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a b s t r a c t

Recognizing face images across pose is one of the challenging tasks for reliable face recognition. This

paper presents a new method to tackle this challenge based on orthogonal discriminant vector (ODV).

The result of our theoretical analysis shows that an individual’s probe image captured with a new pose

can be represented by a linear combination of his/her gallery images. Based on this observation, in

contrast to the conventional methods which model face images of different individuals on a single

manifold, we propose to model face images of different individuals on different linear manifolds. The

contribution of our approach includes: (1) to prove that the orthogonality to ODVs is a pose-invariant

feature.; (2) to categorize each person with a set of ODVs, where his/her face images posses zero

projections while other persons’ images are characterized by maximum projections; (3) to define a

metric to measure the distance between a face image and an ODV, and classify the face images based on

this metric. Our experimental results validate the feasibility of modeling the face images of different

individuals on different linear manifolds. The proposed method achieves higher accuracy on face

recognition and verification than the existing techniques.

& 2012 Published by Elsevier Ltd.
1. Introduction

Face recognition is an important topic in pattern recognition
which has been extensively studied in the past decade [1–4]. One
of the most popular methods for face recognition is the appear-
ance-based method [5–10]. Appearance-based method represents
a w-by-h face image by a vector in the wh-dimensional image
space. It is concluded that the dimensionality of the face space is
too high to allow robust face recognition [11], due to the
variations of pose [12], occlusion [4], and illumination [13].

A number of algorithms are proposed [37–42] to recognize face
images from different poses. Multidimensional scaling (MDS)-based
approach performs well to recognize low resolution probe face
images using high resolution gallery images [37]. Random Regres-
sion Forests [38] can estimate the head pose of different face images.
To overcome large pose variation challenges, the ensemble based
approach [39] boosts linear TFA models and achieve high accuracy.
The method [42] stabilizes regressor against the pose difference and
uses it to recognize face images under different poses. Both active
appearance models-based landmarkings [41] and domain frequency
based holistic features [40] are also proven to be helpful to solve the
pose problem.
Elsevier Ltd.
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Though face images are high dimensional vectors, they are
proven to reside on a low dimensional submanifold [7,14–17]. To
understand the submanifold, many manifold learning techniques
have been developed, which include marginal Fisher analysis
(MFA) [18], neighborhood preserving embedding (NPE) [19], local
discriminant embedding (LDE) [20], etc. Given face images in a
high-dimensional space, these methods can extract the geometric
properties of the images, such as intrinsic dimensionality, con-
nected components, Euclidean embedding, etc [21].

Manifold learning methods [7,14–21] model face images of
different individuals on a single manifold, which can efficiently
identify the holistic structure of the original face images. How-
ever, these methods also eliminate very important discriminative
information when learning the submanifold. Considering face
images as points in a high dimensional space, we can regard the
face images of each individual to span a linear manifold. The
difference among these manifolds is a kind of discriminative
information that is eliminated when modeling face images on a
single manifold.

This paper presents a new appearance-based method for face
recognition across pose by modeling face images of different
individuals on different linear manifolds. Based on the idea that a
linear manifold can be characterized by its norm vector, an ortho-
gonal discriminant vector (ODV) for each manifold is defined and
used to discriminate face images associated with this manifold from
other images. (This new definition of ODV is different from what is
described in [22–24], where orthogonal discriminant vectors are a
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set of mutually orthogonal vectors that maximize the Fisher criter-
ion.) An ODV associated with one manifold is orthogonal to the face
images on this manifold and not orthogonal to the rest face images.
Association with different set of ODVs indicates the difference among
linear manifolds.

The following lists the major contributions of this paper:
1.
 The introduction of a scheme to evaluate the intrapersonal
relationship among face images with different poses by com-
paring an individual face image under a new pose with his/her
gallery face images. The result of theoretical analysis shows
that the face image under a new pose lies on the linear manifold
spanned by his/her gallery face images despite of the change
of poses.
2.
Fig. 1. Procedure for generating the intrapersonal relationship among 2-D face

images. (a) 2-D face images generation; (b) 3-D face reconstruction; (c) 2-D face
The proposal of an identity-dependent and pose-invariant
feature for face recognition across pose based on the intra-
personal relationship among face images. The new feature is
the orthogonality to ODVs.
images generation from reconstructed 3-D face; (d) relationship generation
3.

among 2-D face images.
The development of a comprehensive procedure to examine
the existence of ODV in face recognition and implementation
of an effective two-step algorithm to calculate ODVs.

The remaining of this paper is organized as follows. Section 2
highlights the fundamental issues of the theoretical analysis to
support the proposed algorithm while Section 3 describes the
new ODV-based face recognition method. The experiments and
performance evaluation are reported in Section 4. Finally, the
conclusion and further discussion are presented in Section 5.
2. Intrapersonal relationship among face images across pose

We assume that, for each individual, only a few gallery 2-D face
images under different poses are known and the probe face images
are captured under novel poses. By predicting the face image under
a novel pose using gallery face images, this section investigates the
intrapersonal relationship among face images across pose. The
prediction task takes the latent 3-D face object where the intra-
personal relationship among face images originates from as a
medium. If the face images are well aligned, this section draws
the conclusion that one’s probe face image under a novel pose can
be linearly expressed using his/her gallery face images.

Sections 2.1 and 2.2 present two procedures in reverse direc-
tions: 2-D image generation under a certain pose from the 3-D
face and 3-D face reconstruction using the gallery face images.
These two procedures are, respectively indicated by (a) and (b) in
Fig. 1. With the help of these two procedures, Section 2.3 predicts
a 2-D image under a novel pose, indicated by (c) in Fig. 1. Section
2.4 analyzes the prediction result and reveals the intrapersonal
relationship among face images.

