∗
k = arg min

Uk,Ak

||�T
k X̂k − AkUT

k X̂k ||2 (8)

has the same solution space as the optimization problem (6).
Proof: Since AT

k Ak = Ik and �T
k �k = Ik

||�T
k X̂k − AkUT

k X̂k ||2
= tr(�T

k X̂kX̂T
k �k + AkUT

k X̂kX̂T
k UkAT

k − 2�T
k X̂kX̂T

k UkAT
k )

= tr(X̂kX̂T
k + UT

k X̂kX̂T
k Uk − 2�T

k X̂kX̂T
k UkAT

k )

The last term can be rewritten as

tr(�T
k X̂kX̂T

k UkAT
k ) = tr(AT

k �T
k X̂kX̂T

k Uk)

= tr(AT
k �T

k �k

√
�k�

T
k �k

√
�k�

T
k Uk)

= tr(AT
k �k�

T
k Uk)

It can be checked that if and only if Uk ≡ �kδk , where δk is
the diagonal matrix with 1 or -1, the above equation achieves
the maximum tr(AT

k �kδk) and thus (8) achieve its minimum
2tr(X̂kX̂T

k − AT
k �kδk). Therefore, optimization problem (8)

has the same solution space as the optimization problem (6).

The above two theorems represent optimal problem (6) into
a regression problem, which provide a tractable method for us
to convert the optimization problem into previous regression
framework with the L1 and L2 norms penalty. To this end, we
should further bridge the connections between the problem in
(7) or (8) with a more general form, which relaxes Theorem
2 by converting the orthogonal constraint on Ak to a direct
additional constraint. Thus, the following result is obtained:

Theorem 3: The optimal solution space of (8) is the same
as the following optimization problem:

U∗
k = arg min ||�T

k X̂k − AkUT
k X̂k ||2 + αk ||Uk||2

subject to AT
k Ak = Ik (9)

That is u∗
kj ∝ ϕkj for all j = 1, 2, . . . , dk .

Proof: The proof is presented in Appendix.
Corollary 2: The optimization problem (9) has the same

solution space as (7) or (8), i.e. span(Uk) = span(�k).
Thus, Theorem 3 reveals the relationships among the opti-

mization problems (6), (7) and the constrained regression
problem (9). The above analyses show that the constrained
regression solution space is the same to the solution of (6).

At last, with the above preparations, the original optimiza-
tion problem (2-3) can be converted to the following optimiza-
tion problem to obtain the sparse discriminant projections of
STDA on the mode-k flattening of the tensor data, in which the
L1 norm is added to (9) to form a new optimization problem:

U∗
k = arg min ||�T

k X̂k − AkUT
k X̂k ||2 + αk ||Uk||2

+
∑

j

βkj |ukj |

subject to AT
k Ak = Ik (10)

Therefore, optimization problem (10) provides the equiva-
lent or approximate sparse solutions of the original problem
(2–3).

E. STDA Algorithm and Its Related Analysis

It can be found that the above optimization problem (10)
is exactly the modified version of SPCA criterion in [40].



3908 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 22, NO. 10, OCTOBER 2013

TABLE I

STDA ALGORITHM

Input: Tensor samples {Xi ∈ Rm1×m2×···×mn , i = 1, 2, ..., N}, the numbers of iterations Tmax and TE N , the dimensions di (≤ mi ), i = 1, 2, ..., n

Output: Low-dimensional features Yi (i = 1, 2, ..., N)

Step 1: Center the training input samples.

Step 2: Initialize U0
k |nk=1 as arbitrary columnly-orthogonal matrices.

Step 3: For t = 1:Tmax do

For k = 1:n do

*Compute X k
i :X k

i = Xi ×1 Ut−1T
1 · · · ×k−1 Ut−1T

k−1 ×k+1 Ut−1T
k+1 · · · ×n Ut−1T

n (i = 1, 2, . . . , N)

*Perform the mode-k flattening of the nth-order tensors X k
i to matrices: X (k) ⇐�k X k

i
*Compute the scatter matrices S(k)

B and S(k)
W in definition 4 and 5.

