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Local Structure-Based Image Decomposition for
Feature Extraction With Applications to
Face Recognition
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Abstract—This paper presents a robust but simple image
feature extraction method, called image decomposition based on
local structure (IDLS). It is assumed that in the local window
of an image, the macro-pixel (patch) of the central pixel, and
those of its neighbors, are locally linear. IDLS captures the local
structural information by describing the relationship between
the central macro-pixel and its neighbors. This relationship is
represented with the linear representation coefficients determined
using ridge regression. One image is actually decomposed into
a series of sub-images (also called structure images) according
to a local structure feature vector. All the structure images,
after being down-sampled for dimensionality reduction, are
concatenated into one super-vector. Fisher linear discriminant
analysis is then used to provide a low-dimensional, compact,
and discriminative representation for each super-vector. The
proposed method is applied to face recognition and examined
using our real-world face image database, NUST-RWFR, and
five popular, publicly available, benchmark face image databases
(AR, Extended Yale B, PIE, FERET, and LFW). Experimental
results show the performance advantages of IDLS over state-of-
the-art algorithms.

Index Terms—Image decomposition, local structure feature,
ridge regression, face recognition.

I. INTRODUCTION

ACE recognition is a popular research field in pattern
recognition, and has attracted much attention in many
areas, such as information security, law enforcement, human—
computer interaction and surveillance [1]. In real-world appli-
cations, it’s difficult to deal with the range of appearance
variations that commonly occur in face images owing to pose,
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illumination and facial expression. With these complexities
in face representation, the main challenge is how to exploit
robust and discriminative features. A large number of feature
extraction algorithms have been developed and tested for
face recognition, including subspace based global features and
local appearance features. Among them, principal component
analysis (PCA) [30] and Fisher linear discriminant analysis
(FLDA) [2] — two well-known linear subspace learning meth-
ods which have been widely used in the pattern recognition
and computer vision areas — have become the most popular
techniques for face recognition. Simultaneously, the kernel
methods (e.g. kernel principal component analysis [3] and
kernel Fisher discriminant [4] etc.) are introduced to deal with
the nonlinear structure of data. These kernel methods have
proven to be effective in many real-world applications [5], [6].
Recently, Yan et al. [7] proposed a general framework called
graph embedding. Various manifold-based learning methods
such as ISOMAP, LLE, Laplacian Eigenmap, and LPP etc
[8]-[12], can be reformulated as a unified model in this
framework. Some experiments have shown that these methods
can find perceptually meaningful embeddings for face images.

Compared with the global features like PCA and FLDA,
local appearance features are more robust for handling local
changes such as illumination, expression and pose. Gabor
wavelets [13] and local binary pattern [14] are two popular
methods for feature extraction and image representation in
the last decade. The Gabor wavelet has been extensively
used in face recognition due to the fact that its kernels
are similar to the two-dimensional receptive field profiles of
the mammalian cortical simple cells. Also, it captures the
desirable local characteristic structure of spatial frequency,
spatial locality, and selective orientation, which are proven
to be robust to illumination and facial expression changes.
Local Binary Pattern (LBP) has received increasing attention
owing to its simplicity and thus far encouraging performance
in texture image-analysis tasks [14]. Many approaches derived
from LBP have been proposed and successfully used in various
applications [15], [16]. In particular, Ahonen et al. proposed
a method based on local binary pattern histograms, which
has been demonstrated effective for face recognition. The
representation of a face image is obtained by dividing the
image into a series of sub-windows and computing their
histograms of LBP values [16], [17]. Subsequently, some
works combined LBP and Gabor features to improve the
face recognition performance compared to the individual use
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Fig. 1. The overview of the IDLS method.
of any one of these representations. Zhang et al. proposed
the local Gabor binary pattern method and used a histogram
sequence to model facial images [18]. Zhao and Pietikdinen
presented a method called LBP-TOP for dynamic texture and
facial analysis [19]. Lei et al. developed a face-representation
method which not only exploits the information in the spatial
domain but also takes into consideration different scales and
orientations [20]. There are also other approaches [21], [22]
using Gabor phase information. Moreover, a family of novel
face image descriptors (e.g. three-patch LBP (TPLBP) and
four-patch LBP (FPLBP)) has been developed, and they can
capture certain statistics of local patch similarities [31], [32].

By far, numerous methods have been developed for image
decomposition, such as morphological component analysis
(MCA), sparse representation and structure-texture decom-
position model. These methods can be applied to medical
imaging, image compression, image restoration and image
analysis [23]-[26]. As we know, most images contain rich
local structural information, which can potentially be used in
object recognition tasks. Therefore, we consider decomposing
an image into a series of sub-images which contain different
structural information. Based on this idea, we propose a simple
but effective feature extraction method called image decompo-
sition based on local structure (IDLS). IDLS first captures the
local structural information by characterizing the relationship
between the macro-pixel of a central pixel and those of its
neighbors (one neighbor in one orientation). Here, a linear
regression model is used to assess relationships among them.
After that, we obtain an N-dimensional feature vector for each
pixel. One image is therefore decomposed into N sub-images
(also called structure images). Then, we down-sample all struc-
ture images and normalize each to a unit vector. The normal-
ized structure images are concatenated into one super-vector.
The dimensionality of the super-vector is further reduced by
FLDA to yield a compact, low-dimensional feature vector. The
overview of the proposed method is shown in Fig. 1.

It is necessary to highlight two merits of the proposed
method. First, IDLS uses a set of linear representation
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coefficients to characterize the relationships between a central
pixel and its neighbors. This set of linear representation
coefficients is determined by optimizing a linear regression
model. Second, IDLS is robust to illumination changes. This
is because IDLS computes the local structure relationships
between a central pixel and its neighbors in a local window.
Any intensity change of all the pixels of an image will not
affect these local structure relationships.