2.1. From 3-D face to 2-D image

Regarding the 3-D surface of a specific face as Lambertian [25],
the intensity of the surface point (x,y,z) under a given lighting
source s

!
can be computed as follows

Fðx,y,zÞ ¼ rðx,y,zÞcos a ð1Þ

where a is the angle formed by lighting direction s
!
ðx,y,zÞ and

normal n
!
ðx,y,zÞ, r(x,y,z) is the albedo of given point. After

ordering the intensities of surface points lexicographically, we
represent a 3-D face by a vector FARN3�1, where the scalar
N3 denotes the number of pixels. For a fixed pose, we can derive
the N2 dimensional 2-D face image f 0ARN2�1 from the 3-D face F

by selecting the visible points (Fig. 1(a)). It is proved to be a linear
orthogonal projection procedure from F to f0 [25,26], and can be
expressed as follows

f 0 ¼ V0F ð2Þ

where V0ARN2�N3 is the pose-dependent projection operator. To
achieve the goal of dropping all invisible points from F and only
keeping all the visible ones in the face image f0, the elements of
V0 are set as follows: if the jth pixel in F is invisible, (V0)ij¼0 for
1r irN2; or else, if it is visible and projected as the ith pixel of f0,
(V0)ij¼1 and (V0)kj¼0(1rkrN2, iak).

2.2. From 2-D image to 3-D face

Assume that n face images f 1,f 2,. . .,f n under different poses
V1,V2,. . .,Vn are generated from the same 3-D face F

f i ¼ ViFði¼ 1,2,. . .,nÞ ð3Þ

If there is one point in F which is invisible in any of these
images, the reconstruction of F from f 1,f 2,. . .,f n will be theoreti-
cally ill-posed. However, based on the observation that

f ¼ VF ð4Þ

where the matrix f consists of all the face images f ¼

f T
1 f T

2 . . . f T
n

h iT
ARnnN2�1 and the matrix V consists of all the

pose-dependent projections V ¼ VT
1 VT

2 . . . VT
n

h iT
ARnnN2�N3 ,

the 3-D face can be estimated as

F ¼ V
þ
ðVT f Þ ¼ V

þ
ðVT VFÞ ¼ V

þ Xn

i ¼ 1

VT
i Vi

 !
F

( )
¼ V

þ
V F ð5Þ

where both V ¼
Pn

i ¼ 1 VT
i ViARN3�N3 and V

þ
ARN3�N3 are diagonal

matrices. The diagonal elements of the matrix V
þ

are set as

follows: V
þ

jj ¼ 1=Vjj , if the jth (1r jrN3) diagonal element of V is

nonzero; and V
þ

jj ¼ 1, if Vjj ¼ 0.

As mentioned in Section 2.1, if and only if the kth pixel of fi is
the projection of the jth pixel of F, (Vi)kj equals one and, in turn,
the jth diagonal element of Vi ¼ VT

i Vi equals one, i.e., ðV iÞjj ¼ 1.
Thus, the jth diagonal element of V ¼

Pn
i ¼ 1 VT

i Vi counts the
number of face images in which the jth pixel of the 3-D face F

is visible. If every pixel is visible in only one of the gallery face
images, the task of 3-D face reconstruction has the unique
solution F¼VTf. However, this case rarely occurs. Though recover-
ing the pixels that are invisible in any of the face images is
difficult, the unfavorable effects that some pixels are visible in



Fig. 3. Linear expression of a novel face image using gallery face images.
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multiple face images can be eliminated by the multiplication of
the diagonal matrix V

þ
. If a pixel is visible in m different images,

its value in VTf is m times larger than that in the real face F. After
the left multiplication of matrix V

þ
, the reconstructed face

F ¼ V
þ

VT f is different from F only in the pixels that are visible
in none of gallery face images.

2.3. 2-D image prediction

With the reconstructed 3-D face using Eq. (5), we can predict
face images under any pose. Replacing the unknown real 3-D face
with the reconstructed 3-D face F , Eq. (2) for calculating the face
image under a novel pose V0 can be rewritten as

f 0 ¼ V0V
þ

VT f ¼Wf

¼ W1 W2 . . . Wn
� � f 1

f 2

^

f n

2
66664

3
77775¼

Xn

i ¼ 1

Wif i ð6Þ

where W ¼ V0V
þ

VT
¼ W1 W2 . . . Wn
� �

. Eq. (6) states that

one’s face image f0 under a novel pose can be expressed by his/her
gallery face images. The underlying assumption of this prediction
procedure is that the pixels of the probe face image are visible in
at least one gallery face image. Note that, the probe face image

needs not to have a similar pose to one of the gallery face images.

2.4. Discussion

As can be seen from Fig. 2, the well aligned face images of the
same individual but under different poses are similar in terms of
the main organs’ spatial configuration and shape. Thus, if a novel
face image f0 can be expressed by a set of face images f 1,f 2,. . .,f n,
this globally linear expression should also hold in locally areas,
such as different organs in the face. In other words, if the equation
f 0 ¼

Pn
i ¼ 1 lif i holds, we can linearly express the ‘‘eye’’ e0 of the

face f0 by the ‘‘eyes’’ e1,e2,. . .,en of the gallery faces f 1,f 2,. . .,f n, i.e.,
e0 ¼

Pn
i ¼ 1 liei. Intuitively, it does not make sense to express the

‘‘eye’’ of a face image by the combination of all the organs, such as
eye, mouth, nose et al.

