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a b s t r a c t

Transformation methods have been widely used in biometrics such as face recognition, gait recognition

and palmprint recognition. It seems that conventional transformation methods seem to be ‘‘optimal’’

for training samples but not for every test sample to be classified. The reason is that conventional

transformation methods use only the information of training samples to obtain transform axes. For

obtained using the corresponding transformation, the training samples must have the maximum

between-class distance and the minimum within-class distance. However, it is hard to guarantee that

the transformation also maximizes the between-class distance and minimizes the within-class distance

of the test samples in the new space. Another example is that principal component analysis (PCA) can

best represent the training samples with the minimum error; however, it is not guaranteed that every

test sample can be also represented with the minimum error. In this paper, we propose to improve

conventional transformation methods by relating the training phase with the test sample. The proposed

method simultaneously uses both the training samples and test sample to obtain an ‘‘optimal’’

representation of the test sample. In other words, the proposed method not only is an improvement

to the conventional transformation method but also has the merits of the representation-based

classification, which has shown very good performance in various problems. Differing from conven-

tional distance-based classification, the proposed method evaluates only the distances between the test

sample and the ‘‘closest’’ training samples and depends on only them to perform classification.

Moreover, the proposed method uses the weighted distance to classify the test sample. The weight is

set to the representation coefficient of a linear combination of the training samples that can well

represent the test sample.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

Biometrics such as face recognition has attracted much atten-
tion [1–4]. As we know, to properly represent the sample data is
very important for pattern classification. A number of methods to
represent the biometric sample have been proposed [5–7]. Among
these methods, transformation methods have been widely used.
Typical transformation methods include principal component analy-
sis (PCA) [8–11], linear discriminant analysis (LDA) [12–17], mini-
mum squared error (MSE) method [7,18], kernel LDA (KLDA) [19,20]
and kernel (KPCA) [21–23]. A common characteristic of the transfor-
mation methods is to transform samples into a new space in which
some properties might hold. For example, when transforming
ll rights reserved.

fax: þ86 755 2603 2461.
samples into the new space, PCA can make the samples in the new
space have the most variance. LDA will enable the samples in the new
space to have the maximum ratio of the between-class distance to
the within-class distance. The MSE method aims at obtaining a
mapping that can well transform the sample data into its class label.
As KLDA and KPCA are the extensions of LDA and PCA, respectively,
KLDA and KPCA have goals similar to those of LDA and PCA. However,
KLDA and KPCA usually perform nonlinear transformations, whereas
LDA and PCA produce linear transformations. Two-dimensional PCA
(2DPCA) and two-dimensional LDA (2DLDA) have also been widely
used as linear transformation methods [24–27]. Recently, transforma-
tion methods have been extended to the complex space in which the
sample is denoted by a complex matrix or vector [10,16]. The recently
proposed quaternion-based discriminant analysis can be viewed as
an extension of the complex space based transformation methods
and achieves good performance in color face recognition [28].
Other important extensions of conventional transform methods
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include probabilistic principal component analysers [29], tensor-
based transform methods such as tensor PCA and tensor LDA
[30–34]. One noticeable advantage of the tensor-based transform
methods is that they can cope with high-dimensional matrices
[35–37], whereas previous transformation methods can work for
only one-dimensional vectors or two-dimensional matrices. Actually,
tensor PCA and tensor LDA can be viewed as a unified framework of
PCA and LDA, respectively. The simple exponential family PCA
(SePCA) is a generalized family of probabilistic principal component
analysers and can well handle general types of observations [29].

Compared with conventional transformation methods, matrix
factorization uses a very different way to represent the sample.
For example, non-negative matrix factorization considers that the
image should be represented by non-negative numbers and
factorizes the sample matrix into two non-negative matrices to
represent the image [38–40]. Moreover, Manhattan non-negative
matrix factorization (MahNMF) proposed in [41] can robustly
estimate the low-rank part and the sparse part of a non-negative
matrix. Especially, it can do very well for the data contaminated
by outliers. Another advantage of MahNMF is that its implemen-
tation is computationally efficient. The manifold learning method
such as the graph embedding learning is also competent in data
representation [42,43]. The max–min distance analysis based
dimension reduction method can also perform well in represent-
ing the data [44]. Differing from conventional data representation
methods, the method proposed by Bian et al. aimed at modifying
the distance between samples for achieving better classification
performance [45]. They also proposed a constrained empirical
risk minimization framework [45]. This framework outperforms
the representative distance metric learning algorithms and
shows very good performance in both classification and image
retrieval.

