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In this paper, we improve the minimum squared error (MSE) algorithm for classification by modifying its
classification rule. Differing from the conventional MSE algorithm which first obtains the mapping that can
best transform the training sample into its class label and then exploits the obtained mapping to predict the
class label of the test sample, the modified minimum squared error classification (MMSEC) algorithm
simultaneously predicts the class labels of the test sample and the training samples nearest to it and
combines the predicted results to ultimately classify the test sample. Besides this paper, for the first time,
proposes the idea to take advantage of the predicted class labels of the training samples for classification of
the test sample, it devises a weighted fusion scheme to fuse the predicted class labels of the training sample
and test sample. The paper also interprets the rationale of MMSEC. As MMSEC generalizes better than
conventional MSE, it can lead to more robust classification decisions. The face recognition experiments show
that MMSEC does obtain very promising performance.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The minimum squared error algorithm has been widely used
for pattern classification. The minimum squared error classifica-
tion (MSEC) takes the sample and its class label as the input and
output respectively, and tries to obtain the mapping that can best
transform the input into the corresponding output. MSEC first uses
the training samples to perform training and then exploits the
obtained mapping to predict the class label of the test sample.
Finally, MSEC assigns the test sample into the class whose class
label is most similar to the predicted class label of the test sample.

MSEC not only can achieve high accuracy but also holds good
properties. For example, it has been proven that for two-class
classification MSEC is identical to linear discriminant analysis
(LDA) under the condition that the number of training samples
approximates the infinity [1,2]. LDA and its variants have been
widely used [3]. Moreover, if a special class indicator matrix is
used, MSEC and LDA are also equivalent for multi-class classifica-
tion [4]. LDA has also been shown to be equivalent to canonical
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correlation analysis (CCA) for multi-class classification [5]. As
a result, MSEC will perform very similarly as CCA in multi-class
classification [6].

Besides MSEC has been extended to multi-class classification, a
well-known nonlinear extension of MSEC, kernel MSE (KMSE), has
been proposed. KMSE performs very well in the field of pattern
recognition too [2,7,8]. Other various improvements to the MSE
methodology have also been devised. For example, “Lasso” based
MSE (LBMSE) was recently proposed for classification [9-11].
LBMSE tries to obtain good generalization performance by mini-
mizing the [; norm of the solution vector and can be viewed as an
extension of conventional MSEC. Differing from conventional
MSEC, LBMSE takes the training sample and the test sample
themselves as the input and the output, respectively. After the
mapping between the input and output is constructed, LBMSE also
uses a way different from that of MSEC to perform classification.
As shown in Refs. [12-14], we can also modify MSEC to a
classification algorithm that is similar to LBMSE but subject to
the constraint of minimizing the I, norm of the solution vector.
This algorithm will be computationally more efficient than LBMSE
and has comparable classification performance. Linear regression
classification (LRC) proposed in Ref. [15] is a typical example
of this kind of algorithm. The MSEC algorithms with the constraints
of minimizing the [; or I, norm can also be referred to as
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penalized MSECs [16] or representation-based classification (RBC)
algorithms.

Besides the inputs and outputs of the method proposed in our
paper are different from those of RBC, it also differs from RBC as
follows. The proposed method should solve only one equation and
exploit it to predict the class label of all the test samples. However,
RBC must solve at least one equation for classifying a test sample.
In particular, RBC proposed in Refs. [12-14] should solve and
exploit one equation for classifying a test sample. LRC should
depend on the solutions of ¢ equations to classify a test sample. c is
the number of the classes. As a result, our proposed method is
usually computationally more efficient than RBC.