The rest of the paper is organized as follows. In Section II,
we present the details of the proposed IDLS method and
analyze the advantage of IDLS feature over Gabor feature. We
experiment using our real-world face image database NUST-
RWFR and five popular publicity face image databases in
Section III. The experimental results demonstrate that the
effectiveness of the proposed method. Finally, a conclusion
is offered in Section IV.

II. IMAGE DECOMPOSITION BASED
ON LOCAL STRUCTURE

A. Outline of Ridge Regression

Linear regression attempts to model the relationship
between the dependent variables and the explanatory variables
(regressors) by fitting a set of linear equations to observed data.
Specifically, given a dataset {y;, x; 1, -, Xl‘,P};;l, the linear
regression model takes the following form:

yi = wixi1 + -+ wpxip +&i,  i=1,--

ey

where y; is the dependent variable, x; 1, - - - , x; p are explana-
tory variables, and ¢; is the disturbance term.

Actually, these n equations can be stacked together and
written in vector form as:

5”5

y=Xw+e, @)
V1 X1,1 -+ X1,P w1
y2 X2,1 - X2,P w7
where y = , X = . . , W= - ]
Yn Xn,1 - Xn,P wp
€1
&
and ¢ = .
&n

Generally, the parameter w can be determined by solving
the following optimization problem:

min [ly — Xwl|*. 3)
w
The ordinary least squares solution of Eq. (3) is given by
b =X"xX)"'X"y. ©)

However, X7 X is singular when the system is underdeter-
mined (i.e. n<P). One common way to address this problem
is to solve the following regularized linear regression model
instead

min |y —Xw|* + 0 [w]*.

(5)

The model is generally called Ridge Regression. Its solution
is given by

W= X"X + o1~ 'XTy. (6)
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Fig. 2. Squarely symmetric neighbor sets for radius R. (a) P =8 (R = 1),
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Fig. 3. Illustration of local macro-pixels in a local window

B. Extracting Local Structure Feature Using Ridge Regression

To describe the local structure, let us begin with the char-
acterization of neighbor sets, local macro-pixels, and local
windows. Suppose there are N pixels in an image. We treat the
i-th pixel in an image as a center and determine its P neighbor
pixels on a square of radius R using the city-block distance!.
These neighbor pixels form a squarely symmetric neighbor set
Q’}, ={ij|j =1,---, P}. Fig. 2 illustrates these neighbor sets
for different R.

We treat the i j-th pixel belonging to the neighbor set Q’;, as
a center to choose a K x K local macro-pixel (e.g. K=3, 5).
The gray values corresponding to all K2 pixels within the
macro-pixel form a Q-dimensional local macro-pixel vector
Xij, j=1,---,P,and Q = K2. Similarly, for the center
pixel of the neighbor set Qi,, we can choose a same-sized,
central macro-pixel which is denoted by a Q-dimensional
vector y;. For the i-th pixel in the image, all of the chosen
local macro-pixels, y; and x; ; (i = 1,---, P), determine a
local window of the pixel. Fig. 3 shows an example of a local
window which contains a central macro-pixel and 16 neighbor
macro-pixels. Notice that the size of neighbor set P is 16 and
the size of macro-pixel Q is 3 x 3 =09.

Here we assume that all macro-pixels in a local window are
locally linear?. Based on this assumption, we characterize the
local structure between a central macro-pixel and its neighbor
macro-pixels. Specifically, given a central macro-pixel and
its neighbor macro-pixels in the i-th pixel centralized local
window, the central macro-pixel y; can be approximately
represented by a linear combination of neighbor macro-pixels
Xi1,, X, p as follows

Yi = wi1X;1 +"'+wi,PXi,P+gs )

where w; 1, -, w; p are the representation coefficients.
Let w; = [wi1, - w;pl’ and X; = [X;1,, - X; p], then

INote that for the pixel on the margin of an image, we use the mirror
transform to enlarge the image first and then determine its neighbors.
2Actually, a similar assumption was used in LLE [9].
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feature vector of i-th pixel).

Structure information

Structure information

Fig. 5. Image decomposition according to local structure information.

the Eq. (7) can be rewritten as
yi = Xiw; +e. )

To avoid the singularity problem, we use the ridge regres-
sion to get a solution of Eq. (8), i.e.

wi = XI'X; + o1 'XTy,;. 9)

Actually, the vector w; describes the structural relationship
of the i-th pixel and its neighbor pixels in the current local
window. Fig. 4 illustrates the procedure of extracting local
structural information of one pixel from an image.

C. Image Decomposition and Feature Representation

From section I1.B, for each pixel in an image, we can obtain
a local structure feature vector to describe the local structural
relationship between the central macro-pixel and its neighbor
macro-pixels. Assuming that there are N pixels in an image,

the local structure feature vectors of all pixels, wy, -+, Wy,
form a local structure feature matrix W as follows
w11 w21 ... WN,1 Vi
W: [W15W25"' sz] =
wy,p w2,p T WN,P vp
(10)

Each row of W, an N-dimensional vector v;, can be
reformed into an image, which is called structure image. Thus,
the local structure feature matrix yields a set of P structure
images. In other words, one image is decomposed into P
structure images by virtue of the local structural information.
Fig. 5 shows structure images derived from one given image.
Since each of structure images is composed of the structural
information between the same orientation neighbors and their
central pixels, they represent structural feature from different
orientations effectively. From Fig. 3, we see that the current
central pixel has one neighbor in one orientation in the local
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window. Each structure image accumulates almost all the
structural information in one orientation by this means.

All the structure images are concatenated into one aug-
mented super-vector so as to include all structural information
from different orientations. Before the concatenation, each
structure image is down-sampled by a factor 4 to reduce
feature dimension and then normalized to be unit vector.
Letting vﬁ, (p=1,---, P) represent the p-th down-sampled
and normalized structure image vector, the augmented super-
vector V* is thus defined as follows:

V4 = (Vi“jvé“,...