Under the assumption that the matrix Wi is a scalar matrix in
Eq. (6), i.e., Wi¼liI (I is the identity matrix), the unreasonable
situation that kinds of organs are combined together to form a
specific organ is avoided and all parts of the face images are
linearly expressed only by their counterparts in other face images,
as shown in Fig. 3. Then, we have the following theorem

Theorem 1. If the gallery and probe face images are well aligned,
one’s probe face image captured under a novel pose can be approxi-
mately expressed as a linear combination of his/her gallery face
images, i.e.,

f 0 ¼
Xn

i ¼ 1

lif i ð7Þ
Fig. 2. Face images of the same individual have the similar configuration.
Theorem 1 shows that the probe face image under a novel pose
lies on the linear manifold spanned by gallery face images. Thus,
we can associate an individual with a linear manifold and model
all of his/her face images on it.

In practice, both the gallery and probe face images may be
polluted by noise and a novel face image may be only linearly
expressible by the gallery face images with a nonzero residue e0,
as follows

f 0 ¼
Xn

i ¼ 1

lif iþe0 ð8Þ

There are many ways to measure the residue in Eq. (8). For most
of the measurements, it is time consuming to seek the optimal
coefficient that minimizes the residue. This paper, however, just takes
advantage of this intrapersonal relationship among face images and
avoids seeking the coefficients for the linear expression in Eq. (8).
3. Orthogonal discriminant vectors

This section proposes a method for face recognition across pose
based on orthogonal discriminant vector (ODV). Section 3.1 presents
the basic idea and defines the ODV. Section 3.2 investigates the
existence of ODV in face recognition. Section 3.3 develops an
algorithm to calculate ODVs. Section 3.4 investigates the classifica-
tion of face images using ODV. Section 3.5 analyzes the computa-
tional complexity of the proposed method.

3.1. Basic ideas

Geometrically, Theorem 1 indicates that one’s novel face
image lies on the linear manifold spanned by his/her gallery face
images. Because of this, a vector v is orthogonal to the probe
face image, if v is orthogonal to all the gallery face images. This
is derived from the geometrical theorem that if a vector v

is orthogonal to a set of vectors xiði¼ 1,2,. . .nÞ, i.e., v ? xiði¼

1,2,. . .nÞ, it is orthogonal to any linear combination of them, i.e.,
v ?

Pn
i ¼ 1 aixi, where aiði¼ 1,2,. . .nÞ are coefficients. Thus, we

have the following Corollary 1 from Theorem 1:

Corollary 1. Being orthogonal to a certain vector is a pose-invariant
feature for the face images of an individual.

Assume the face images of two individuals span linear mani-
folds S1 and S2. The methods [5–10] overlook the difference
among these two linear manifolds when modeling all the face
images on the union manifold S¼S1[S2. Typically, the difference
between face linear manifolds S1 and S2 is not null, i.e., S1�S2aj
and S2�S1aj. We can decompose S1 into two orthogonal linear
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manifolds S1¼S11þS12 and S11\S12¼j, where S11?S2 and
S12CS2. While the face images of the second individual have
nonzero projections onto the vectors in S11, the face images of the
first individual have zero projections. So, being orthogonal to any
vector in S11 is a pose-invariant feature for the first individual.

We define the orthogonal discriminate vector (ODV) associat-
ing with the ith individual as follows:

Definition 1. If a vector v is orthogonal to all the gallery face images

of the ith individual and not orthogonal to any gallery images of the

other individuals, this vector v is an ODV associating with the ith

individual.

As revealed by Theorem 1, one’s probe face image captured
under a novel pose can be linearly expressed by his/her gallery
face images. So, the ODVs that are orthogonal to the gallery face
images are also orthogonal to the face images under novel poses.
Thus, being orthogonal to ODVs is a pose-invariant feature, which
can be used in face recognition across pose.

3.2. The existence of the ODV

In this subsection, we study the existence of ODV in the task
of face recognition. Let the N dimensional vectors xiARN�1

(1r irn1) be n1 face images of one individual, and yjARN�1

(1r jrn2) be n2 face images of the others. We consider the face
recognition as a two-class classification problem. The face image

matrix of the first class is denoted as X ¼ x1 x2 . . . xn1

h i
ARN�n1 and the one of the second class is denoted as Y ¼

y1 y2 . . . yn2

h i
ARN�n2 .

Let Z¼{ziARN�1, 1r irN} be a set of mutually orthogonal unit
vectors that span the N dimensional vector space. Then, the face
images from these two classes can be linearly expressed by the
bases, as follows

xi ¼ Zd1
i , 1r irn1

yj ¼ Zd2
j , 1r jrn2

8<
: ð9Þ

and

X ¼ ZD1

Y ¼ ZD2

(
ð10Þ

where Z ¼ z1 z2 . . . zN
� �

is the base matrix, d1
i ,d2

j ARN are

coefficient vectors associating with xi and yj. The matrices

D1 ¼ d1
1 d1

2 . . . d1
n1

h i
ARN�n1 and D2 ¼ d2

1 d2
2 . . . d2

n1

h i
ARN�n2 are two coefficient matrices.

The theorem of generalized singular value decomposition

(GSVD) states as follows: for the given two matrices D1ARN�n1 ,

D2ARN�n2 , D¼
DT

1

DT
2

 !
and t¼rank(D), there exist orthogonal

matrices L1ARn1�n1 , L2ARn2�n2 , WARt� t, and QARN�N such that

LT
1DT

1Q ¼S1
WT K|fflffl{zfflffl}

t

0|{z}
N�t

 !
ð11Þ

and

LT
2DT

2Q ¼S2
WT K|fflffl{zfflffl}

t

0|{z}
N�t

 !
ð12Þ

where

S1
n1�t
¼

I1

J1

O1

0
B@

1
CA and S2

n2�t
¼

O2

J2

I2

0
B@

1
CA ð13Þ
and KARt� t is nonsingular with its singular values equal to
the nonzero singular values of D. The matrices I1ARr� r and
I2AR(t�r�s)� (t�r�s) are identity matrices, where

r¼ rank
DT

1

DT
2

 !
�rankðDT

2Þ and s¼ rankðDT
1ÞþrankðDT

2Þ�rank
DT

1

DT
2

 !