The total least squares (TLSs) [17,18] is another well-known
improvement to the MSE. TLS assumes that both the input and
output are corrupted and each of them can be expressed as the
sum of the corresponding “true data” and “measurement noise”.
Differing from TLS, conventional MSE methods just assumes that
the output is corrupted but the input is not. Based on TLS,
researchers also proposed the weighted and structured total least
squares (WSTLSs) [17-20]. WSTLSs are usually numerically solved
by using local optimization methods [17]. In addition, recursive
least-squares methods were proposed as reinforcement learning
algorithms [21]. Two-stage least squares (2SLS) was proposed for
latent variable models [22]. Bayesian minimum mean-square error
was also proposed to explore the theoretical issue in pattern
classification such as to estimate the classification error [23-25].
In addition, some means such as the regularized term was also
used to improve the numerical stability of MSE [26]. The means of
regularization is indeed widely used and Hessian regularization
proposed in Ref. [27] obtained very good performance in image
annotation. Orthogonal MSE [28] and computationally more effi-
cient MSE algorithm [29-31] were also devised. Besides pattern
classification [32], the minimum squared error algorithms have
been applied to other fields such as density estimation, clustering,
feature extraction, data fitting and regression as well as image
coding [7,17,30,31,33-36]. We also note that MSE has been widely
used in the field of signal processing for resolving some important
problems such as direction estimation, estimation of deterministic
parameters with noise covariance uncertainties, optimization of
the downlink multiuser MIMO systems and multipath channel
estimations [37-39]. The MSE algorithm was also used for other
issues such as Kalman filters and probabilistic principal compo-
nent analysis [40]. The naive MSE algorithm and its variants have
been also widely used in regression [41,42].

Researchers have also paid much attention to improve the
generalization performance of the classification algorithm. For
MSEC, a conventional and important way to improve the general-
ization performance is to impose the constraint of minimizing the
norm especially the I, norm of the solution vector on it. Of course,
this way is very useful for avoiding the case where the predicted
class label of the test sample corrupted by little noise greatly
deviates from its true class label. However, the above way still
cannot perform well in the case where the test sample is corrupted
by great noise. For example, in real-world face recognition appli-
cations the test sample might be very different from the training
sample from the same subject owing to varying expression, pose
and illumination [43-45]. Consequently, the predicted class label
of the test sample might have large deviation from its true class
label. However, we see that the predicted class label of the training
sample is always very close to its true class label. This somewhat
means that the MSEC algorithm has great confidence in predicting
the class label of the training sample but has less confidence in
predicting the class label of the test sample. As a result, if
a training sample is very near to the test sample, it is reasonable
to integrate the predicted class labels of this training sample and
the test sample to classify the test sample.

In this paper, in order to obtain more robust MSEC algorithm,
we improve the MSEC algorithm by modifying its classification
rule. We establish the same equation as that of the conventional
MSEC and also solve it in the same way. Then we exploit the
obtained solution to simultaneously predict the class labels of
the test sample and the training samples nearest to it and combine
the predicted results to ultimately classify the test sample. We use
a weighted fusion scheme to combine the predicted class labels of
the test sample and the training samples. The weight of the test
sample is assigned a larger value in comparison with those of the
training samples. When more than one training sample are
exploited, we also assign a larger coefficient to the training sample
that is closer to the test sample. The experiments also show that
MMSEC does obtain much higher classification accuracy than
conventional MSEC. This paper has the following noticeable
contributions. First, it for the first time proposes the idea to take
advantage of the predicted class labels of the training samples to
classify the test sample. It also carefully demonstrates the under-
lying rationale of MMSEC. Second, it devises a weighted fusion
scheme to fuse the predicted class labels of the training sample
and test sample.

2. The minimum squared error classification (MSEC)

In this section we take the multi-class problem as an example
to describe MSEC. Suppose that there are c classes. We assign a
class label to each class. If a mapping is able to transform a sample
into its class label and we can get this mapping by learning, then
we can exploit the learned mapping to predict the class label of
each test sample. Let x; be a p-dimensional row vector and denote
the ith training sample, i=1,...,N. N is the total number of the
training samples. We use a c-dimensional vector to represent the
class label. If a sample is from the first class, we take
g=[1 0 0] as its class label. If a sample is from the
cth class, we take g=[0 0 1] as its class label. In other
words, if a sample is from the kth class, then the kth element of its
class label is one and the other elements are all zeroes. This class
label is also referred to as the class label of the kth class.