We note that transformation methods exploit only the training
samples to implement their training phases. Generally, they work
as follows: they first use the training samples to produce a
number of transform axes and then exploit the transform axes
to convert each training sample and testing sample into lower-
dimensional representation. The transform axes obtained are
‘‘optimal’’ for the training samples; however, they are not optimal
for the test sample to be classified. For example, PCA can best
represent the training samples with the minimum error; never-
theless, it is not sure that every test sample can be also
represented by PCA with the minimum error. Another example
is that LDA allows the training samples to have the maximum
ratio of the between-class distance to the within-class distance;
however, this does not mean that each test sample is always very
close to its class center and far from the centers of the other
classes. Moreover, for the biometrics issue such as face recogni-
tion, the test sample is usually very different from the training
sample from the same subject owing to varying illumination,
facial expression and pose. Thus, it seems that the transform axes
obtained using only the training samples is usually hard to
maximize the between-class distance and minimize the within-
class distance of the test samples in the new space. In this sense,
we conclude that conventional transformation methods seem to
be optimal for only training samples but not for every test sample
to be classified. As a consequence, there is room to improve
conventional transformation methods for pattern classification
applications.

In this paper, inspired by the idea of ‘‘sparse representation’’ [1],
we propose representation-based transformation methods by
relating the feature extraction procedure with each test sample.
The representation-based transformation method is not only
optimal for training samples but also can well represent the test
sample to be classified. In other words, the representation-based
transformation method inherits the advantages of both
transformation methods and ‘‘sparse representation’’, being able
to exploit the statistical information of the training set and to
identify and use the training samples that are most ‘‘related’’ to the
test sample. Our method is also computationally much efficient
than naı̈ve sparse representation methods such as those in [46,47].
The experimental results show that the representation-based
transformation methods can obtain a significant improvement in
classification accuracy. The code of the proposed method can be
downloaded at http://www.yongxu.org/lunwen.html.

The remainder of the paper is organized as follows. Sections
2 and 3 present the main steps and rationales of representation-
based transformation methods, respectively. Section 4 shows the
experimental results. Section 5 offers our conclusions.
2. The representation-based transformation methods

The representation-based transformation methods (RBTM) not
only make the training samples in the new space hold the same
property as those in the conventional transformation methods
but also take advantages of the representation method. For
example, the improvement to LDA not only enables the ratio of
the between-class distance to the within-class distance of the
training samples to be maximized but also tries to make the test
sample to be well represented by a small number of training
samples.

The proposed method consists of three steps. First of all, the
first step exploits the training samples to represent the test
sample. It then obtains the ‘‘closest’’ training samples of the test
sample and the representation coefficient corresponding to each
‘‘closest’’ training sample. The second step implements the con-
ventional transformation method to obtain the transform axes.
The third step uses the transform axes, the ‘‘closest’’ training
samples and the corresponding representation coefficients to
produce features for all the samples and to calculate the distances
between the test sample and the ‘‘closest’’ training samples. This
step also uses the nearest neighbor classifier to classify the test
sample. In Sections 2.1–2.3 we describe the first, second and third
steps, respectively.

2.1. The first step of RBTM: determine the ‘‘closest’’ training samples

The first step of RBTM determines k nearest neighbors for each
test sample from the set of training samples. We refer to them as
the ‘‘closest’’ training samples of the test sample.

The first step of RBTM determines the k nearest neighbors for test
sample y as follows: Let xi(i¼ 1,. . .,N) denote all the training samples
in the form of column vectors. It is assumed that y¼

PN
i ¼ 1 cixi is

approximately satisfied. The first step defines C ¼ ½c1. . .cN�
T and

obtains the solution of C using
_
C ¼ ðXT XþgIÞ�1XT y, whereX ¼

½x1. . .xN�, I is the identity matrix, and g is a small positive constant.
If_ci is the i-th entry of