ð14Þ

The matrices O1ARðn1�r�sÞ�ðt�r�sÞ and O2ARðn2�t�sÞ�r are zero
matrices with possible no rows or no columns. The matrices
J1 ¼ diagðarþ1,. . .,arþ sÞ and J2 ¼ diagðbrþ1,. . .,brþ sÞ satisfy

14arþ1Z � � �Zarþ s40 and 0obrþ1r � � �rbrþ so1

a2
i þb2

i ¼ 1 for i¼ rþ1, � � � ,rþs ð15Þ

Based on (11) and (12), we have

D1 ¼Q
KT W

0

" #
S1LT

1

D2 ¼Q
KT W

0

" #
S2LT

2

8>>>>><
>>>>>:

ð16Þ

Using (16), we can rewrite (10) as follows

X ¼ ZD1 ¼ ZQ
KT W

0

" #
S1LT

1 ¼ ZQ
KT W

0

" # I1

J1

0

2
64

3
75LT

1 ð17Þ

and

Y ¼ ZD2 ¼ ZQ
KT W

0

" # 0

J2

I2

2
64

3
75LT

2 ð18Þ

Using the above two equations, we can prove Theorem 2

Theorem 2. The column vectors of V? are ODVs of the second class,

where

V? ¼ ZQ
KT W

0

" # I1

0

0

2
64

3
75 ð19Þ

Proof. We only need to prove the columns of V? are orthogonal
to the images of the second class and are not orthogonal to the
images of the first class.

VT
?Y ¼ I1 0 0

� �
WT K 0
h i

QT ZT ZQ
KT W

0

" # 0

J2

I2

2
64

3
75LT

2 ð20Þ

Because both Z and Q are orthogonal matrices, we have

VT
?Y ¼ I1 0 0

� �
WT KIKT W

0

J2

I2

2
64

3
75LT

2 ¼ 0 ð21Þ

Thus, the column vectors of V? are orthogonal to all the images of
the second class.

VT
?X ¼ I1 0 0

� �
WT K 0
h i

QT ZT ZQ
KT W

0

" # I1

J1

0

2
64

3
75LT

1

¼ I1 0 0
� �

WT KKT W

I1

J1

0

2
64

3
75LT

1 ¼WT KKT WLT
1 ð22Þ
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Because L1 and W are orthogonal matrices, and K is a nonsingular
matrix, we have

VT
?Xa0 ð23Þ

Thus, the column vectors of V? are not orthogonal to all the
images of the first class.

In summary, the column vectors of V? are orthogonal to all the
images in the second class and not orthogonal to all the images in
the first class. Thus, the columns of V? are ODVs of the second class.

In a similar way, we can prove that the columns of the matrix
V?’ in Eq. (24) are ODVs of the first class

V?’¼ ZQ
KT W

0

" # 0

0

I2

2
64

3
75 ð24Þ

As I1ARr� r and r¼ rankðDÞ�rankðDT
2Þ, we know that the ODV of

the second class does not exist when rankðDÞ ¼ rankðDT
2Þ. Simi-

larly, the ODV of the first class does not exist when rankðDÞ ¼
rankðDT

1Þ. Thus, when rankðDÞ ¼ rankðDT
1Þ ¼ rankðDT

2Þ, there is no
ODV in this two-class classification problem. However, the
equation rankðDÞ ¼ rankðDT

1Þ ¼ rankðDT
2Þ holds only when all the

samples from one class can be linearly expressed by the combina-
tions of the samples from the other class. For high dimensional
face images, such a situation hardly happens. This is because one
individual must have a character that differentiates his/her face
images from those of others. Our experimental results verify the
existence of the ODV.

3.3. The calculation of the ODV

For simplicity in description, we first consider a two-class
classification problem. We regard the face images X ¼

x1 x2 . . . xn1

h i
ARN�n1 of one individual as the first class and

the face images Y ¼ y1 y2 . . . yn2

h i
ARN�n2 of the others as

the second class. Also, we assume the first class has fewer images
than the second class, i.e., n1on2.

We propose the following model to calculate the ODVs for the
first class

max:YT v:2s:t:XT v¼ 0 ð25Þ

By minimizing the projections of the first class to be zero and
maximizing the projections of the second class, this model aims
to generate the most discriminative ODVs. We propose a two-step
procedure to solve the model in (25). Step 1 generates a set of
candidate vectors for the ODV. From candidate set, step 2 chooses
the most discriminative ODVs onto which the images of the
second class have the maximum projections.

Step 1: generate candidate vectors for ODVs
To generate the candidate vectors, step 1 only needs to solve

the following linear equation system

XT Ym¼ 0 ð26Þ

In fact, we have a theorem as follows

Theorem 3. The nonzero vector v¼Yma0 is an ODV of the first
class, if m is a nonzero solution vector of Eq. (26).

Proof. We only need to prove that the following two formulas
regarding the vector v hold

vT X ¼ ðYmÞT X ¼ mT YT X ¼ ðXT YmÞT ¼ 0

vT Y ¼ ðYmÞY ¼ mT YT Ya0

(
ð27Þ

While the first formula in (27) is certain to be true and does not

need further proof, the second formula can be proved by contra-

diction as follows.
Suppose mTYTY¼0, then

mT YT Y ¼ 0) mT YT Ym¼ 03ðYmÞT Ym¼ 0 ð28Þ

As we know vT v¼ ðYmÞT Ym¼
PN

i ¼ 1

v2
i Z0, where N is the

dimensionality of the face images. If and only if vi¼0 for 1r irN,
i.e., v¼0, the equation vTv¼0 holds. But it is impossible for v to
be zero vector, which contradicts v¼Yma0. This completes
the proof.