*Perform SVD on S(k)
W − μS(k)

B to obtain X̂k and �k

*Initialize Ak as arbitrary columnly-orthogonal matrix

*For j = 1:TE N do

-Solve the Elastic Net problem: Ut∗
k = arg min ||�T

k X̂k − Ak Ut−1T
k X̂k ||2 + αk ||Ut−1

k ||2 + ∑
j βkj |ut−1

kj |
-Do SVD of �T

k X̂k X̂T
k Uk = ŪkD̄k V̄T

k , and update Ak = Ūk V̄T
k .

*Normalize Ut∗
k , i.e. let Ut

k (:, S) = Ut∗
k (:, S)/||Ut∗

k (:, S)||, S = 1:dk

*If t ≥ 2 and
∑

k tr(UtT
k Ut

k − Ik) < nε, break.

Step 4: Project the tensor samples into the low-dimensional tensor subspace Yi = Xi ×1 UtT
1 ×2 UtT

2 · · · ×n UtT
n

Thus, the algorithm procedures similar to SPCA can be used
to compute the optimal sparse discriminant projections. The
algorithm details of STDA are stated in Table I.

Computational Complexity: For simplicity, we assume that
m1 = m2 = · · · = mn = m and the total number of
training samples N is comparable in magnitude to the feature
dimension mn . The complexity of MMC-based methods is
O(m3n). The main complexity of STDA is O(tnTE N m3),
where TE N is the iteration number in the Elastic Net. Although
many loops are required for STDA for optimization, it is
still computationally more efficient than the high-dimensional
vector based methods since the iteration numbers are usually
small. In addition, computing the sparse discriminant projec-
tions is only needed in the training phase, therefore it can be
done offline and the computational cost is acceptable.

Convergence of STDA: STDA can also converge very fast as
TMMC. For the convergence of STDA, we have the following
theorem.

Theorem 4: The iterative procedures of STDA presented in
Table I will converge to a local optimum.

Proof: We need to prove that the objective function of
STDA is non-increasing and has a lower bound (at least bigger
than a constant c > 0). The original objective function of
STDA in each iteration step can be rewritten as follow:

J (Ut
1, Ut

2, . . . , Ut
n)

= tr(UtT
k (S(k)

W − μS(k)
B )Ut

k) + αk ||Ut
k||2 +

∑

j

βkj |ut
kj |

where Ut
k denotes the tth iteration of Uk and ut

kj is the column
vector in Ut

k . From the inner loop of the iteration by using
the Elastic Net and SVD in STDA algorithm, we know that
for each mode-kUt+1

k makes the objective function achieve a
local minimum according to theorems 1 and 3. Therefore, in
the outer loop, we have

J (Ut
1, Ut

2, . . . , Ut
n) ≥ J (Ut+1

1 , Ut
2, . . . , Ut

n)

≥ J (Ut+1
1 , Ut+1

2 , . . . , Ut
n) ≥ · · ·

≥ J (Ut+1
1 , Ut+1

2 , . . . , Ut+1
n ≥ c > 0

Therefore, the objective function will converge to a local
optimum.

III. RELATION TO PREVIOUS WORKS

In this section, we discuss the relation between the proposed
STDA algorithm and some previous dimensionality reduction
methods i.e. PCA, SPCA, 2DPCA, CSA, MPCA, MMC,
TMMC and GTDA. It is shown that these methods are the
special cases of STDA. Therefore, STDA is a more general
framework on data analysis.

A. Connection to PCA-Based Methods

At first, we reveal the relationship between STDA and
MPCA. And then, it is natural to extend this relationship to
the other special forms of MPCA.

The objective function of MPCA is to maximize the total
scatter of the mode-k unfolding of the tensors. Its optimization
problem can be represented as:

U∗
k = arg max tr(UT

k S(k)
T Uk)

s.t . UT
k Uk = Ik

Since S(k)
T = S(k)

W + S(k)
B , we have the following theorem.