(1)

Notice that the augmented super-vector V* is still high
dimensional. To deal with the high-dimensional problems,
numerous dimensionality reduction methods have been devel-
oped in recent years. The basic idea of these methods is to seek
a meaningful low dimensional subspace in a higher input data
space. This subspace can provide a compact representation
of higher dimensional data. Here, FLDA?3 is used to further
reduce the dimension of the augmented super-vector and to
generate compact and discriminative feature vectors. From
this point of view, our method not only considers the local
structure, but also takes into account the global information.

A
5 VP)‘

D. IDLS via Gaussian Kernel Distance

We know that LLE [9] compute the local weights using the
linear regression, while a Laplacian Eigenmap [10] and LPP
[11] calculate the local weights directly using the Gaussian
kernel distance. In contrast to IDLS, which characterizes the
local structure relationship via linear regression coefficients,
we here present a way to characterize the local structure
relationship by computing the distances between the central
macro-pixel and each neighbor macro-pixel with a Gaussian
kernel. Specifically, in the i-th pixel centralized local window,
the distance between the central macro-pixel y; and the
Jj-th neighbor macro-pixel x; ; (j = 1,---, P) is defined as
follows | 2

Yi —Xi,j

W } (12)
where h is the smoothing parameter (h is set to 0.25 in this
paper). The distance w; ; is used to describe the structural
relationship between the central pixel and the j-th neighbor.
Therefore w;, = [w;1, -, w; 17 represent the structural
information of the i-th pixel in the local window. Based on
the structural information of all pixels in an image, we can
obtain a set of P structure images. This method is called
IDLS-Distance, since it uses the Gaussian kernel distance to
characterize the local structure relationship.

Note that IDLS-Distance considers the relationship between
the central macro-pixel and each neighbor macro-pixel in
isolation. We know that IDLS exploits the structural informa-
tion using linear regression coefficients as shown in Eq. (9).
That is, IDLS takes into account the relationship between
central macro-pixel and all neighbor macro-pixels together.
In other words, IDLS takes advantage of the information of

wi,j = exp{—

3Note that FLDA is degenerated into PCA when there is only one image
per person for training.
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all neighbor macro-pixels to help balance the relationship
between the central macro-pixel and each neighbor macro-
pixel.

E. Comparisons With Gabor Feature

IDLS and Gabor both decompose one image into a series of
structure images according to local structural information. All
the structure images, after being down-sampled for dimension-
ality reduction, are concatenated into one super-vector. FLDA
is then used to obtain the low-dimensional, compact feature
vector. Gabor feature representation of an image is made via
convolution operation with family kernels, which stimulate the
2-D receptive filed profiles of mammalian cortile simple cell.
Moreover, they represent desirable characteristics of spatial
scale, spatial locality and selective orientation. Specifically,
one would use Gabor kernels of five different scales and eight
orientations to generate forty sub-images in general. Every
structure image is down-sampled to reduce space dimensions.
Afterwards, we concatenate all the represented results and
develop an augmented super-vector to encompass significant
features of different scales, localities and orientations. IDLS,
however, first exploits the local structure hidden in the unob-
served space of an image by using the linear regression
coefficients to depict the relationships between the macro-
pixels of each pixel and those of their neighbors. From the
reconstruction point of view, it’s believed that linear regression
coefficients reveal intrinsic local structure relationship between
a central macro-pixel and its neighbors. One image is actually
decomposed into a series of structure images. This is the
difference between IDLS and Gabor feature.

To show the advantage of IDLS compared with Gabor
feature under varying lighting conditions, we choose three
macro-pixels (5 x 5) with the same position in three images
under different lighting conditions, as shown in Fig. 6. Then,
structural information is achieved by decomposing the image
via ridge regression and Gabor filtering, respectively. By this
means, the difference of structural information of the macro-
pixels with different illuminations is calculated as shown in
Fig. 6. From Fig. 6, we can see that structural information of a
Gabor feature is sensitive to the lighting changes. On the other
hand, our method using ridge regression to represent structural
information is robust to the lighting changes. Fig. 7 shows the
Gabor magnitude face images and structure images of IDLS
with respect to the image c in Fig. 6. From Fig. 7, we can see
that IDLS has a power to eliminate the effect of illumination.
Because IDLS captures the local structural information of each
pixel in its local window, and an intensity change is added
to each image pixel will have little effect on local structural
information. Therefore, IDLS demonstrates its advantages over
Gabor under different lighting conditions. Experiments in
Section IIT will demonstrate our ideas mentioned above.

II1. EXPERIMENTS

In this section, we will evaluate the effectiveness of IDLS
and compare it with some state-of-the-art algorithms by
experimenting on our real world face image database NUST-
RWEFR and five large publicly available face image databases
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(AR, Extended Yale B, PIE and FERET). In the following
experiments, we choose the regularized parameter in ridge
regression as 6 = 0.01,* and the down- sampling factor as
A =2 in our IDLS method. In addition, the optimal parameters
of the state-of-the-art algorithms in our experiments are listed
as follows. For the LBP features® [17], the sub-block size
is 8 x 8 on the NUST-RWFR, Extended Yale B and PIE,
16 x 15 on the AR. Each block is with a 59-D histogram. The
parameters of three patch based LBP (TPLBP) [32] descriptors
arery = 2, S = 8, and w = 5. The MATLAB source code is
from the Web.® For the LTP and LTP/DT features’ [15], the
threshold for coding is 0.02, the o parameter for DT distance
is 1, the threshold for truncating DT distance is 6, and the
sub-block size is 16 x 15 on the AR dataset and 8 x 8 on
the other datasets. For ID-LARK [36] and LARK? [37], the
local window size is 7 x 7 in all experiments except for the
one on the Extended Yale B dataset where the local window
size is 3 x 3. To compute the Gabor feature [13], we used 40
Gabor filters including 5 scales and 8 directions for each face
image. The down-sampling factor is 4 on the NUST-RWFR,

4Actually, we can obtain the similar results when 6 € [0.001, 0.01] in
our experiments.