Assuming that matrix Y can approximately transform each training
sample into its class label, MSEC has the following equation:

XY=G (1)
where

X1 &1
X=|. |,G=

XN &N

It is clear that X is an N x p matrix, G is an N x ¢ matrix, and Y is
a p x ¢ matrix. We refer to Y as transform matrix. g; is the class
label of the ith training sample.

As Eq. (1) cannot be directly solved, we convert it into the
following equation:

X'™Xy=X"G 2)
We can obtain Y using
Y=X"X+yD)'XTG 3)

where y and I denote a small positive constant and the identity
matrix, respectively. MSEC classifies a test sample x in the form of
row vector as follows: the class label of x is first predicted using
gy =xY. Then the distances between g, and the class labels of all
the c classes are calculated. As shown above, the class label of the
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jth class is a row vector whose jth element is one and whose other
elements are all zeros (j=1,...,c). If g, is the closest to the class
label of the kth class, then x will be classified into the kth class.

3. The algorithm of modified minimum squared error
classification (MMSEC)

The key of MMSEC is to combine the predicted class labels of
the test sample and the training sample nearest to it to classify the
test sample. Moreover, the training phase of MMSEC is the same as
that of MSEC. Let t be a test sample in the form of the column
vector. The algorithm of MMSEC includes the following steps.

Step 1. Establish equation XY = G and solve it using Eq. (3).
Step 2. Use t' =tTY to predict the class label of test sample t.
t' denotes the so-called predicted class label. Calculate the
Euclidean distance between t’ and the class label of each class.
Let d; =||t'—Ia;|| denote the distance between t" and the jth
class. la; denotes the class label of the jth class, which is defined
in Section 2.

Step 3. Among all training samples the K training samples that
are nearest to the test sample in terms of the Euclidean
distance are first chosen. Let ¢, ..., qx denote these K training
samples. Let cly, ..., clx be the predicted class labels of q;, ..., g,
respectively. For g;, let sj’.": l|cli—lam|| stand for the dissim-
ilarity between ¢; and the mth class. lay, still denotes the class
label of the mth class. Use S;" = =¥_, f;s/" to denote the dissim-
ilarity between these K trammg samples and the mth class.
Coefficients p; are set to ;=1 —(dis;/=K_ disy), j=1,....K. dis;
stands for the Euclidean distance between ¢; and the test
sample. If K=1, then there is only one weight g; and we set
itas p;=1 )

Step 4. Let e; = w; d;+w,S, stand for the “distance” between the
jth class and the test sample. w;+w, =1 and wy,w, are the
weights of d;, S}, respectively. If r = arg min e;, then test sample
t is assigned into the rth class. j

Among the above steps of MMSEC, Step 1 indeed completes the
training phase and the other steps are devised for classifying the
test sample. From Step 3, we know that when more than one
training sample are exploited, a larger coefficient will be assigned
to the training sample that is closer to the test sample. This is an
easily understood strategy owing to the fact that the closer to the
test sample the training sample is, the more possible from the
same class as the test sample the training sample is usually. In
order to realize this strategy, Step 3 sets g; using ;= 1—(dis;/
Z{; ,dis;), j=1,...,K. Another rationale of this formulation is that
it enables S} to be weighted average of s{" and the sum of all the
weight coefficients equal to 1, i.e. p;+---+px = 1. Moreover, this
will make S} not greatly deviate from all s{" and become a proper
and reasonable “mean” of sj".

When implementing MMSEC, we suggest that w; is set to
a larger value than w,. The underlying reason is that the experi-
mental analysis shows that to solely exploit the predicted class
label of the test sample to classify it usually obtains higher
accuracy than to solely exploit the predicted class labels of the
training samples nearest to the test sample to classify it.