Suppose U ¼ m1 m2 � � � ml

h i
ARn2�l is a set of linearly

independent solutions of (26), we can denote the candidate
ODV set as follows

S¼ fv¼ YUa9aARl�1
g ð29Þ

where a is a coefficient vector. In fact, solving (26) (obtaining the
matrix U) implies finding the null space of the coefficient matrix
XTY. This set includes all the candidate ODVs as Ua is the general
form for the solutions of (26). Among the infinite candidate
vectors in S, step 2 picks out the most discriminative ones and
takes them as ODVs.

Step 2: choose the most discriminative ODVs
Among all the vectors in S, step 2 chooses the ODVs corre-

sponding to the longest second class projections for the further
classification. We formulate it as follows

max
vAS

:YT v:2 ð30Þ

Substituting v by YUa in (30), we have

max:YT v:2

2 ¼max:vT YYT v:2 ¼max:aT UT YT YYT YUa:2 ð31Þ

It can be easily proved that the coefficient vectors a should be
the eigenvectors of the matrix M¼UTYTYYTYUARl� l associating
with the leading eigenvalues. If the eigenvectors of the matrix M

that associate with the k largest eigenvalues are aiði¼ 1,2,. . .,kÞ,
the ODVs for the first class are

vi ¼ YUaiði¼ 1,2,. . .,kÞ ð32Þ

Eq. (32) shows that the ODVs for the first class are in fact linear
combinations of the face images from the second class.

To sum up, the following two-step algorithm can generate the
most discriminative ODVs:

Firstly, solve the equation XTYm¼0 and output a set of
independent solutions m1,m2,. . .,ml;

Secondly, perform eigendecompositon of matrix M¼UTYTYYTYU

to solve the maximization problem (31) and generate the leading
eigenvectors ai; output the ODVs vi ¼ YUaiði¼ 1,2,. . .,kÞ;

3.4. ODV-based face classification

Based on the cosine metric, we define the distance between a
face image x and an ODV v as follows

dðx,vÞ ¼ 1� cos x,vh ij j ¼ 1�
xT v

:x::v:

�����
����� ð33Þ

Such defined distance achieves its maximum value, i.e., one, if
x?v; and achieves its minimum value, i.e., zero, if x//v.

3.4.1. Two-class classification problem

In a two-class classification problem, the ODV v for the first class
is orthogonal to the first class image xi and not orthogonal to the
second class image yj, i.e., vTxi¼0 and vTyja0. So, the distances
between v and the first class face images equal one, and those
between v and the second class face images are smaller than one. If
we use the common center of the circles O to represent the ODV v

and the metric defined in (33) to measure the distances between v



Fig. 4. The distance of the ODV v to the images from two classes.
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and the face images, the first class images (represented by ‘‘&’’)
scatter on the unit circle centered at O for a 2-D case, whereas the
second class images (represented by ‘‘J’’) scatter inside of the unit
circle, as shown in Fig. 4. Theoretically, a circle can correctly separate
the images from these two classes, if its radius r satisfies max

1r irn2dðv,yiÞoro1.

3.4.2. Many-class classification problem

If the face images belong to more than two individuals, the
face recognition task becomes a many-class classification pro-
blem. We take the one-to-many strategy and calculate a set of

ODVs vi
jð1r irc;1r jrkiÞ for every class, where c (c42) is the

number of individuals and ki is the number of ODVs associating
with the ith class. For a gallery face image x belonging to the c(x)

class, its distance to the ODV vi
j satisfies

dðx,vi
jÞ ¼ 1 cðxÞ ¼ i

dðx,vi
jÞo1 cðxÞa i

8<
: ð34Þ

Normally, the larger the distance between a face image and the
ODV vi

j, the more likely this face image belongs to the ith class.
Here, we classify a probe face image x into the c(x)th class, if

1

kc xð Þ

Xkc xð Þ

j ¼ 1

dðx,vcðxÞ
j Þ ¼ max

1r ir c

1

ki

Xki

j ¼ 1

dðx,vi
jÞ ð35Þ

The complete face recognition procedure is summarized in the
following algorithm.

Algorithm 1. ODV-based face recognition

Training stage: For 1r irc, the following procedure is per-

formed to calculate a set of ODVs for the ith class

Step 1. Take the face images in ith class as columns of X and
those of other classes as columns of Y;
Step 2. Solve the linear equation system XTYm¼0, and obtain a

set of linearly independent solutions U ¼ m1 m2 . . . ml

h i
ARn2�l, where l is the number of linearly independent solutions;
Step 3. Perform eigendecomposition of the matrix
M¼UTYTYYTYU, and denote the eigenvectors associating with
nonzero eigenvalues as ai

jðj¼ 1,2,. . .kiÞ;
Step 4. Calculate the ODVs using vi

j ¼ YUai
j j¼ 1,2,. . .kið Þ;

Testing stage:

Step 1. Calculate the distances (defined in (33)) between probe
face image x and the ODVs of each class;
Step 2. The probe face image x is classified into the c(x)th class
according to (35).
3.5. Computational complexity
Now, let us analyze the computational complexity of Algorithm 1
in Section 3.4.

In the training stage, step 1 only picks out the face images
associating with the ith individual with computational complex-

ity of O(n), where n is the total number of images. As XARN�n1

and YARN�n2 , the construction of the linear equation system
XTYm¼0 has computational complexity of O(n1n2N) in step 2,
where N is the dimensionality of the face images and n1,n2 are
number of images in the two classes. Step 2 solves the linear
equation system with computational complexity of O(n3).