_
C , then the ‘‘distance’’ between y and xi is

calculated using ei ¼ :y�_cixi:. Hereafter ::: stands for the l2 norm.
The k training samples associated with the first k smallest ‘‘distances’’
are selected as k ‘‘closest’’ training samples of test sampley. The first
step of RBTM also includes the following procedure. Let xj’(j¼ 1,. . .,k)
denote the k ‘‘closest’’ training samples. The first step of RBTM also
expects that a weighted sum of x01,y, x0k can approximate test sample
y. Thus, it also obtains k coefficients that approximately satisfy the
following equation:

y¼
Xk

j ¼ 1
bjx
0
j :ð1Þ

Eq.(1) is solved using

~b ¼ ðX0T X0 þgIÞ�1X0T y, ð2Þ

http://www.yongxu.org/lunwen.html
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where X
0

¼ ½x01. . .x
0
K �,

~b ¼ ½ ~b
0

1. . .
~b
0

k�. It seems that the above procedure
is somewhat similar to the regression-based face representation
proposed in [48].

We can view coefficient ~b
0

j (j¼ 1,. . .,k) as the weight that
denotes the importance of the j-th ‘‘closest’’ training sample x0j.
We also refer to ~b

0

j as the representation coefficient to show the
connection between y and x0j(j¼ 1,. . .,k). A large representation
coefficient usually means a strong connection.

2.2. The second step of RBTM: perform LDA or PCA

In this section we take the improvement to LDA or PCA as an
example to describe the second step of RBTM. In this case, the
second step of RBTM indeed implements conventional LDA or PCA
to obtain a number of transform axes. For simplicity of presenta-
tion, we use xi

j to denote the j-th training sample from the i-th
class. The eigen-equation of conventional PCA is Stw¼ lw, where
St ¼ 1=Lni

PL
i ¼ 1

Pni

j ¼ 1ðx
i
j�mÞðxi

j�mÞT . ni stands for the number of
the training samples from the i-th class. L and m denote the
number of all the classes and the mean of all the training samples,
respectively.

The eigen-equation of conventional LDA is Sbw¼ lSww. Sb and
Sw are the so-called between-class scatter matrix and within-class
scatter matrix, respectively. They are defined as Sb ¼

PL
i ¼ 1ðmi�mÞ

ðmi�mÞT and Sw ¼
PL

i ¼ 1

Pni

j ¼ 1ðx
i
j�miÞðx

i
j�miÞ

T . mi stands for the
mean of the training samples of the i-th class.

Conventional PCA and LDA solve the eigen-equation and take
the eigenvectors corresponding to the first p largest eigenvalues
as transform axes. Conventional PCA and LDA directly use these
transform axes to transform every sample into a p-dimensional
vector. However, as shown in Section 2.3, RBTM will simulta-
neously exploit the transform axes and representation coeffi-
cients to perform transform.

2.3. The third step of RBTM: feature extraction and classification

The third step of RBTM works as follows. Let w1, y, wp be p

transform axes obtained using a conventional transformation
method and W ¼ ½w1. . .wp�. The third step extracts features from
the ‘‘closest’’ training samples and test sample y using

zj ¼
~b
0

jW
T x0j ðj¼ 1,. . .,kÞ, ð3Þ

z¼WT y: ð4Þ

z and zj are the features of test sample y and the j-th ‘‘closest’’
training sample xj’, respectively. As the feature extraction of the
training sample is influenced by the corresponding representation
coefficients, we also refer to the above feature extraction as adaptive
feature extraction. The third step calculates the distances between
test sample y and the ‘‘closest’’ training samples using

dj ¼ :z�zj:: ð5Þ

If q¼ argmin
j

dj, then test sample y is classified into the same
class as xq’ .
3. Analysis and rationale of RBTM

In this section we show the rationale of RBTM. First, RBTM
shares the advantage of conventional transformation methods, i.e.
in the new space the training samples satisfy some statistical
properties which are beneficial to pattern classification. Second,
as RBTM performs adaptive feature extraction, the ‘‘distance’’
between the test sample and training sample will be evaluated in
a better way. In other words, RBTM regards that it is not
necessary to evaluate the distances between the test sample
and all the training samples and only the distances between the
test sample and the ‘‘weighted’’ ‘‘closest’’ training samples should
be calculated. The representation coefficient is taken as the
weight which somewhat stands for the importance of the training
sample in representing the test sample. We note that a similar
idea of exploiting the training samples that are close to the test
sample to perform classification has been applied by previous
literatures [49–51].