Theorem 5: The projections of MPCA are the same as the
projections of STDA when μ = −1, Ak = Ik and αk = βk, j =
0 for any index k and j .

Proof: From (9–10), when Ak = Ik and αk = βk, j = 0,
we should minimize the following quantity:

||�T
k X̂k − AkUT

k X̂k ||2 + αk ||Uk||2 +
∑

j

βkj |ukj |

= ||�T
k X̂k − IkUT

k X̂k ||2
= tr(�T

k X̂kX̂T
k �k + UT

k X̂kX̂T
k Uk − 2UT

k X̂kX̂T
k �k)



LAI et al.: SPARSE TENSOR DISCRIMINANT ANALYSIS 3909

This minimization problem converts to

max tr(UT
k X̂kX̂T

k Uk)

subject to UT
k Uk = Ik

Since when μ = −1, X̂kX̂T
k = S(k)

T . This gives the
conclusion.

Theorem 5 shows that MPCA is a special case of STDA. In
facts, the MPCA proposed in [25] and CSA in [24] are exactly
the same in essence except for the notations and statements.
Therefore, according to theorem 5 and [24], it is easy to have
the following conclusions:

Corollary 3: If n = 1 (i.e. for vector input), PCA is
equivalent to the special case of STDA when μ = −1,
A1 = U1 and α1 = β1, j = 0 for any index j .

Corollary 4: If n = 1 (i.e. for vector input), SPCA is
equivalent to the special case of STDA when μ = −1.

Corollary 5: If n = 2 (i.e. for image input), 2DPCA is
equivalent to the special case of STDA when μ = 1, A1 = U1,
A2 = U2 = I2 and αk = βk, j = 0 for any index k and j .

B. Connection to MMC-Based Methods

MMC was extended to the multilinear case, named TMMC
in [31]. In fact, TMMC is a special case of GTDA proposed
in [29], i.e. if μ = 1, then GTDA reduces to TMMC. The
objective function of GTDA is as follows:

U∗
k = arg max tr(UT

k (S(k)
B − μS(k)

W )Uk)

subject to UT
k Uk = Ik

The optimal projection of the mode-k unfolding of the
tensors can be obtained by performing SVD or solving the
standard eigen-function (S(k)

B − μS(k)
W )Uk = �kUk . The fol-

lowing theorem shows the close relationship between GTDA
and STDA when the order of the projections is neglected.

Theorem 6: The projections of TMMC are the same as the
projections of STDA when Ak = Ik and αk = βk, j = 0 for
any index k and j .

Proof: The proof is similar to the proof of Theorem 5
except for letting X̂kX̂T

k = S(k)
B − μS(k)

W .
Theorem 6 can result in the following conclusions.
Corollary 6: If n = 1 (i.e. for vector input), MMC is

equivalent to the special case of STDA when Ak = Ik and
α1 = β1, j = 0 for any index j .

Corollary 7: If n = 2 (i.e. for image input), the bilateral
2DMMC [49] is equivalent to the special case of STDA when
αk = βk, j = 0 for any index k and j .

IV. EXPERIMENTS

In this section, a set of experiments are presented to evaluate
the proposed STDA algorithm for face image recognition
tasks using second order tensor and action recognition using
high (third) order tensor. The Yale, FERET CMU PIE face
databases were used to test the performance or robustness of
STDA with variations in face expression, pose and lighting
conditions. The Weizmann database was used to test the
performance of STDA in high-order tensor learning. The
nearest neighbor classifier with Euclidean distance was used
in all the experiments.

Fig. 1. The sample images of one person from the Yale face database.

A. Exploration on Yale Database

The Yale face database (http://www.cvc.yale.edu/projects/
yalefaces/yalefaces.html) contains 165 images of 15 individu-
als (each person providing 11 different images) with various
facial expressions and lighting conditions. In our experiments,
each image was manually cropped and resized to 50 × 40
pixels. Fig. 1 shows sample images of one person on the Yale
face database.