Step 3 involves a series of matrix multiplication and an
eigendecomposition procedure. To calculate the matrix M effi-
ciently, we reformulate it as follows

M¼ ðUT
ðYT YÞÞððYT YÞUÞ ¼ ððYT YÞUÞT ððYT YÞUÞ ¼MT

1M1 ð36Þ

Calculation of the matrix M1 ¼ ðY
T YÞUARn2�l has the compu-

tational complexity of Oðn2
2Nþn2

2lÞ, and calculation of M¼MT
1M1

has the computational complexity of O(n2l2), where l(lon) is the
number of solutions generated in step 2. The eigendecomposition
procedure of the matrix MARl� l needs computational complexity
of O(l3). Thus, the step 3 has computational complexity of

Oðn2
2Nþn2

2lÞþOðn2l2ÞþOðl3ÞoOðn3þn2lþn2NÞ ð37Þ

Step 4 performs a series of matrix multiplication to generate
ODV vi

j ¼ YUai
jðj¼ 1,2, � � � kiÞ with computational complexity of

O(Nnl).
Thus, the calculation of ODVs of one class has computational

complexity of

Oðn1n2NÞþOðn3ÞþOðn3þn2lþn2NÞþOðNnlÞoOðNn2Þ ð38Þ

These four steps are performed c times, where c is the number
of classes. Totally, the computational complexity of the training
stage is O(cNn2). This indicates that the computational complexity
of the training stage is mainly determined by the number of face
images other than the dimensionality of them which is usually
larger.

In the testing stage, when classifying a probe face image, we
only need to calculate its distances to

Pc
i ¼ 1 ki ODVs (where ki is

the number of ODVs associating with the ith class) with the
computational complexity of OðNð

Pc
i ¼ 1 kiÞÞ. From the calculation

procedure of the ODV, we know that the number of ODVs
associating with one class is strictly smaller than the number of
gallery images, i.e., kion. Thus, the computational complexity of
classifying a probe face image satisfies

OðN �
Xc

i ¼ 1
kiÞoOðNcnÞ ð39Þ

Note that the computational complexity of both the training
and testing procedure is in direct proportion to the dimension-
ality of the face images.
4. Experiments

This section presents our experiments on the popular face
databases. Section 4.1 validates the Theorem 1 by investigating
the residues in the linear expressions of probe face images using
gallery face images. Section 4.2 and 4.3, respectively show the
experimental results of face verification and recognition.

One standard for evaluating the face recognition technologies
is the Facial Recognition Technology (FERET) database [27], which
was sponsored by US Department of Defense through the DARPA
Program. A subset of the FERET database including 1 386 images
of 198 individuals (7 images for each individual) is used in our
experiments. An image is included in this subset, if its name is



Fig. 5. Inter- and intra-class residue distribution on (a) AR face database; (b) YaleB

face database; (c) FERET face database; (d) PIE database.
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marked with any of the following two character strings: ‘‘ba’’,
‘‘bd’’, ‘‘be’’, ‘‘bf’’, ‘‘bg’’, ‘‘bj’’, and ‘‘bk’’ [10]. The images in this
subset have pose variations of 7151, 7251, and also the varia-
tions of illumination and the expression. The original images are
cropped and resized to 80�80 pixels.

Another standard database for evaluating the face recognition
across pose is the Carnegie Mellon University Pose, Illumination
and Expression database (CMU PIE database) [28]. The CMU PIE
database totally consists of more than 40 000 facial images of
68 people. In the construction of this database, the images of each
individual are captured under 43 different illumination condi-
tions, across 13 different poses, and with 4 different expressions.
We use a subset contains five poses (C05, C07, C09, C27, C29) and
all different illuminations and expressions. There are 170 images
for each of the 50 individuals.

The Yale Face Database B [29] contains 5850 images, 585
images for each of 10 individuals. The images of one individual
are captured under 9 different poses and illumination conditions.
Also, an image with ambient illumination is captured under all of
the 9 different poses for each individual.

The AR face database [30] contains 3120 images corresponding
to the faces of 120 people. The images include frontal view faces
with different facial expressions, conditions of illumination, and
occlusions (sun glasses and scarf). Each person participates in two
sessions, separated by intervals of two weeks. The same pictures
are taken in both sessions.

4.1. Residue investigation

This subsection verifies Theorem 1 through investigating the
residues in the linear expressions of probe face images using
gallery images. Assume that a novel face image z can be linearly
expressed by the gallery face images x1,x2,. . .,xn of one individual
with a residue e as follows

z¼ l1x1þl2x2þ � � � þlnxnþe ð40Þ

We calculate the minimum residue in terms of l2-norm using
the following method. First, we calculate the covariance matrix of
x1,x2,. . .,xn and its eigenvectors g1,g2,. . .gn. Then, we can obtain
the minimum residue as follows

e¼ z�
Xn

i ¼ 1

xT gi ð41Þ

The reasoning behind doing so is that the two spaces, respec-
tively spanned x1,x2,. . .,xn and g1,g2,. . .gn are the same.

In this experiment, we divide the face images of each indivi-
dual into two halves. The first half is the gallery set and the
second half is the probe set. The residue in (41) is an intra-class
residue if z and x1,x2,. . .,xn associate with the same individual. The
residue is an inter-class residue if they associate with different
individuals.

Fig. 5 shows the probability distribution of the norm of intra- and
inter-class residues. It can be seen that the intra-class residue is
usually much smaller than the inter-class residue. One’s face image
is more likely to be well expressed by his/her face images other than
the images of others. The large inter-class residue indicates that
one’s probe face image is far away from the linear manifold spanned
by the face images of another person. So, the face images of different
individuals span different linear manifolds, and the ODV that is
orthogonal to only one of the linear manifolds exists.