5http://www.ee.oulu.ﬁ/mvg/page/lbpmatlabA

6http://www.openu.ac.il/home/hassner/projects/Patchlbp/.

7http://parnec.nuaa.edu.cn/xtan/PublicationAhth

8http://users.soe.ucsc.edu/~mi1anfar/research/rokaf/.html/download,object.
php.
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(b)

Fig. 8. Sample images for one subject of NUST-RWFR database (a) session 1,
(b) session 2.

PIE, FERET, LFW datasets and 8 on the AR, Extended Yale B
datasets.

A. Experiment Using the NUST-RWFR Database

The NUST-RWFR database’ contains 2400 color face
images of 100 persons, including frontal views of faces with
different facial expressions, lighting conditions and degrees of
blurring. All the pictures are taken in a real world situation.
The pictures of 100 persons were taken in two sessions and
each session contains 12 color images. The quality of pictures
in the first session is good, and that in the second session
is poor. All face images of these 100 persons are used in
our experiments. The face portion of each image is manually
cropped and then normalized to 80 x 80 pixels. The sample
images of one person as shown in Fig. 8. Additionally, we
resize the face images into 24 x 24 and 48 x 48 for further
experiments.

In the first experiment, the images from the first session
of each person are used for training, and images from the
second session for testing. The total training samples is 1200,
since there are 12 face images in session 1 of each person.
PCA, FLDA, LARK combines binary-like representation and
matrix cosine similarity (MCS) [37], ID-LARK, LBP plus
Chi2, LTP plus Chi2, LTP/DT, TPLBP plus Chi2, Gabor plus
FLDA, and proposed methods IDLS-Distance, IDLS are used
for image feature extraction, respectively. We thus use PCA
to reduce the dimension of each image feature vector to be
200 before implementing FLDA. Finally, the nearest neighbor
(NN) classifier is used for classification.

Table I lists the recognition rates of each method and
the entire running time under three different image sizes.
From Table I, we can see that the proposed method IDLS
is significantly better than others. Simultaneously, IDLS-
Distance outperforms PCA, FLDA, LARK, ID-LARK, LBP
plus Chi2, LTP plus Chi2, LTP/DT and TPLBP plus Chi2.
It is comparable with Gabor plus FLDA in general. So,
IDLS-Distance still reveals that image decomposition which
uses local structural information can exploit the structure

9http://pcalab.njust.edu.cn/.
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TABLE I
THE RECOGNITION RATE (%) OF PCA, FLDA, LARK, ID-LARK, LBP+CHI2, LTP+CHI12, LTP/DT, TPLBP+CHI2, GABOR+FLDA,
IDSL-DISTANCE AND IDLS WITH THE NN CLASSIFIER, AND THE CPU TIME FOR RUNNING ON THE NUST-RWFR DATABASE USING
DIFFERENT IMAGE SI1ZES

Methods 24 x 24 48 x 48 80 x 80
Recognition Rate Time(s) Recognition Rate Time(s) Recognition Rate Time(s)
PCA 16.9 24 17.0 36 17.7 48
FLDA 45.8 34 45.3 34 45.0 35
LARK 42.2 269 45.8 988 47.2 3158
ID-LARK 50.6 236 55.7 475 56.2 1011
LBP+Chi2 32.8 97 48.1 265 49.2 286
LTP+Chi2 40.9 92 45.4 203 43.8 335
LTP/DT 43.1 4137 47.1 6582 48.2 9823
TPLBP+Chi2 20.4 98 33.4 235 36.9 607
Gabor+FLDA 55.9 187 65.8 389 66.7 617
IDLS-Distance 60.7 165 64.7 492 65.3 1407
IDLS 67.7 202 73.8 601 75.0 1569
feature of an image efficiently. The structure feature helps to o8
improve the performance of the recognition task. Moreover, o7 _ T |
the structure layout (there is one neighbor in one direction e O
of the central macro-pixel in the local window) ensures that 06 . 5 . I
structural information would not be weakened by different Y/ 4T
structure images from the same orientation. Compared with & 05 ¥ _ —
IDLS-Distance, IDLS assumes that central macro-pixel and its é: p4 ' R S G
neighbor macro-pixels in a local window are locally linear. We 8 04 /»/'/‘/H/'—'
thus use neighbor macro-pixels to represent the central macro- g y / B
pixel and the ridge regression is applied to solve the repre- 03/
sentation coefficients. These coefficients, which describe the / —«— FLDA
relationship between central macro-pixel and its neighbors, are 0.2 Gabor+FLDA
. . . . . IDLS-Distance
considered as structural information in the local window. By e s
Fhis means, IDL.S cor.lsiders synthe.tically the relationship dur- 01 00 PR P —— 8 %
ing the macro-pixels in the local window. Nevertheless, IDLS- Dimension
Distance only computes the distance between central macro-
Fig. 9. The recognition rates of FLDA, Gabor+FLDA, IDLS-Distance

pixel and one neighbor macro-pixel with Gaussian kernel as
structural information. Therefore, this structural information
is weaker than that of IDLS. This is the reason IDLS gives
better performance than IDLS-Distance. In addition, Gabor is
widely used owing to the fact that it describes the local feature
by using family kernels (forty kernels with five different scales
and eight different orientations) to convolve with the image.
Despite this, the performance of IDLS is about 8% higher
than that of Gabor plus FLDA. These demonstrate that our
method using linear regression coefficients can describe the
local structure well and improve the recognition rate.