Explore the performance of the parameters: in order to
explore the variations of the performance of the STDA
against the parameters, 4 images per individual were randomly
selected for training and the remaining images were used as
test in the experiment. The variation of the recognition rate
versus the sparseness parameter cardinality K in STDA on
Yale face database is shown in Fig. 2 (a), from which it can
be found that when K ∈ [9, 10, 11] STDA achieves its best
performance. Fig. 2 (b) and (c) shows the variation of the
recognition rate versus the values of α (Alpha) and μ (Miu),
respectively. In the experiments, the recognition rates of STDA
is robust to parameter α in a larger range from 10−4 to 103.
Fig. 2 (c) shows that STDA achieves its best performance
when μ = 103. Similar performances can also be found in
other databases used in this paper.

Experimental setting: In the experiments, 4 images of each
individual were randomly selected and used as training set,
and one half of the remaining images as validation set and
test set, respectively. The experiments were independently
performed 10 times and the average recognition results on
the test set were calculated. For each run, the validation set
was used for parameters’ selection. The optimal sparseness
parameter cardinality K and the optimal subspace dimensions
were ranged in [1], [40]. When Elastic Net was used, the αk’s
were selected from 10−4, 10−3, . . . , 105, and the parameters
βk, j s can be automatically determined since the Elastic Net
algorithm could provide the optimal solution path of βk, j s
for given αk [38]. And the coefficients of the L1 norm
in SNTF [45] and HNTF [44], and μ in STDA were all
selected from 10−4, 10−3, . . . , 105. For SLDA [42], both the
L1 and L2 norms penalty weights were also selected from
10−4, 10−3, . . . , 105. For MPCA, MLDA, TMMC, the main
parameters are the dimensions of each subspaces. For each
subspace, the dimensions were varied from 1 to the size
of the image matrix with step equaling to 1. Thus all the
parameter ranges/combinations are covered. When using the
strategy of “multilinear methods plus LDA”, PCA was used for
preprocessing after multilinear feature extraction so that the
within-class scatter matrix is invertible (LDA is more stable
in this case). For each run, the optimal parameters determined
by the validation set were used in the algorithms.
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Fig. 2. (a) The recognition rate (%) vs. the cardinality. (b) The recognition rate vs. the value of Alpha. (c) The average recognition rates vs. the value of
Miu.
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Fig. 3. The average recognition rates (%) versus the dimensions on the Yale (a), FERET (b) and CMU PIE (c) face databases.

The average recognition rates of the test set and the corre-
sponding dimensions and standard deviations of each method
are shown in Table II. The recognition rates vs. the variations
of the dimension are shown in Fig. 3 (a), in which the
dimension (i.e. the horizontal axis) means the number of the
column vectors in the projection matrices used for feature
extraction. As can be seen form Table II and Fig. 3 (a), STDA
obtains the best recognition rates in the experiments, which
shows the robustness for the variations on facial expressions
and lighting conditions.

B. Experiments on FERET Face Database

The FERET face database is a result of the FERET program,
which was sponsored by the US Department of Defense
through the DARPA Program [44]. It has become a stan-
dard database for testing and evaluating state-of-the-art face
recognition algorithms. The proposed method was tested on
a subset of the FERET database. This subset includes 1,400
images of 200 individuals (each individual has seven images)
and involves variations in facial expression, illumination, and
pose. In the experiment, the facial portion of each original
image was automatically cropped based on the location of the
eyes, and the cropped images was resized to 40 × 40 pixels.
The sample images of one person are shown in Fig. 4.

In the experiments, l(l = 3, 4, 5) images of each individual
were randomly selected and used for training, and one half

Fig. 4. Sample images of one person on FERET face database.

of the rest images were used for validation and test, respec-
tively. The experiments were performed as the same way in
Section A. Table III lists the recognition rates of each method
and Fig. 3 (b) shows the recognition rates vs. the variations of
the dimensions. Again, STDA performs better than the other
methods.