4.2. Face verification

The goal of face verification is to determine whether a probe
image belongs to a particular person. In the proposed ODV-based
method, we work out a distance between the probe image and an
ODV, and compare it with a defined threshold. The probe image is
classified into the class which the ODV associating with, only if the
distance is larger than the threshold. We use the subset of CMU PIE
containing 8500 face images of 50 different individuals and the whole
YaleB databases. Both of them are randomly divided into two halves;
one half is taken as gallery and the other half is taken as probe.

The distances between ODVs and face images can be classified
into two groups:
1.
 Intra-class distance: the face image and ODV associate with
the same class. The distance in this group is expected to be as
large as possible.
2.
 Inter-class distance: the face image and ODV associate with
other class. The distance in this group is expected to be as
small as possible.

In Figs. 6 and 7, the original represents ODV and the dots
represent the face images. If the distance between a face image
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and the ODV is d1, this face image is represented by a random dot
on the circle with radius equals to d1. Here, the distance is
regularized using the following equation

dnew ¼
d�minðdÞ

maxðdÞ�minðdÞ
ð42Þ

In both Figs. 6 and 7, the circles in figures (a) and (b) have the
same radius which is smaller than 95% intra-class distances, i.e.,
only 5% of the dots scatter inside of the circle in Fig. (a). As can be
seen from Fig. (b), only a small portion of the inter-class distances
are larger than the radius of the circle.

There are two kinds of misclassification in face verification:
false acceptance (FA), where the system incorrectly classifies a
face image into a class which it does not belong to; and false
rejection (FR), where the system fails to classify a face image into
the class which it belongs to. For each threshold, there will be one
pair of false acceptance rate (FAR) and false rejection rate (FRR).
By tuning the threshold, we can have a series of FARs and the
corresponding FRRs. Then, we can plot FRR verse FAR and obtain a
receiver operator curve (ROC) for each database. Fig. 8(a) and (b),
respectively show the ROC for the subset of CMU PIE and the Yale
B database. The Equal Error Rate (EER) is defined to be the FRR
when it equals to FAR. The EER for the CMU PIE face database is
4.7%, which is lower than those of the biohashing algorithm
(11.93%) [34], original Fisherface method (18.18%) [35] and its
Fig. 6. The distribution of the face images in CMU PIE database.

Fig. 7. The distribution of the face images in YaleB database.

Fig. 8. The ROC curves. (a) The subset of CM
improvements (larger than 5%) in [35]. The EER for the Yaleb
database is 3.5%, a little lower than the results reported in [36].

4.3. Face recognition

To test the proposed method, this subsection presents the face
recognition experiments on the AR, FERET, CMU PIE, and YaleB
face databases. We compare the performance of the proposed
method with other six appearance-based methods: principal
component analysis (PCA) [31], Fisher discriminant analysis
(FDA) [5], (Maximum a posterior discriminant analysis) MLDA
[40], Kernel principal component analysis (KPCA) [32,33], Kernel
Fisher discriminant analysis (KFDA) [10], and local preserving
projection (LPP) [7]. All of the above five methods and our method
classify a face image using the nearest neighbor classifier. Both
KFDA and KPCA adopt the Gaussian Kernel.

Seven-fold cross validation is used on the FERET face database.
The subset of FERET are divided into seven portions based on the
names of images, which are marked with ‘‘ba’’, ‘‘bd’’, ‘‘be’’, ‘‘bf’’,
‘‘bg’’, ‘‘bj’’, and ‘‘bk’’. These seven portions are, respectively
captured under different circumstances. Six portions are used
for training and the rest portion is used for testing in our
experiments. Thus, the sizes of the training and testing subset
are, respectively 1 188 and 198. The proposed method generates
198 ODVs, and other methods generate 198 projection vectors.
The classification results are listed in Table 1.

Table 1 shows that the proposed method outperforms the
other five methods in most cases. When the ‘‘bg’’ portion is used
for testing, the proposed method achieves the classification
accuracy of 95.5%, more than 5% higher than the other methods.
Though KFDA achieves a little higher accuracy (0.5%) on ‘‘bd’’ and
‘‘bf’’, KFDA is very time consuming in both training and testing
procedure. Moreover, it is very difficult to fix the parameter for
kernel function in both KFDA and KPCA. All the methods (PCA,
FDA, and LPP) make an implicit assumption that the face images
of each individual cluster together. However, as it is widely
recognized, the variations induced by pose change can be larger
than those induced by identity change. Different from these three
methods, our method models face images of different individuals
on different linear manifolds and does not require the images of
U PIE database; (b) The YaleB database.

Table 1
Classification accuracies (%) of methods on FERET face database.

Portion for test Ba bd be bf bg bj bk

PCA 81.5 67.0 69.5 52.5 77.5 68.0 78.5

FDA 89.5 68.5 90.5 47.5 84.0 65.5 86.5

KPCA 86.0 76.0 75.5 58.0 89.5 68.5 82.5

KFDA 90.5 76.5 82.0 60.5 88.0 67.0 91.0

LPP 84.0 71.5 90.0 51.0 89.5 66.5 84.5

MLDA 87.5 72.5 89.0 52.0 81.5 66.0 78.0

Proposed method 92.0 76.0 92.5 60.0 95.5 69.0 94.0



Table 2
Training time (seconds) of different methods in three face databases.

Database Size PCA FDA LPP KPCA KFDA Proposed

method

AR 80�100 349 405 864 3447 4558 325

CMU PIE 32�32 703 891 1093 2420 1779 981

YaleB 160�120 54 69 206 1432 1030 48
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one individual cluster together. Because of this, our method
achieves accuracies 2%–10% higher than PCA, LDA, and LPP.