In terms of CPU time for running, IDLS consumes more
time than the other methods, since it calculates a least square
solution once in the process of computing the local structural
information of each pixel in an image. However, we can
significantly improve the computational efficiency of IDLS
by resizing the image into a small size before implementing
it, noticing that IDLS can still give better results using the
low-resolution face images than the state-of-the-art methods
using the high-resolution images. Fig. 9 illustrates that IDLS,
using the 48 x 48 images, consistently performs better than
FLDA and Gabor plus FLDA using the 80 x 80 images.
Actually, a similar result can be seen in Table I. From this

and IDLS with the variations of dimensions on the NUST-RWFR database.
(The first session of each subject forms the training set, and the second session
of each subject forms the testing set).

point of view, it’s necessary to point out that face images
are all down-sampled into a smaller image size of 48 x 48
before implementing the proposed method in the following
experiments on the other face image databases.

Furthermore, we randomly choose K (K varies from 4 to
12 with interval 2) images from each class for training; the
rest of the images are used for testing. We perform 10 runs of
tests with different face image sizes for each K. The average
recognition rates of PCA, FLDA, LARK, ID-LARK, LBP
plus Chi2, LTP plus Chi2, LTP/DT, TPLBP plus Chi2, Gabor
plus FLDA, IDLS-Distance and IDLS with the NN classifier
are shown in Fig. 10. The results in Fig. 10 are generally
consistent with those in Table I. IDLS always shows better
results than the other methods, but IDLS-Distance is not as
good as that of Gabor plus FLDA in some cases. This exposes
the shortcoming of the IDLS-Distance to a certain degree.
It is not very robust to use Gaussian weights between the
central macro-pixel and its neighbor macro-pixels to depict
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Fig. 10. The average recognition rates of PCA, FLDA, LARK, ID-LARK,
LBP plus Chi2, LTP plus Chi2, LTP/DT, TPLBP plus Chi2, Gabor plus FLDA,
IDLS-Distance and IDLS with the NN classifier. (a) On the 24 x 24 image
set; (b) on the 48 x 48 image set; (c) on the 80 x 80 image set.

the local structural information. In contrast, IDLS is efficient
and robust to utilize linear regression coefficients for local
structure representation.

B. Experiment Using the AR Database

The AR face database [33] contains over 4000 color face
images of 126 persons (70 men and 56 women), including
frontal views of faces with different facial expression, lighting
conditions and occlusions.!® The pictures of 120 individuals
(65 men and 55 women) were taken in two sessions (separated
by two weeks) and each session contains 13 color images.

10http://www2.ece.ohio—state.edu/~—aleix/ARdatabase.html.
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Fig. 11.

Sample images for one person of AR database.

TABLE II
THE RECOGNITION RATE OF PCA, FLDA, LARK, ID-LARK,
LBP+CHI12, LTP+CHI2, LTP/DT, TPLBP+CHI2, GABOR+FLDA,
IDLS-DISTANCE, AND IDLS WITH THE NN CLASSIFIER
ON THE AR DATABASE

Methods Recognition Rate
PCA 60.7
FLDA 78.1
LARK 82.5
ID-LARK 91.9
LBP+Chi2 91.3
LTP+Chi2 90.9
LTP/DT 89.5
TPLBP+Chi2 91.6
Gabor+FLDA 91.4
IDLS-Distance 93.5
IDLS 97.4

Fourteen face images (each session contains 7) of these 120
individuals are selected and used in our experiment. The
face portion of each image is manually cropped and then
normalized to 100 x 90 pixels. The sample images of one
person as shown in Fig. 11, where (a)-(g) are from session
1, and (n)—(t) are from session 2. The details of images are:
(a) neutral expression, (b) smiling, (c¢) angry, (d) screaming,
(e) left light on, (f) right light on, (g) all sides light on; and
(n)—(t) were taken under the same conditions as (a)—(g).

In our experiment, images from the first session (i.e.,
(a)—(g)) are used for training, and images from the second
session (i.e., (n)—(t)) are used for testing. Then, PCA, FLDA,
LARK, ID-LARK, LBP plus Chi2, LTP plus Chi2, LTP/DT,
TPLBP plus Chi2, Gabor plus FLDA, IDLS-Distance and the
proposed method IDLS are employed for feature extraction,
respectively. In the PCA phase of FLDA, the number of
principal component is set 200. Further, the NN classifier is
used for classification. The recognition results of all methods
are given in Table II. These results are almost consistent
with the experimental results in Sections III.A. The proposed
IDLS performs better than other state-of-the-art methods. The
performances of PCA, FLDA, and LARK are not satisfying.
It appears that these three methods are sensitive to face image
variations over time. In contrast, Gabor feature, ID-LARK,
LBP, TPLBP, LTP and IDLS are more robust to time changes
and thus achieve better results.

C. Experiment Using the Extended Yale B Database

The extended Yale B face image database [27] contains
38 human subjects under 9 poses and 64 illumination



3598

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 22, NO. 9, SEPTEMBER 2013

TABLE III
THE AVERAGE RECOGNITION RATE (PERCENT) AND STD OF PCA, FLDA, LARK, ID-LARK, LBP+CHI2, LTP4+CHI2, LTP/DT, GABOR+FLDA,
IDLS-DISTANCE, AND IDLS WITH THE NN CLASSIFIER ON THE EXTENDED YALE B DATABASE