If RBTM also adopts the conventional feature extraction
procedure, then it extracts features of test sample y and the
‘‘closest’’ training samples using gj ¼WT x0j and z¼WT y.

As a result, Eq. (5) can be rewritten as

dj ¼ :z� ~b
0

jgj:, j¼ 1,. . .,k: ð6Þ

If q¼ argmin
j

dj, then test sample y will be classified into the
same class as x0q. Thus, we can also view RBTM as a combination of
a conventional feature extraction procedure and an improved
nearest neighbor classifier. The distance defined in Eq.(6) is
referred to as weighted distance. When implementing RBTM, we
need to just carry out the second step one time whatever there
are how many test samples. On the other hand, the first and third
steps should run one time for each test sample.

Though the weights are obtained in the original space, the
weights in the original space are somewhat consistent with those
in the new space. The underlying evidence of the consistence can
be shown as follows. Suppose that in the original space test
sample y can be accurately represented by a weighted sum of all
the training samples. In other words, y¼

PN
i ¼ 1 aixi ¼ Xa is satis-

fied. a¼ ½a1. . .aN �
T and X ¼ ½x1. . .xN�. xi is the i-th training sample

and ai is its weight. :y�aixi: somewhat shows the ‘‘distance’’
relationship between the test sample and all the training samples.
If :y�aixi: is small, we say that the test sample is ‘‘close’’ to the
i-th training sample. Let W ¼ ½w1. . .wp�. w1, y, wp are p transform
axes obtained using a conventional transformation method. It is
easy to know that WT y¼WT Xa is also satisfied. WT y stands for
the test sample in the new space. WT X ¼ ½WT x1. . .W

T xN� and WT xi

is the i-th training sample in the new space. y¼ Xa and
WT y¼WT Xa indeed implies that the weights in the original
space are consistent with those in the new space. Thus, it is
reasonable to apply the weights obtained in the original space to
the new space. Moreover, when we use Eq.(5) to evaluate the
distance between the test sample and training sample, we indeed
simultaneously exploit the information of the conventional trans-
form method and representation method. Actually, our method
uses the ‘‘closest’’ training samples and the ‘‘optimal’’ features
extracted from conventional transform methods to classify the
test sample.

The proposed method is also computationally efficient. Its
computational cost is similar to that of the two norm based
representation method. It is easy to know that the main compu-
tational cost of the two norm based representation method
proposed in [53] is caused by calculating ðXT XþgIÞ�1XT y. Suppose
that the sample is a R-dimensional vector. For each test sample, to
solve ðXT XþgIÞ�1XT y (X is the same as the X in Section 2) has the
computational cost of OðN2RþN3

Þ. N is the number of all the
training samples. R is usually greater than the number of all the
training samples. If there are N’ test samples, the computational
cost of this method will be OðN0N2RþN0N3

Þ. Moreover, under the
same condition, the computational cost of the two norm based
representation method proposed in [54] is much greater than
OðN0N2RþN0N3

Þ. Compared with the two norm based representa-
tion method proposed in [53] our method just needs extra
computational operations to perform conventional transform,
which is not high. Thus, it seems that our method has a compar-
able computational cost as the two norm based representation
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method proposed in [53]. As we know, the naı̈ve sparse repre-
sentation method such as the one proposed by Wright et al. [46]
has a very much higher computational cost than the two norm
based representation method proposed in [53]. As a result, our
method is computationally more efficient than the naı̈ve sparse
representation method.

Fig. 1 shows an illustration of the original Euclidean distances
and weighted distances. In this illustration, all the training
samples were used to represent the test sample. The original
Euclidean distance is calculated using :y�xi:, i¼ 1,. . .,3. x1,x2,x3

stand for the first, second and third training samples, respectively
y denotes the test sample. In this figure, the weighted distance is
calculated using :y�cixi:, i¼ 1,. . .,3, ½c1c2c3�

T ¼ ðXT XþgIÞ�1XT y,
X ¼ ½x1x2x3�. g was set to 0.01. This figure shows that the
weighted distances might be very different from the original
Euclidean distance. Especially, if a training sample has a negative
weight coefficient, then the difference between the weighted
distance and original distance might be very great. This figure
tells us that in terms of the original distance, the first, second and
third training samples are, respectively, the first, second and third
Fig. 1. An illustration of the original Euclidean distances and weighted distances.