4. Analysis of the proposed method

4.1. Difference between MMSEC and MSEC

MSEC and the proposed method i.e. MMSEC have the following
difference. MSEC seems to be optimal for all the training samples

from various classes. In other words, when MSEC simultaneously
maps the data of all the training samples into their own class
labels, it indeed tries to minimize the sum of the deviation
between the obtained class labels and the true class labels. Thus
we say that MSEC is able to well convert every training sample
into the true class label. However, this does not imply that MSEC
can also very well convert every test sample into its true class
label. As the test sample data may be viewed as the sum of its true
observation and the noise and the noise is disadvantageous for
correctly predicting the class label of the test sample, MSEC might
erroneously classify the test sample in some cases especially in the
case where the noise is very large.

We use Figs. 1-3 to show the predicted errors of the training
samples and test samples obtained using MSEC on the face
database. For sample q in the form of row vector, the predicted
error is defined as ||trueq —qY]|. trueq stands for the true class label
of q. From these figures, we see that the training samples always
have smaller predicted errors than the test samples. The large
predicted error of the test sample somewhat implies that MSEC
somewhat has a low confidence in predicting the class label of the
test sample! Because the training samples usually have much
smaller predicted errors, it is very reasonable to combine the
predicted class labels of the test sample and the training samples
nearest to it to perform classification.

4.2. Insight into the rationale of MMSEC

In this subsection we will in-depth analyze the rationale of
MMSEC. Since MMSEC simultaneously exploits the test sample and
nearest training samples to predict the class label of the test
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Fig. 1. The predicted errors of the training samples and test samples obtained using
MSEC on the subset of the FERET face database shown in Section 5. The first four
face images of each subject and the remaining images were used as the test samples and
training samples, respectively. The horizontal and vertical axes show the Nos. of the
training samples (test samples) and the predicted errors, respectively.
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Fig. 2. The predicted errors of the training samples and test samples obtained
using MSEC on the AR face database. The first 18 face images of each subject and
the remaining images were used as the test samples and training samples,
respectively. The horizontal and vertical axes show the Nos. of the training samples
(test samples) and the predicted errors, respectively. The predicted errors of all the
training samples and the first 1000 test samples are shown.
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sample, the predict result seems to be more robust than that of
MSEC. In particular, it is easy to know that in the case where the
used “nearest” training samples are really from the same class as
the test sample, MMSEC must more accurately classify the test
sample than MSEC. The underlying reason is that the predicted
class labels of the nearest training samples will be almost same as
the true class label of the test sample. This will greatly increase the
probability that the test sample is assigned to the correct class.

The rationale to exploit the predicted class label of the training
sample nearest to the test sample for classification can be formally
presented as follows: if the ith training sample x; is nearest to test
sample t and has the same true class label as t, we assume that
t=x;+ Ax. Ax stands for the deviation between t and x;. Suppose
that only the predicted class label of x; is combined with that of
t to ultimately classify t. Let F(.) stand for the mapping to trans-
form the sample into its class label, then F(t) and F(x;) are the
predicted class labels of test sample t and the ith training sample,
respectively. It is clear that F(.) is a linear mapping. Thus the
predicted class label of t obtained using MSEC can be written as
F(t)=F(x;)+F(Ax). As we know, the predicted class label of the
training sample is usually extremely close to its true class label. It
is clear that if F(Ax) has a relatively small value, then F(x;) will well
approximate the predicted class label of ¢ i.e. F(x;) ~ F(t). However,
if F(Ax) is great enough, the predicted class label of test sample t
obtained using MSEC will be very different from that of the
training sample x; nearest to t.

Now we show that Step 4 of our proposed method is able to
alleviate the influence of deviation Ax. The predicted class label of
t obtained using MMSEC is wiF(t)+wyF(X;)= (W1 +W3)F(X;)+
w1F(AX) = F(x;)+w1F(AXx). Because O0<w; <1, it is clear that
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Fig. 3. The predicted errors of the training samples and test samples obtained
using MSEC on the GT face database. The first eight face images of each subject and
the remaining images were used as the training samples and test samples,
respectively. The horizontal and vertical axes show the Nos. of the training samples
(test samples) and the predicted errors, respectively.