Methods 4 8 12 16 20 24
PCA 41.6 £5.77 | 597 £626 | 655+ 7.11 | 70.6 £2.86 | 752 £3.09 | 782 £ 4.92
FLDA 573 £ 11.8 | 77.5 £ 791 | 86.7 £ 4.10 | 91.1 £2.86 | 923 £3.21 | 94.1 + 3.38
LARK 845 £ 530 | 90.6 £2.20 | 92.2 £ 2.83 | 92.6 £3.20 | 93.7 £3.06 | 949 & 2.35
ID-LARK 86.8 £4.73 | 91.3 £3.43 | 964 £ 1.63 | 969 £ 0.88 | 97.7 £ 0.54 | 97.9 + 0.47
LBP+Chi2 842 £ 859 | 932 +£1.68 | 953 £ 1.71 | 963 £1.02 | 96.6 =091 | 96.7 & 1.26
LTP+Chi2 62.1 £ 879 | 76.7 £5.08 | 81.9 £3.76 | 845 £3.75 | 853 £2.52 | 87.1 £ 3.52
LTP/DT 643 £ 108 | 80.8 £5.08 | 86.6 &= 3.73 | 89.6 £3.55 | 91.1 £2.14 | 92.3 4+ 2.61
TPLBP+Chi2 503 £ 11.7 | 663 £5.67 | 71.8 £ 542 | 754 £2.81 | 765 £3.36 | 789 £ 5.14
Gabor+FLDA 603 £394 | 782+ 398 | 852+ 3.10 | 91.2 £348 | 933 £283 | 943 £ 1.65
IDLS-Distance 749 £749 | 844 £4.16 | 91.3 £2.10 | 93.5£2.01 | 939 £ 1.69 | 95.1 =+ 1.65
IDLS 95.8 £ 1.73 | 969 £0.72 | 979 £ 0.50 | 98.0 £ 0.66 | 98.0 £0.75 | 98.2 + 0.84

Fig. 12.  Samples of a person under different illuminations in the Extended
Yale B face database.

conditions. The 64 images of a subject in a particular pose
are acquired at camera frame rate of 30 frames/second, so
there is only small change in head pose and facial expression
for those 64 images. However, its extreme lighting condi-
tions still make it a challenging task for most face recogni-
tion methods. All frontal-face images marked with POO are
used in our experiment, and each is resized to 96 x 84
pixels. Some sample images of one person are shown in
Fig. 12.

In the first experiment, we randomly choose K samples
from each class for training and the remaining images for
test. Here, K varies from 4 to 24 with interval of 4. For each
K, we perform 10 runs of tests for each method mentioned
above. Before implementing FLDA, we use PCA to reduce
the dimension to be 200 with respect to different number of
training samples per class. Also, the NN classifier is employed
for classification. The average recognition rates and std of each
method across ten tests are shown in Table III. Fig. 13 shows
the recognition rate curve versus the variation of training
sample size.

From Fig. 13, we can see that the recognition rates of
PCA are relatively poor. Although TPLBP can give better
performance in face verification, experimental result shows
that it is not robust for face recognition under different
lighting conditions. The performances of Gabor plus FLDA
and LARK are not very satisfying. LBP descriptor achieves
better results than the above methods. IDLS still outperforms
all subspace learning methods and local appearance feature
extraction algorithms. This demonstrates that IDLS is the
most robust method with respect to illumination changes. It
is interesting that here ID-LARK achieves very good results,
particularly when the training sample size becomes larger.
ID-LARK also uses the local structural information to decom-
pose the image. It captures the local structural information
by measuring the geodesic distances between the central

=+-PCA
-&-FLDA
LARK
——ID-LARK
—+=LBP+Chi2
LTP+Clu2
LTP/DT
TPLEP+Chu2
GabortFLDA
IDLS-Distance
IDLS

Sample size

Fig. 13. The average recognition rates of PCA, FLDA, LARK, ID-
LARK, LBP+Chi2, LTP+Chi2, LTP/DT, TPLBP+Chi2, Gabor+FLDA,
IDLS-Distance and IDLS versus the variation of the training sample size
on the Extended Yale B database.

pixel and its neighboring ones in a local window. Although
using the geodesic distance seems to be more effective
than using the other distances, such as the IDLS-Distance
in this experiment, ID-LARK is still weaker than IDLS,
which applies the linear regression to balance the correla-
tions between the central macro-pixel and its neighboring
ones.

In the second experiment, we tested all of the algorithms
on the five subsets of the Extended Yale B using the standard
protocol [15], [35]. Some details of these five subsets are
given in Table IV. For each person, we select one face image
(i.e. the image with the most natural lighting source) from
Subset 1 for training. The remaining images of Subset 1
and all images of the other subsets are for testing. The
experimental results are shown in Fig. 14. From this figure,
we can see that the performances of feature representation
methods (with the normalization technology PP [15]) degrade
with the increasingly extreme illumination for all subsets. For
Subsets 1 and 2, all methods achieve very good results (100%).
For the other subsets, however, our method always achieves
the best results among all methods. These results demonstrate
again that IDLS is more robust to lighting changes than the
other methods.
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TABLE IV
FI1VE SUBSETS OF EXTENDED YALE B

Subsets 1 2 3 4 5
Lighting angle 0~ 12 13 ~ 25 26 ~ 50 51 ~177 > 77
Number of images 7 x38=266 | 12 x38=456 | 12 x38=456 | 14 x 38 =532 | 19 x 38 =722

TABLE V

THE AVERAGE RECOGNITION RATE (PERCENT) AND STD OF PCA, FLDA, LARK, ID-LARK, LBP+CHI2, LTP4+CHI2, LTP/DT, GABOR+FLDA,
IDLS-DISTANCE, AND IDLS WITH THE NN CLASSIFIER ON THE PIE DATABASE