The horizontal and vertical coordinates show the values of the first and second

components of the two-dimensional sample, respectively. The original Euclidean

distances between the test sample and the first, second and third training samples

are 1.5524, 1.7692 and 5.8034, respectively. The weighted distances between the

test sample and the first, second and third training samples are 0.8203, 1.7680 and

1.7400, respectively. The weight coefficients of the first, second and third training

samples are 0.4496, 0.1226 and �0.1106, respectively.

Fig. 2. Some face images of two
nearest neighbors of the test sample. However, in terms of the
weighted distance, the first, second and third training samples
are, respectively, the first, third and second nearest neighbors of
the test sample.

We also use the following flowchart to summarize the pro-
posed method.

The flowchart shows that when Step 1 of the proposed method
identifies the most related training samples of the test sample, it
indeed determines a rough neighbor relationship between the
test sample and training samples. In other words, Step 1 of the
proposed method considers that it is only necessary to exploit the
k ‘‘closest’’ training samples of the test sample to perform
classification of the test sample. Moreover, the effect, on the
classification of the test sample, of the first ‘‘closest’’ training
sample is the greatest and the effect of the k-th ‘‘closest’’ training
sample is the least! Then Step 2 of the proposed method performs
subjects in the AR database.

Table 1

Classification accuracies of different methods on the AR database. k is set to

k¼ 0:1nN. N is the total number of the training samples. The number of the

transform axes used in conventional PCA is equal to the total number of the

training samples minus one. The number of the transform axes used in conven-

tional LDA is equal to the total number of the subjects minus one.

Number of training samples 2 3 4

Conventional PCA (%) 55.28 54.20 52.20

RBTM on PCA (%) 65.80 65.36 63.60

Conventional LDA (%) 60.83 59.82 60.76

RBTM on LDA (%) 66.18 65.47 63.03

INNC proposed in [53] (%) 60.07 59.60 58.33

SAFR proposed in [54] (%) 64.83 65.04 63.03
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conventional transform, exploiting the statistical information of
training samples to obtain the transform axes. As a result, the
transform results of the samples will be statistically ‘‘optimal’’.
Take LDA as an example, the transform results of the samples will
statistically maximize the between-class separability of the train-
ing samples and also minimize the within-class separability! This,
of course, will statistically make the test samples easily be
classified. We also say that Step 1 and Step 2 of the proposed
method pay attention to making the consequent classification
optimal for the test sample to be classified and for all the training
samples, respectively. These two steps, of course, are very
complement for each other. As a result, the simultaneous use of
Fig. 3. The variation, with the number of transform axes used, of the classification

accuracy of conventional LDA and RBTM on LDA on the AR database. The first two

face images of each subject were used as training samples and the remaining

images were used as test samples.

Fig. 4. The variation, with the number of transform axes used, of the classification

accuracy of conventional PCA and RBTM on PCA on the AR database. The first two

face images of each subject were used as training samples and the remaining

images were used as test samples.

Fig. 5. The infrared face images of tw
the information from the previous steps will obtain a better
neighbor relationship between the test sample and training
samples and obtains more accurate classification results.
4. Experimental results

In this section we mainly conducted experiments to test RBTM
on PCA and LDA. Conventional PCA and LDA are also tested.
Moreover, the experiments on two representation-based classifi-
cation methods, i.e. the improvement to the nearest neighbor
classifier (INNC) [53] and simple and fast representation (SAFR)
[54] were also performed. When we implemented conventional
LDA we replaced the naı̈ve within-class scatter matrix Sw by
Swþ0:01I, where I is the identity matrix. We did this for avoiding
the small sample size problem. In addition, in the case where only
one training sample was available for each subject, we took
Sbw¼ lw rather than Sbw¼ lSww as the eigen-equation of LDA.
Actually, in this case Sw cannot be obtained.
4.1. Experimental results on the AR database

From the AR face database, we used 3120 images from 120
subjects. These images were taken in two sessions and each
subject provided 26 images [52]. The face images of this database
were obtained under the condition of varying pose, facial expres-
sion, or lighting. Occluded face images are also included in the AR
face database. Fig. 2 shows some face images of two subjects in
the AR database. We resized each face image from the AR
database to a 40 by 50 matrix. We used only the first two, three,
four samples from each class as the training samples and the
others as the test samples, respectively. Before all the methods
were implemented, all the training and test samples were
normalized as vectors with length of 1.