F(x;)+w1F(Ax) is nearer to the true class label of test sample than
F(x;)+F(AX). As wy <1 and F(x;))+wF(Ax) and F(x;)+F(Ax) are
respectively the predicted class labels of t obtained using MMSEC
and MSEC, we know that MMSEC can more correctly classify t than
MSEC under the condition that x; has the same true class label as
test sample t. Actually, because of F(x;)+w1F(AX)—true; ~ w;F(AX),
F(x;)+ F(Ax)—true; ~F(Ax) and wq||F(AX)|| < ||F(AX)|]|, we can
conclude that if test sample t has the same true class label as
training sample x; and x; is nearest to t, then to combine the
predicted class labels of the training sample and test sample will
be very beneficial to correctly classify the test sample.

MMSEC partially owns the advantages of conventional MSE and
nearest neighbor classifier. MMSEC is somewhat equivalent to a
procedure that slightly modifies the classification results of con-
ventional MSE by using the nearest neighbor classifier. In parti-
cular, MMSEC exploits w;F(t)+w,F(x;) to obtain the class label of
the test sample. F(t) is the result of conventional MSE and F(x;) can
be partially viewed as the result of the nearest neighbor classifier.
The face recognition experiment will demonstrate that MMSEC
can obtain better performance than conventional MSE.

5. Experimental results

We use three face databases to test our method and MSEC. We
also test two other MSE methods, the collaborative representation
classification (CRC) proposed in Ref. [12] and the relaxed colla-
borative representation (RCR) proposed in Ref. [46]. CRC and RCR
have shown good performance in face recognition. For simplicity
of presentation, we will show only the experimental results of our
method with w; =0.75, w, =0.25 and w; = 0.8, w, = 0.2, respec-
tively. The experimental results will illustrate that our method
outperforms MSEC and the other methods. Figs. 4-6 show some of
the test samples which were correctly and erroneously classified
by MMSEC and MSEC on these face databases, respectively.

5.1. Experiments on the Georgia Tech face database

In this subsection we use the Georgia Tech face database [47]
to test our method. Georgia Tech face database (GTFB) was built at
Georgia Institute of Technology. GTFB contains images of 50 people
taken in two or three sessions. All people in the database were
represented by 15 color JPEG images with cluttered background
taken at the resolution of 640 x 480 pixels. The pictures show
frontal and/or tilted faces with different facial expressions, lighting
conditions and scale. Each image was manually labeled to deter-
mine the position of the face in the image. We use the face images

Fig. 4. Some of the test samples which are from the subset of the FERET database and were correctly and erroneously classified by MMSEC with K =3 and MSEC,
respectively. The first row shows these test samples. The second row shows a training sample of the subject to which the test sample was erroneously assigned by MSEC. The
first three face images of each subject and the remaining images are used as test samples and training samples, respectively.
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Fig. 5. Some of the test samples which are from the subset of the AR database and were correctly and erroneously classified by MMSEC with K =1 and MSEC, respectively.
The first row shows these test samples. The second row shows a training sample of the subject to which the test sample was erroneously assigned by MSEC. The first five face
images of each subject and the remaining images are used as test samples and training samples, respectively.

Fig. 6. Some of the test samples which are from the GTFB database and were correctly and erroneously classified by MMSEC with K = 3 and MSEC, respectively. The first row
shows these test samples. The second row shows a training sample of the subject to which the test sample was erroneously assigned by MSEC. The first eight face images of
each subject and the remaining images are used as training samples and test samples, respectively.

with the background removed and each of these face images has
the resolution of 40 x 30 pixels. They are all converted into gray
images in advance. The first three, four, ..., or 12 face images of
each subject are used as training samples and the remaining
images are taken as test samples. Table 1 shows the experimental
results. From this table, we see that our proposed method, MMSEC,
obtains a much lower rate of classification errors than MSEC, CRC
and RCR. For example, when the first eight face images of each
subject and the remaining images are used as the training samples
and test samples respectively, MMSEC with w;=0.75 and K=1
obtains a rate of classification errors of 32.29%. However, the rates
of classification errors of RCR, CRC and MSEC are 48.57%, 46.00%
and 41.14%, respectively.