Methods 5 10 15 20 25
PCA 359+£373 | 532483 | 61.1 £7.84 | 692 £7.05 | 78.4 £ 4.67
FLDA 593 £656 | 80.9 £493 | 86.7 £3.33 | 89.4 £3.26 | 90.2 £ 2.76
LARK 595 £6.76 | 74.6 £ 732 | 82.1 £4.63 | 87.7 £527 | 885 £ 3.16
ID-LARK 669 £ 824 | 89.1 £3.67 | 93.0£242 | 954 £237 | 96.5 £ 2.00
LBP+Chi2 72.8 £4.85 | 84.0 456 | 90.2 &£ 3.38 | 93.3 £3.05 | 94.8 £ 2.63
LTP+Chi2 81.1 =4.64 | 90.3 =341 | 940 £2.78 | 965 £ 1.82 | 97.1 & 1.37
LTP/DT 81.5+495 | 904 £3.71 | 945 £243 | 96.6 = 1.98 | 974 + 1.53
TPLBP+Chi2 752 £6.64 | 888 £3.99 | 93.1 £3.12 | 96.3 £2.05 | 97.4 £ 1.51
Gabor+FLDA 756 £693 | 929 £232 | 954 £2.08 | 96.7 £2.00 | 97.3 £ 1.56
IDLS-Distance 68.1 £7.75 | 87.2 £3.24 | 90.8 £ 3.19 | 92.7 £290 | 93.1 £ 2.33
IDLS 82.6 £ 6.03 | 943 +£3.89 | 963 £2.86 | 97.4 £ 225 | 97.6 £ 1.91
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Fig. 14. The error rates on the five Extended Yale B subsets with the various
feature representation methods.

D. Experiment Using the CMU PIE Database

The CMU PIE face database contains 68 subjects with
41368 face images as a whole [28]. Images of each person
were taken across 13 different poses, under 43 different
illumination conditions, and with 4 different expressions. We
choose the subset of PIE database containing 50 face images
(a nearly frontal pose) of each person under five different poses
(there are 10 face images of each pose) [29]. All images have
been cropped and resized to be 64 x 64 pixels. Some sample
images of one person are shown in Fig. 15.

We randomly select K (K is 5, 10, 15, 20, 25) images of
each class for training, and the remaining images for testing.
For each K, we perform 10 runs of tests for each method with
NN classifier. The average recognition rates and std of each
method are listed in Table V. The recognition rate curve versus
the variation of training sample size is shown in Fig. 16. From
Fig. 16, we can see that our method IDLS achieves the best
performance among all methods, irrespective of the variations

Fig. 15. Sample images of a person under different illuminations and five
poses in the PIE database.
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Fig. 16. The average recognition rates of PCA, FLDA, LARK, ID-

LARK, LBP+Chi2, LTP+Chi2, LTP/DT, TPLBP+Chi2, Gabor+FLDA,
IDLS-Distance and IDLS versus the variation of the training sample size
on the PIE database.

of training sample size. Specifically, IDLS is significantly
better than the other methods when the training sample is
small. The recognition rate of IDLS is about 7%, 10% and
15% higher than that of Gabor, LBP and ID-LARK when the
training sample number is 5. However, Gabor and ID-LARK
can obtain the similar results with IDLS when there are enough
training samples.
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Fig. 17. The recognition rates with different feature representation methods
on the PIE database under 21 different illumination conditions. (a) With the
background lighting on. (b) With the background lighting off.

Additionally, we perform experiments using the protocol as
adopted in [34], [35]. Two subsets are involved to test our
methods. One subset contains images with the background
lighting on, and other contains images with the background
lighting off. Each subset includes 1428 (68 x 21) frontal face
images under 21 different lighting conditions. For each subset,
the images with the most natural lighting sources are used as
gallery sets, and all of the remaining images are used as probe
set. The experimental results of different feature representation
methods are shown in Fig. 17. From this figure, we can see
that all the methods give relatively higher recognition rates
on the subset with the background lighting on, and lower
recognition rates on the subset with the background lighting
off. Gabor features are sensitive to illumination changes.
ID-LARK achieves comparable results with LARK. The pro-
posed method IDLS consistently achieves better results than
the other methods, irrespective of whether the background
lighting is on or off. These results further demonstrate that
IDLS is robust to lighting changes.

E. Experiment Using the FERET Database

The FERET database [38] is widely used to test and
evaluate state-of-the-art face recognition algorithms. In the
FERET standard subset, the basic gallery fa contains 1,196
face images. the fb probe set contains 1,195 images of subjects
taken at the same time as the gallery images but with different
facial expression; the fc probe set contains 194 images of
subjects under significantly different lighting conditions; the
Dup I probe set contains 722 images of subjects taken between
one minute and 1,031 days after the gallery image was taken;
the Dup II probe set is a subset of the Dup I set, containing
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Fig. 18.

Face examples from the FERET database.

234 images taken at least 18 months after the gallery images.
In this experiment, the face portion of each original image
is automatically cropped based on the location of eyes and
resized to an image of 80 x 80 pixels. There are 900 frontal
face images to form the training sample set. Fig. 18 illustrates
the cropped face examples.

We test the proposed method IDLS and compare it with
the state-of-the-art methods such as LBP [17], LGBP [18],
HGPP [21] and GVLBP [20]. These results of these methods
have been obtained on the standard FERET probe sets. LGBP
enhances the representation power due to the fact that it com-
bines local intensity distribution with the spatial information.
Actually, LGBP not only utilizes the characteristic of Gabor
wavelets, but also preserves the competitive advantages of
LBP. HGPP encodes phase variation using orientation change
of the Gabor wavelet at a given scale, and concatenates the
Gabor phase information of local neighborhoods. Additionally,
GVLBP explores the information in the spatial domain among
different scales and orientations.

Table VI lists the recognition rates of different methods
on FERET database. From Table VI, we can see that IDLS
outperforms the other methods on three probe sets (fb, Dup I
and Dup II), although it underperforms HGPP and GVLBP
on the fc probe set. IDLS achieves the best result in the
average sense. These experimental results demonstrate the
stable performance of IDLS for face recognition since the
FERET database contains many variations happening in face
recognition, such as expression, lighting condition and time
changes.

FE. Experiment Using the LFW Database

The LFW [39] database contains 13,233 target face images.
There are 5,749 different individuals in the LFW. 1,680 people
have two or more face images. The remainder 4,069 persons
have just only one image. These images have a large degree of
facial expression, occlusions, pose and illuminations since all
of them are taken from the real world. Here, we use the aligned
version of images!! [40] and simply crop the face image to
remove the background, leaving a 100 x 80 face image.