C. Experiments on CMU PIE Face Database

The CMU PIE face database [50] contains 68 indi-
vidual with 41,368 face images as a whole. The face
images were captured under varying pose, illumination and
expression. In our experiments, we select a subset (C29)
which contains1632 images of 68 individuals (each individ-
ual has 24 images).The C29 subset involves variations in
illumination, facial expression and pose. All of these face
images are aligned based on eye coordinates and cropped
to 32 × 32. Fig. 5 shows the sample images from this
database.

In the experiments, l(l = 3, 4, 5) images of each indi-
vidual were randomly selected and used as training set,
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TABLE II

THE PERFORMANCE OF DIFFERENT METHODS ON YALE FACE DATABASE

Method SPCA SLDA MPCA MPCA MLDA MLDA TMMC TMMC SNTF SNTF HNTF HNTF STDA STDA

+LDA +LDA +LDA +LDA +LDA +LDA

Recognition rate 86.63 87.38 88.07 92.75 89.56 94.19 90.24 94.33 81.77 89.22 79.70 89.81 93.30 95.59

Standard deviation ±3.27 ±2.52 ±2.79 ±3.30 ±3.02 ±2.91 ±3.12 ±2.68 ±5.32 ±3.23 ±4.84 ±2.19 ±2.47 ±2.13

Dimension 28 39 14×17 14 15×28 14 14×16 14 44×39 14 17×16 14 43×21 14

TABLE III

THE PERFORMANCE (RECOGNITION RATE, STANDARD DEVIATION AND DIMENSION) OF DIFFERENT METHODS ON FERET FACE DATABASE

Training SPCA SLDA MPCA MPCA MLDA MLDA TMMC TMMC SNTF SNTF HNTF HNTF STDA STDA

Samples +LDA +LDA +LDA +LDA +LDA +LDA

3 46.43 46.17 51.17 57.84 52.87 61.41 54.29 64.06 34.84 55.41 23.98 52.25 57.86 69.54

115 195 35×16 199 38×19 199 35×16 199 27×23 199 36×30 199 36×16 199

±11.55 ±10.18 ±9.00 ±10.50 ±7.38 ±6.83 ±10.17 ±9.67 ±6.53 ±9.75 ±3.57 ±8.75 ±5.68 ±6.60

4 54.16 54.33 63.85 71.71 65.93 73.66 68.24 73.52 43.05 69.62 29.08H 65.38 70.95 75.68

95 185 32×16 199 36×32 199 32×16 199 28×30 199 30×30 199 38×38 199

±10.52 ±6.83 ±7.09 ±8.70 ±7.02 ±7.90 ±8.09 ±7.62 ±7.44 ±11.09 ±5.89 ±10.81 ±5.11 ±5.44

5 58.65 60.44 72.23 79.37 74.52 81.45 75.45 82.14 44.15 76.20 29.18H 72.12 78.56 85.77

90 199 37×19 199 36×22 199 37×16 199 39×30 199 35×35 199 32×16 199

±7.05 ±6.12 ±8.06 ±6.04 ±9.05 ±5.96 ±7.07 ±5.09 ±13.03 ±9.55 ±8.74 ±7.14 ±5.03 ±4.08

Fig. 5. The sample images of one person form the CMU PIE face database.

and one half of the remaining images as validation and
test set, respectively. The experimental parameters were set
as in Section A. The performances of each method are
shown in Table IV. The recognition rates vs. the variations
of the dimension (5 samples were used for training) are
shown in Fig. 3 (c). As can be seen form Table IV and
Fig. 3 (c), STDA obtains the best recognition rates in all
the cases when there are variations in expression, pose and
illumination.

D. Experiments on Weizmann Action Database

The experiment was performed on the Weizmann data-
base [45], which was a commonly used database for human
action recognition. The 90 videos coming from 10 categories
of actions included bending (bend), jacking (jack), jumping
(jump), jumping in places (pjump), running (run), galloping-
side ways (side), skipping (skip), walking (walk), single-hand
waving (wave1), and both-hands waving (wave2), which were
performed by nine subjects. The centered key silhouettes of
each action are shown in Fig. 6.