As dimension reduction is a widely used preprocessing method
for high-dimensional data [48-53] such as face image, in this
subsection we also conduct experiments based on dimension
reduction. We first use principal component analysis (PCA) to
reduce the dimension of the sample and then apply MMSEC,
MSEC, CRC and RCR to the obtained low-dimensional sample. PCA
is used to extract N dimensional features from every original
sample. N still stands for the total number of training samples. The
experimental results shown in Table 2 also illustrate that MMSEC
outperforms the other methods.

5.2. Experiments on the FERET face database

We also use a subset of the FERET face database [54] to test our
method. This subset is composed of 1400 images from 200 indivi-
duals with each subject providing seven images. This subset includes
the face images whose names contain two-character strings: “ba”,
“bj”, “bk”, “be”, “bf”, “bd”, and “bg”. The images in this subset have
pose variations of +15°, +25° and also the variations of the
illumination and expression. We take the first two, three and four
images of each subject as test samples and take the remaining
images as training samples. As a result, in these experiments the
number of the training samples per subject is 3, 4 and 5. We use the
down-sampling algorithm to resize each image into a 40 x 40 image
before the experiment is performed. Table 3 shows that our proposed
method usually classifies more accurately than MSEC, CRC and RCR.

5.3. Experiments on the AR face database

We also use the AR face database [55] to test our method. There
are 3120 gray images from 120 subjects. Every subject provides 26
frontal view face images with different facial expressions, condi-
tions of illumination, and occlusions (sun glasses and scarf). These
images were taken in two sessions, separated by intervals of 2
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Table 1
Rate of classification errors (%) of different methods on the GT face database.

Number of the original training samples per class 3 4 5 6 7
RCR 63.33 61.64 59.20 55.33 49.75
CRC 58.00 58.73 55.80 50.44 48.25
MSEC 55.17 53.82 51.40 36.44 35.25
MMSEC (w1 =0.75, K=1) 51.00 48.00 45.60 36.44 35.25
MMSEC (w1 =0.75, K=2) 49.83 47.82 44.80 37.11 33.75
MMSEC (w;=0.75, K=3) 50.50 49.27 44.20 38.44 33.25
MMSEC (w;=0.80, K=1) 52.00 48.00 44.80 37.78 36.00
MMSEC (w;=0.80, K=2) 51.00 48.00 44.60 38.22 35.00
MMSEC (w;=0.80, K=3) 51.50 48.91 44.80 39.78 34.50
Number of the original training samples per class 8 9 10 11 12
RCR 48.57 47.67 44.80 42.00 40.67
CRC 46.00 47.33 47.60 43.50 42.00
MSEC 41.14 39.33 37.20 32.50 32.67
MMSEC (w1=0.75, K=1) 32.29 30.67 29.20 27.50 26.67
MMSEC (w1 =0.75, K=2) 32.86 30.33 28.40 24.50 24.00
MMSEC (w;=0.75, K=3) 32.57 29.67 28.40 26.00 28.00
MMSEC (w;=0.80, K=1) 34.86 32.33 31.20 28.50 28.67
MMSEC (w1 =0.80, K=2) 35.14 31.00 29.20 26.50 26.00
MMSEC (w;=0.80, K=3) 34.29 30.00 29.60 26.00 28.00
Table 2

Rate of classification errors (%) of the integration of PCA and different methods on the GT face database.