Table 1 shows the experimental results. It tells us that RBTM
can obtain an improvement in classification accuracy. The accu-
racy of RBTM on LDA is always greater than that of conventional
LDA. The accuracy of RBTM on PCA is also clearly greater than that
of conventional PCA. Moreover, the accuracy of RBTM is also
higher than those of the representation methods, AINNC and
SAFR. Figs. 3 and 4 show the variation, with the number of
transform axes used, of the classification accuracy of conventional
LDA (PCA) and RBTM on LDA (RBTM on PCA) on the visible light
face images of the AR database. We also see that RBTM on LDA
(RBTM on PCA) outperform the conventional LDA (PCA) again.
o subjects in the HFB database.



Table 2
Classification accuracies of different methods on the near infrared face images of

the HFB database. k is set to k¼ 0:15nN. N is the total number of the training
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We see that besides the RBTM method can obtain higher
classification accuracy than conventional transform methods,
the classification accuracy of the RBTM method is also less
sensitive to the number of the transform axes used in comparison
with conventional transform methods. There are two main
reasons. The first reason is that the RBTM method can better
represent the test sample. Actually, since the RBTM method
relates the training phase with the test sample, the representation
of the test sample is obtained under the conditions that both the
representation error is minimized and the statistical information
of the training samples can be best exploited. As a result, the
obtained representation of the test sample will be more reason-
able, which is helpful for achieving high accuracy. The second
reason is that the RBTM method somewhat inherits one perfor-
mance characteristic of conventional transform methods, i.e. the
classification accuracy might be very stable when the number of
the transform axes used is large enough.
Fig. 7. The variation with the number of transform axes used for the classification

accuracy of conventional LDA and RBTM on LDA on the visible light face images of

the HFB database.

samples. The number of the transform axes used in conventional PCA is equal to

the total number of the training samples minus one. The number of the transform

axes used in conventional LDA is equal to the total number of the subjects

minus one.

Visible face images Near infrared face images

Number of training samples 1 2 1 2

Conventional LDA (%) 55.0 74.0 72.7 80.0

RBTM on LDA (%) 87.0 93.0 93.0 95.0

Conventional PCA (%) 63.0 63.0 89.7 91.0

RBTM on PCA (%) 87.7 93.0 93.3 92.5%

INNC proposed in [53] (%) 89.00 93.00 93.3 90.5

SAFR proposed in [54] (%) 86.00 93.00 89.33 91.5
4.2. Experiment on the heterogeneous face

biometrics (HFB) database

In this subsection, we used the visible light and near infrared face
images of the heterogeneous face biometrics (HFB) database to test
our method and the other methods. The original HFB database
includes visible light, near infrared and three-dimensional (3D) face
images [55,56]. There are 100 subjects and each subject provides
four visible light and near infrared face images. Figs. 5 and 6 show
the near infrared and visible light face images of two subjects in the
HFB database, respectively. We first resized each original 128�128
face image into 64�64 image. The experiments were conducted on
the visible light and near infrared face images, respectively. We took
the first m near infrared or visible light face images of each subject
as training samples and treated the remaining samples as test
samples. m were set to 1 and 2, respectively. Before all the methods
were implemented, every sample had been converted into a vector
with the length of 1.

Table 2 shows the experimental results on the near infrared
face images of the HFB database. Figs. 7 and 8 show the variation,
with the number of transform axes used, of the classification
accuracy of conventional LDA (PCA) and RBTM on LDA (RBTM on
PCA) on the visible light face images of the HFB database. We see
that RBTM on LDA and RBTM on PCA can achieve a much higher
accuracy than conventional LDA and conventional PCA, respec-
tively. Moreover, when a very small number of transform axes
were used, conventional LDA and conventional PCA obtained a
Fig. 6. The visible light face images of th
very low accuracy. However, RBTM on LDA and RBTM on PCA still
achieved a high accuracy.

4.3. Experiment on the YALE database

The Yale face database (http://www.cvc.yale.edu/projects/yale
faces/yalefaces.html) contains 165 face images from 15 indivi-
duals each providing 11 images. These face images have various
facial expressions and lighting conditions. In the experiment, each
image was resized to 60�46 pixels. Fig. 9 shows sample images
of one subject in the Yale database. The first three, four and five
face images of each subject were used as training samples and the
remaining images were taken as test samples, respectively.
e same two subjects shown in Fig. 5.

http://www.cvc.yale.edu/projects/yalefaces/yalefaces.html
http://www.cvc.yale.edu/projects/yalefaces/yalefaces.html
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Table 3 shows the experimental results on the YALE database. We
see that our method also outperforms the others methods, i.e.
conventional PCA, conventional LDA, INNC proposed in [53] and
SAFR proposed in [54].