In order to represent the spatiotemporal feature of the
samples, 10 successive frames of each action were used to
extract the temporal feature. Fig. 7 shows a tensor sample
of the bending action. Each centered frame was normalized
to the size of 32 × 24 pixels. Thus the tensor sample was
represented in the size of 32 × 24 × 10 pixels. It should be

Fig. 6. Key silhouettes of 10 actions from the Weizmann database. (a) bend,
(b) jack, (c) jump, (d) pjump, (e) run, (f) side, (g) skip, (h) walk, (i) wave1,
(j) wave2.

note that there is no overlapped frames in any two tensors and
the starting frames of the tensors are not normalized to the
beginning frames of each action. Thus, the recognition tasks
are difficult and close to the real-world applications. Therefore,
if one wants to get high recognition accuracy, the methods used
for feature extraction should be robust to starting frames and
actions’ variations.

In the experiments, 6 action tensors of each category were
randomly selected and used for training and one half of the
remaining tensors as validation and test set, respectively.
The experimental procedures were the same as in Section A.
The recognition rates of each method are listed in Table V,
and the variations of the average recognition rates versus the
dimensions are shown in Fig. 8. It can be found that STDA
also outperforms the other algorithms in action tensor feature
extraction.
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TABLE IV

THE PERFORMANCE (RECOGNITION RATE, STANDARD DEVIATION AND DIMENSION) OF 5 METHODS ON THE CMU PIE FACE DATABASE

Training SPCA SLDA MPCA MPCA MLDA MLDA TMMC TMMC SNTF SNTF HNTF HNTF STDA STDA

Samples +LDA +LDA +LDA +LDA +LDA +LDA

3 53.66 62.56 48.02 64.79 57.32 64.26 49.36 67.69 23.72 63.94 19.24 65.65 63.90 70.18

140 145 29×29 67 28×28 67 31×27 67 25×6 67 30×26 67 31×21 67

±10.93 ±10.67 ±5.41 ±10.23 ±11.05 ±10.49 ±5.42 ±7.92 ±5.52 ±11.81 ±3.03 ±10.91 ±7.18 ±6.84

4 68.00 75.49 61.30 75.43 68.24 75.09 62.64 78.86 27.99 78.09 21.55 77.57 76.55 82.21

145 150 29×30 67 24×21 67 30×27 67 16×6 67 29×21 67 31×28 67

±7.87 ±6.71 ±9.45 ±14.33 ±3.02 ±15.25 ±7.47 ±7.79 ±5.86 ±8.81 ±4.04 ±8.96 ±5.66 ±5.09

5 76.39 81.61 71.08 83.12 76.67 82.94 72.26 85.89 34.25 85.75 24.87 84.70 85.41 88.09

150 155 31×26 67 28×28 67 29×29 67 30×26 67 23×21 67 31×28 67

±7.76 ±3.66 ±8.87 ±3.31 ±3.25 ±6.77 ±3.07 ±7.14 ±7.47 ±8.49 ±4.45 ±6.04 ±4.17 ±3.46

TABLE V

THE PERFORMANCE OF DIFFERENT METHODS ON THE WEIZMANN ACTION DATABASE

Method SPCA SLDA MPCA MPCA MLDA MLDA TMMC TMMC SNTF SNTF HNTF HNTF STDA STDA

+LDA +LDA +LDA +LDA +LDA +LDA

Recognition rate 78.03 76.59 70.14 76.24 76.94 75.87 77.19 76.12 69.21 61.47 48.93 56.60 80.38 80.77

Standard deviation ±3.20 ±2.55 ±2.83 ±2.08 ±3.68 ±3.94 ±3.54 ±2.08 ±4.06 ±2.62 ±2.64 ±3.53 ±2.98 ±2.39

Dimension 16 40 103 9 93 9 93 9 93 9 93 9 103 9

Fig. 7. An example of the bending action in spatiotemporal domain from
Weizmann database.