Number of the original training samples per class 3 4 5 6 7
RCR 59.17 54.91 54.80 44.22 43,50
CRC 57.83 56.55 56.00 52.00 4775
MSEC 54,67 53.45 51.20 4511 41,50
MMSEC (w; =0.75, K=1) 51.17 47.64 45.60 36.44 3525
MMSEC (w; =0.75, K=2) 49.67 47.82 44.60 37.11 33.75
MMSEC (w; =0.75, K=3) 50.17 48.91 44.60 38.44 33.25
MMSEC (w; =0.80, K=1) 51.00 48.00 44.80 3733 35.75
MMSEC (w; =0.80, K=2) 50.00 47.82 44.20 38.00 3475
MMSEC (w; =0.80, K=3) 51.17 48.55 44.80 39.33 34.50
Number of the original training samples per class 8 9 10 11 12
RCR 38.86 38.33 30.80 31.00 26.67
CRC 46.29 4567 46.80 43,50 43.33
MSEC 4114 39.33 37.60 33.00 33.33
MMSEC (w; =0.75, K=1) 32.29 30.33 29.20 27.50 26.67
MMSEC (w; =0.75, K=2) 32.86 30.33 28.40 24.50 24.00
MMSEC (w; =0.75, K=3) 32.57 30.00 28.40 26.00 28.67
MMSEC (w; =0.80, K=1) 34.86 32.33 30.80 28.50 28.67
MMSEC (w; =0.80, K=2) 35.14 31.00 29.20 26.50 26.00
MMSEC (w; =0.80, K=3) 3429 30.33 29.20 26.00 28.00
Table 3 Table 4
Rate of classification errors (%) of different methods on the FERET database. Rate of classification errors (%) of different methods on the AR database.

Number of the original training samples per class 3 4 5 Number of the original training samples 4 5 6 7 3

per class
RCR 5337 5750 2975
CRC 5563 5467 3150 RCR 3269 29.44 29.08 27.63 27.92
MSEC 5275 6067 2925 CRC 3246 30.40 2917 29.74 30.05
MMSEC (w; =0.75, K=1) 4462 5383 22.25 MSEC 27.92 24.88 2587 2548 2593
MMSEC (w; =0.75, K=2) 4612 5400  23.25 MMSEC (w; =0.75, K=1) 2742 2369 2367 22.94 2352
MMSEC (w; =0.75, K=3) 4562 5383 23.00 MMSEC (w; =0.75, K=2) 26.48 2313 24.04 23.07 23.66
MMSEC (w, =0.80, K=1) 4638 5600 2400 MMSEC (w; =0.75, K=3) 26.63 22.94 2396 23.07 23.01
MMSEC (w; =0.80, K=2) 4738 5550 2550 MMSEC (w; =0.80, K=1) 2670 2337 23.67 2228 2310
MMSEC (w; =0.80, K=3) 4713 5500  25.00 MMSEC (w; =0.80, K=2) 2572 2274 23.88 2215 23.19

MMSEC (w; =0.80, K=3) 2591 2278 24.04 22.76 22.87

weeks. We take the first 18, 19, 20, 21 and 22 face images of each

subject as test samples respectively, and take the remaining

images as training samples. As a result, in these experiments 4,

5, 6, 7 and 8 face images of each subject are used as training 5.4. Experiments on the PIE face database

samples respectively. Each cropped and used face image has a size

of 50 x 40. Table 4 also shows that our proposed method outper- The CMU PIE face database contains 41,368 face images from
forms MSEC, CRC and RCR. 68 subjects. The original face image is cropped to 32 x 32 pixels
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gray image [56]. As shown in Ref. [57], for each subject, we adopt
only the images with different lighting conditions and fixed pose
and expression to conduct the experiment. The first 1, 2 and 3 face
images of the adopted images of each subject in this subset are
respectively used as training samples and the other face images
serve as test samples. Table 5 shows again that MMSEC can obtain
lower rate of classification errors than MSEC.

Table 5
Rate of classification errors (%) of different methods on the PIE database.