4.4. Experiment on the YALEB database

In this subsection we used the face images with the frontal
pose from the YALEB database (http://cvc.yale.edu/projects/yale
facesB/yalefacesB.html) to conduct the experiment. As a result,
there were 450 face images and each subject provided 45 images.
Each image was first resized to a 32 by 32 matrix. Fig. 10 shows
sample images of two subjects in the YaleB database. The first 15,
Fig. 9. Sample images of one su

Fig. 8. The variation with the number of transform axes used for the classification

accuracy of conventional PCA and RBTM on PCA on the visible light face images of

the HFB database.

Table 3

Classification accuracies of different methods on the YALE database. k is set to k¼ 0:2nN

used in conventional PCA is equal to the total number of the training samples minus on

number of the subjects minus one.

Number of training samples 3

Conventional PCA (%) 81.67

RBTM on PCA (%) 89.17

Conventional LDA (%) 68.33

RBTM on LDA (%) 88.33

INNC proposed in [53] (%) 82.50

SAFR proposed in [54] (%) 85.00

Fig. 10. Sample images of two subjects in the YaleB database. The first an
20, 25 and 30 face images of each subject were used as training
samples and the remaining images were taken as test samples,
respectively. Table 4 shows the experimental results on the YALEB
database. We see that our method also outperforms the others.
5. Conclusions

RBTM is motivated by the idea of ‘‘sparse representation’’ and
is able to relate each test sample with the training samples. In
other words, RBTM uses both the training samples and test
sample to obtain an ‘‘optimal’’ representation of the test sample
that is very beneficial to classification. RBTM has the merits of
both transformation methods and ‘‘sparse representation’’. Actu-
ally, the use of the transformation method allows the
bject in the Yale database.

. N is the total number of the training samples. The number of the transform axes

e. The number of the transform axes used in conventional LDA is equal to the total

4 5

88.57 91.11

91.43 95.56

74.29 71.11

91.43 95.56

91.43 94.44

86.67 92.22

d second rows show the images of these two subjects, respectively.

Table 4

Classification accuracies of different methods on the YALEB database. k is set to

k¼ 0:3nN. N is the total number of the training samples. The number of the

transform axes used in conventional PCA is equal to the total number of the

training samples minus one. The number of the transform axes used in conven-

tional LDA is equal to the total number of the subjects minus one.

Number of training samples 15 20 25 30

Conventional PCA (%) 79.00 78.80 86.50 93.33

RBTM on PCA (%) 89.00 91.60 98.00 98.00

Conventional LDA (%) 48.33 36.00 38.50 37.33

RBTM on LDA (%) 88.00 92.40 97.00 98.67

INNC proposed in [53] (%) 87.00 84.80 87.50 95.33

SAFR proposed in [54] (%) 80.00 81.20 89.00 95.33

http://cvc.yale.edu/projects/yalefacesB/yalefacesB.html
http://cvc.yale.edu/projects/yalefacesB/yalefacesB.html
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representation-based transformation method to take advantages
of the statistical information of the training samples and to
denote the sample by a lower-dimensional vector. Moreover,
the use of ‘‘sparse representation’’ enables the representation-
based transformation method to determine and use the training
samples that are most ‘‘related’’ to the test sample to perform
classification. As only the distances between the test sample and
the weighted ‘‘closest’’ training samples should be calculated and
the ‘‘closest’’ training samples denotes those who are very close to
the test sample, RBTM seems to be able to reduce the influence,
on classification of the test sample of, the outliers. For conven-
tional transformation methods, the features of the outliers might
be very close to those of the test sample, though the outliers and
the test sample are not from the same class. Another advantage of
RBTM is that it is computationally much efficient than the naı̈ve
sparse representation methods. The experimental results show
that RBTM obtains a significant improvement in classification
accuracy. Though in semi-supervised learning the idea of linking
training samples and test samples has been widely used [57–59]
RBTM is very different from these methods.
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