The other three databases are randomly divided into two
disjoint subsets, one for training (gallery images) and one for
testing (probe images). For the YaleB database, the training subset
contains 10 images for each individual (account for about 1.8%)
and the testing subset contains 575 images for each individual
(account for about 98.2%). The training subset and the testing
subset in the CMU PIE face database, respectively have size of
3400 and 8160, and, respectively contain 50 and 120 images for
each individual. The AR database is randomly divided into two
halves, one for training and one for testing. These randomly
divisions are repeated 20 times. The average classification accura-
cies are plotted versus the number of projection vectors (ODVs in
the proposed method) in Fig. 9.

In these figures, the dimensionality means the number of
ODVs in our method and number of projectors in other methods.
As can be seen, the proposed method performs better than other
methods. Note that, the proposed method can achieve much
Fig. 9. Classification accuracy comparisons of different methods on different

databases. (a) AR face database, (b) CMU PIE face database and (c) YaleB face

database.
higher classification accuracy than other methods when the
dimensionality is low, especially on the CMU PIE and YaleB face
databases. On the CMU PIE face database, the proposed method
can achieve classification accuracy of 85.55% using two ODVs, and
91.16% using three ODVs. On the contrast, the other methods
cannot achieve classification accuracy higher than 65% using two
projection vectors and 80% using three projection vectors. On the
YaleB face database, the classification accuracies of the proposed
method are 20% higher than other methods when dimensionality
is less than three. None of appearance-based face recognition
methods [4,5,7,21,22,32,33] has achieved accuracy as high as ours
with such low dimensionalities.

In AR and YaleB databases, some intra-class distances are large
in the image space as well as the kernel feature space. The KLDA-
based feature extraction method reduces these intra-class dis-
tances and improves the clustering for classification. As a result,
KLDA achieves higher accuracy than KPCA. In CMU, however, the
intra-class distance is relatively smaller than the inter-class
distance. Therefore, the explicit minimization of intra-class dis-
tance in KLDA has little effect on the accuracy.

Table 2 lists the training time of different methods on the
three face databases. In the AR and YaleB face databases, the
dimensionality of the face images is much larger than the number
of training images. While the computational complexity of our
method largely depends on the number of training images, the
ones of [5,7,31] largely depend on the dimensionality. This
explains why our method is much faster than PCA, FDA and LPP.
The nonlinear methods [10,32,33] are time consuming because it
(1) has an additional procedure to fix the kernel parameter and
(2) must perform an implicit nonlinear transformation instead of
working with the original images. Our method is slower than PCA
and FDA when tested on CMU PIE database mainly because the
number of training images is larger than the dimensionality of the
face images in this database. However, this is not the general case,
because our training face images are obtained by windowing and
scaling the original 640 by 486 images. It is widely accepted that
in the task of face recognition, the dimensionality of the images is
normally larger than the number of images available for training.
Though the computational complexity of our method grows
proportionally as the number of classes grows, this number is
much smaller compared with dimensionality of the face images.
With computational complexity grows proportional to the dimen-
sionality of images, our method is faster than the other methods
whose computational complexity grows quadratically as the
dimensionality grows.
5. Conclusion and future work

We conclude that our new approach to face recognition across
pose is effective in comparison with the existing methods. Unlike
the traditional methods that investigate the face images on a
single manifold, our algorithm explores the differences among
linear manifolds spanned by face images of different individuals.
Based on the comprehensive theoretical analysis of intrapersonal
relationship among face images across pose, it is found that a
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person’s face image with a new pose can be linearly expressed by
his/her gallery face images. The experimental results reported in
Section 4.1 validate our observation presented in Section 2. As a
result, images of one individual can be characterized by the
orthogonality to certain vectors. By introducing the concept of
orthogonal discriminant vector (ODV) which is the vector ortho-
gonal to the images of the same person, we can discriminate
images of one person from others. Our experimental results show
that the intra-class residue is much smaller than the inter-class
residue. This means that the probe images can be linearly
approximated by the gallery images, which confirms the feasi-
bility to represent the intrapersonal relationship among face
images as derived in Section 2.

The existence of ODV for face recognition is further proven
theoretically by introducing a two-step algorithm to calculate
ODVs via solving a linear equation system. The distance between
a face image and an ODV is measured by a novel distance metric
to categorize face images for classification. Our experimental
results demonstrate that the new measurement is more effective
than the existing methods and achieves lower EERs for face
verification and higher accuracy for face recognition.

It is noted that all of face images are generated from the 3D
face. Therefore, both the probe and gallery face images contain
pixels of the 3D face. If a probe face image is formed by pixels
which are contained in the gallery face images, it can be linearly
expressed by the gallery images. This is tested by the experiment
in Section 4.1, where the intra-class residue is much smaller than
the inter-class residue. Consequently, the intrapersonal relation-
ship among face images is validated and our method performs
well. Furthermore, as stated in Section 2.3, our method is easier to
implement because it does not require the pose of the probe face
image to approximate that of any gallery images.

However, if the probe face image has many pixels that are not
contained in gallery face images, the intrapersonal relationship
among face images across pose becomes inaccurate. The probe
face image cannot be correctly represented by the linear combi-
nation of the gallery images. Thus, the distances between the
probe image and ODVs do not necessarily approximate one, even
if the ODVs are orthogonal to the gallery images.

As part of our future work, quantitative estimation of the
reliability of an individual’s pose manifold under various condi-
tions including scare pose situations will be studies. Occlusion is a
very difficult issue in face recognition. The theoretical analysis of
our proposed algorithm for intrapersonal relationship among face
images under different poses without occlusion would laid the
foundation for further development of a powerful approach to
occluded face recognition. In addition, a general model of 3-D face
will be developed based on the gallery images, where the gallery
images can be used for face modeling with different parameters
to achieve robustness with flexibility.
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