In our experiment, we follow the standard evaluation pro-
tocol as specified in [39] and compare the proposed IDLS
with Gabor, LTP, LBP, TPLBP, ID-LARK and LARK for face
verification in the unsupervised setting where we don’t use any
training samples. Note that ID-LARK and IDLS do not use
the dimensionality reduction technology here. The ten subsets
of the LFW database View?2 are used for testing. We report the
performance of each method on ten separate experiments in a

n http://www.openu.ac.il/home/hassner/data/lfwa/.
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TABLE VI
THE RECOGNITION RATES (PERCENT) OF THE DIFFERENT METHODS ON THE FERET DATABASE

Methods Image Size FERET Probe Sets
/b fe Dup I Dup 11 Average
LARK 80 x 80 86.3 81.4 46.8 29.1 60.9
ID-LARK 80 x 80 91.2 93.8 45.8 22.6 63.4
Gabor+FLDA 80 x 80 93.7 83.5 51.9 25.6 63.9
LTP 80 x 80 94.9 54.6 63.8 48.8 65.5
LTP/DT 80 x 80 93.6 85.1 62.9 43.6 71.3
LBP [17] 128 x 128 97.0 79.0 66.0 64.0 76.5
LGBP [18] 88 x 80 98.0 97.0 74.0 71.0 85.0
HGPP [21] 128 x 128 97.6 98.9 77.7 76.1 87.6
GVLBP [20] 88 x 80 98.08 98.45 80.89 81.20 89.9
IDLS 48 x 48 98.2 97.0 87.4 82.5 91.3
TABLE VII ’ aMacopixel X3 @MacopixelssS o = Mocro-pixel 313 @Macro-pisel x5
THE MEAN VERIFICATION RATES OF GABOR, LTP, LBP, TPLBP, bon
ID-LARK, LARK, AND IDLS ON THE LFW DATABASE VIEW 2 %
(THE UNSUPERVISED SETTING) g
o
Methods Performance . .

Gabor [40] 68.47 ’ e )

LTP 69.95

LBP[40] 68.24

TPLBP[40] 69.26 (@INUST-RWER (®) AR

ID-LARK 67.92 1 098

LARK[37] 7223 = Macro-pixel 3x3 wMacro-pixel 5x5 ® Macro-pixel 3x3 wMacro-pixel Sx5

IDLS 73.70 094

leave-one-out cross validation scheme. For LTP, ID-LARK and
IDLS, we use the Euclidian distance to compute the similarity
score. Table VII shows the mean verification rate of each
method on the LFW database View 2. It’s clear from Table VII
that IDLS still achieves the best verification rate among all
methods. These results further demonstrate the robustness of
IDLS in real-world application.

G. Effects on IDLS With Different Parameters

In this section, we will discuss the influence of parameter
setting of the scale size, macro-pixel size and down-sample
factor. Here, we use different neighbors to stand for differ-
ent scales as shown in Fig. 2. The performances of IDLS
with different scales and macro-pixels are evaluated on the
face image databases mentioned above. Experimenting on the
NUST-RWEFR database, the first session of each class is used
for training and the rest for testing. The first session of each
individual is used for the training and the second session for
tests in the experiment on the AR database. The first 8 images
per class of Extended Yale B database are chosen for training,
and the rest for testing. In addition, the first 4 images of each
pose per class are selected for training, and the remaining
images for test on the CMU PIE database. Finally, we also
performed experiments on the FERET database.

The recognition rates of IDLS with respect to different
neighbors and sizes of macro-pixels on the five databases are
shown in Fig. 19. Meanwhile, the total running time of IDLS
on these databases is shown in Fig. 20. From Fig. 19, we can
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Fig. 19. The performance of IDLS with different neighbors and size of
macro-pixels on standard databases.

see that a smaller size of macro-pixel (3 x 3) always achieves
better results than do larger macro-pixel (5 x 5). From
Fig. 20, we can see that larger macro-pixel (5 x 5) always
consume more computational time than smaller sized macro-
pixel (3 x 3). Therefore, we choose the size of macro-pixel
as 3 x 3. With this condition, we choose IDLS¢ 3 (16 means
the neighbor number and 3 is the macro-pixel size) in our
experiments due to the fact that it obtains a better recognition
rate and costs relatively less computational time. Additionally,
we also carry out the aforementioned experiments to validate
the choice of the optimal down-sampling factor (1 = 2) as
shown in Fig. 21.
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IV. CONCLUSION AND FUTURE WORK

In this paper, we develop a novel image feature extraction
method coined IDLS and apply it to face recognition. The
local structural information of IDLS is exploited by measuring
the relationship between the macro-pixel of a central pixel
and those of its neighbors with linear regression coefficients.
One image is decomposed into a series of structure images
according to local structural information. Each structure image
accumulates most of the significant features in one direc-
tion. All the structure images, after being down-sampled
for dimensionality reduction, are concatenated into one
super-vector. FLDA is finally used to obtain the compact
and low-dimensional representation for further improving the
discriminative power of the method. IDLS turns out to be
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more robust to illumination variations than Gabor features.
Our experimental results show that IDLS achieves better or
comparable results in comparison with state-of-the-art meth-
ods on six face image databases.

One drawback of IDLS is that IDLS consumes more CPU
time than the other methods for feature extraction, since it
needs to solve a ridge regression problem once for computing
the local structural information of each pixel in an image.
We address this problem by resizing the image into a smaller
size before implementing IDLS in this paper. Fortunately,
IDLS can still yield better results using the low-resolution
face images than the state-of-the-art methods using the high-
resolution images. However, it is still an interesting problem
as to how to extract the local structural information more
efficiently. We will explore computationally more efficient
algorithms for implementing IDLS, e.g. developing faster algo-
rithms for solving the ridge regression problem, in the future.
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