Number of the original training samples per class 1 2 3

MSEC 14.78 7.59 0.98
MMSEC (w;=0.75, K=1) 13.53 8.05 0.65
MMSEC (w1 =0.75, K=2) 10.88 5.42 0.33
MMSEC (w; =0.75, K=3) 10.81 3.79 0.16
MMSEC (w;=0.80, K=1) 13.31 6.50 0.65
MMSEC (w;=0.80, K=2) 10.66 4.88 0.33
MMSEC (w; =0.80, K=3) 10.66 3.64 0.16

5.5. Experiments on noised face images

In this subsection, the GT face database is used and the sets
of training samples and test samples are the same as those in
Section 5.1. In order to simulate the complex scenario where the
test samples are very different from the training samples from the
same subject, we use Matlab function “imnoise” to add Gaussian
white noise of zero mean and variance of 0.005 to the test samples
and make the training samples be the same as the original ones.
Fig. 7 shows some of the noised face images. The experimental
results shown in Table 6 indicate that our proposed method
obtains a much lower rate of classification errors than MSEC,
CRC and RCR. For example, when the first eight face images of each
subject and the remaining images are respectively used as the
training samples and test samples, MMSEC with w;=0.75 and
K =1 obtains a rate of classification errors of 36.86%. However, the
rates of classification errors of RCR, CRC and MSEC are 74.86%,
57.14% and 47.71%, respectively. It is clear that in this case the
accuracy of MMSEC is 10% higher than that of MSEC. The main
reason why MMSEC can perform much better for noised samples is
as follows. MMSEC is trained by training samples and the pre-
dicted class label of the nearest training sample might be very

Fig. 7. Some of the noised face images.
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Table 6

Rate of classification errors (%) of different methods on the noised test samples from the GT face database.

Number of the original training samples per class 3 4 5 6 7
RCR 75.83 76.00 76.20 75.33 74.50
CRC 63.50 61.45 64.20 62.67 58.25
MSEC 59.67 58.91 57.60 54.00 50.25
MMSEC (w1 =0.75, K=1) 52.83 49.09 47.60 41.56 40.25
MMSEC (w1 =0.75, K=2) 52.83 49.45 46.20 40.22 38.00
MMSEC (w;=0.75, K=3) 52.33 51.27 47.20 41.33 38.25
MMSEC (w;=0.80, K=1) 52.33 51.45 48.40 43.78 43.00
MMSEC (w;=0.80, K=2) 53.50 52.18 47.40 42.44 42.00
MMSEC (w;=0.80, K=3) 53.33 52.36 48.20 42.89 41.75
Number of the original training samples per class 8 9 10 11 12
RCR 74.86 71.00 70.00 66.50 63.33
CRC 57.14 57.67 58.80 56.00 55.33
MSEC 47.71 45.67 45.60 39.00 40.00
MMSEC (w1=0.75, K=1) 36.86 35.33 34.80 32.00 30.00
MMSEC (w1 =0.75, K=2) 3543 3433 34.00 30.50 26.67
MMSEC (w;=0.75, K=3) 35.43 33.33 32.00 28.50 28.67
MMSEC (w; =0.80, K=1) 38.57 37.33 36.00 32.50 33.33
MMSEC (w1 =0.80, K=2) 37.14 36.33 36.00 31.00 32.67
MMSEC (w;=0.80, K=3) 36.29 36.67 34.40 29.50 33.33

close to the true class label of the test sample, so the use of the
nearest training sample enables the MMSEC method to be more
robust to the noisy test data.

6. Conclusions

The modified minimum squared error (MMSEC) algorithm
proposed in this paper simultaneously exploits the predicted class
labels of the test sample and the training samples nearest to it to
perform classification. As the training samples nearest to the test
sample can provide useful information for classifying it, MMSEC is
able to obtain higher classification accuracy than MSEC. MMSEC
partially owns the advantages of conventional MSE and nearest
neighbor classifier. Various experiments show that MMSEC does
obtain higher classification accuracy than conventional MSEC, CRC
and RCR.
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