E. Observations and Discussions

Based on the experimental results shown in above sections,
the following observations are obtained:

(1) It can be found from the experiments that the sparse
learning algorithm such as SPCA and SLDA can even
perform better than MPCA and MLDA, respectively.
Although the label information was not used in SPCA,
SPCA performs better than MLDA and obtains high
recognition rates in action recognition. STDA performed
better than SPCAn and SLDAn, which indicates that
combining the L1 and L2 norms for sparse tensor
learning with higher order data can obtain more dis-
criminative information than the simple linear cases.

(2) STDA uses the same criterion (i.e. the differential form)
as in TMMC, but the recognition rates of STDA are
significantly higher than the ones obtained by TMMC.
This indicates that introducing the sparsity in the projec-
tion vectors/matrices can enhance the performance of the
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Fig. 8. The average recognition rates (%) versus the dimensions on the
Weizmann action database.

criterion used in the algorithm. The reason is that using
the L1 norm for sparse discriminant learning can avoid
the over-fitting and thus it can be more robust or obtain
more generalization abilities than the related methods.

(3) For the tensor learning methods, MLDA and TMMC
usually performs better than MPCA. With the similar
criterion by adding the L1 and L2 norms terms for sparse
learning in STDA, the performance was also enhanced.
Similar cases also happen on different databases. This
proves that introducing the sparsity constraint to learn
the discirminant subspace is a tractable method for
improving the performance when there are variations in
expression, pose and illumination in the face images and
the starting point in the action tensor.

(4) Since SNTF and HNTF aim to find the nonnegative
semantic structure information embedding in the data



LAI et al.: SPARSE TENSOR DISCRIMINANT ANALYSIS 3913

instead of feature extraction for classification, they
obtain low recognition rates. But it can be greatly
enhanced by using LDA for further dimensionality
reduction. Usually, the strategy of “multilinear methods
plus LDA” can significantly enhance the performance.

V. CONCLUSION

A sparse tensor learning method called STDA was designed
in this paper for feature extraction. The L1 and L2 norms were
integrated to the maximal marginal criterion and thus a novel
sparse learning model was proposed. The optimal solutions of
this model can be obtained by the iterative algorithm using the
Elastic Net regression. Theoretical analyses were presented to
explore the properties of STDA. The relationships between
STDA and other algorithms were also shown. Experimental
results showed that STDA performs better than the well-
known sparse linear dimensionality reduction algorithms and
the extensions of the classical multilinear subspace learning
methods in face recognition and action recognition. It is shown
that STDA is more robust than the compared methods on
the variations in expression, pose and illumination in the face
images and the different starting frames and variations in the
action tensor. Usually, STDA with higher order data can obtain
more discriminative information than the simple linear cases.

APPENDIX

A. Proof of Theorem 3

Proof:

||�T
k X̂k − AkUT

k X̂k ||2 + αk ||Uk||2 = tr(�T
k X̂kX̂T

k �k

−2UT
k X̂kX̂T

k �kAk + UT
k X̂kX̂T

k Uk + αUT
k Uk). (A1)

For the fixed Ak , using Lagrange multiplier method, the
above quantity is minimized at

Ûk = (X̂kX̂T
k + αIk)

−1X̂kX̂T
k �kAk = �k�k(�k + αIk)

−1Ak

(A2)
On the other hand, for the given Uk , minimizing (A1) gives

arg min tr(−UT
k X̂kX̂T

k �kAk) s.t . AT
k Ak = Ik (A3)

Then minimizing (A3) is equivalent to the following maxi-
mizing problem:

arg max AT
k �2

k(�k + αIk)
−1Ak, s.t . AT

k Ak = Ik (A4)

Since this is a standard eigen-decomposition problem, the
solution can be obtained by SVD of �2

k(�k + αIk)
−1:

�2
k(�k + αIk)

−1 = Ūk D̄k V̄ T
k (A5)

Then Âk = Ūk is the optimal solution of (A4). Therefore, it
can be seen from (A2) that Ûk always spans the same subspace
in iterative procedures as the one spanned by �k . Thus u j

k ∝
ϕkj (1 ≤ j ≤ dk).
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