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Abstract

By formulating two-dimensional principle component analysis (2DPCA) as a mathematical form different from the conventional

2DPCA, we present theoretical basis of 2DPCA and show the theoretical similarities and differences between 2DPCA and PCA. We also

show that 2DPCA owns its decorrelation property and the feature vectors extracted from matrices are uncorrelated. We use the proposed

mathematical form to show that 2DPCA is the best approach for directly extract features from matrices. We also present in detail

2DPCA Schemes 1 and 2, two schemes to implement the proposed mathematical form. The two schemes transform original images into

different spaces, respectively, 2DPCA Scheme 1 enhances the transverse characters of images, whereas the second scheme enhances

vertical characters of images. We propose a feature fusion approach for achieving better recognition results by combining the features

generated from the two schemes of 2DPCA. The proposed fusion approach is tested on face recognition tasks and is found to be more

accurate than both 2DPCA Scheme 1 and 2DPCA Scheme 2.

r 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Principal component analysis (PCA) [1–10] is a widely
applied dimension reduction and feature extraction tech-
nique. It has been used in handprint recognition [7], the
recognition of man-made objects [6], industrial robotics
[18], and image-based recognition systems [4,13]. PCA is
generally implemented on image data as follows: first an
image matrix is converted into a vector by concatenating its
columns or rows. Then eigenvectors of the covariance
matrix or correlation matrix of these vectors are used as
transforming axes to obtain their principal components.
PCA has been shown to be effective [4,5,9,10,13,14,18,19,
21–24,28] but it does suffer from two particular problems.
First, if the number of training samples is small and the
data are high-dimensional, it is difficult to accurately
estimate the covariance (or correlation) matrix. Second,
because the one-dimensional vector space derived from
e front matter r 2008 Elsevier B.V. All rights reserved.
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images is usually of very large dimensionality, implementa-
tion of PCA is usually very time consuming [24,25].
Responding to these drawbacks, two-dimensional PCA

(2DPCA), a novel transform technique derived from the
PCA technique, directly extracts features from image
matrices [25,26]. Note that 2DPCA as the generation
matrix takes the covariance matrix (or correlation matrix)
of the image matrix rather than the corresponding one-
dimensional vector. 2DPCA calculates directly the projec-
tion of a matrix onto the transforming axis. 2DPCA is
much more efficient than PCA [25], requiring less memory
and having a lower computational cost and has obtained
promising experimental results in the areas of feature
extraction and dimension reduction. A further difference
between traditional PCA and 2DPCA is that in PCA every
feature that is extracted is a scalar whereas in 2DPCA
every extracted feature is a vector, hereafter called a feature
vector. However, it is not known whether the approach is
theoretically well-founded.
In this paper we will analyze the theoretical basis of

2DPCA and propose a new 2DPCA-based feature fusion
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dx.doi.org/10.1016/j.neucom.2007.09.021
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approach that combines the feature extraction results of two
2DPCA implementation schemes. We will further show that
under the proposed mathematical form of 2DPCA, certain
fine theoretical properties hold, for example decorrelation.

Some previous literatures also provide valuable investi-
gation of 2DPCA. For example, Wang et al. [15–17]
demonstrated that 2DPCA was equivalent to a special case
of block-based PCA [3]. Xu et al. [20] constructed two
transformation matrices based on the 2DPCA technique,
and performed two transforms to obtain features of a
matrix. Motivated by the successes of the two-dimensional
linear discriminant analysis, Tao et al. [11,12] developed a
general tensor discriminant analysis. Ye et al. proposed
generalized principal component analysis (GPCA) in [27].
GPCA also works directly with images in their native state,
as two-dimensional matrices, by projecting the images to a
vector space that is the tensor product of two lower-
dimensional vector spaces.

The differences between our 2DPCA schemes and the
previous approaches are as follows. Liwei Wang’s approach
[15,17] seems to be computationally equivalent to our
2DPCA scheme 1. However, he also did not analyze the
theoretical basis of 2DPCA whereas we analyze this and
indicate the decorrelation property of 2DPCA. Different
from Xu’s approach [20] of consecutively performing two
transforms to obtain features of a matrix, this paper focuses
on fusing two classes of image features obtained using two
different implementation schemes of 2PCA to improve face
recognition performance. That is, the transform matrices
generated from 2DPCA Scheme 1 and 2DPCA Scheme 2
were first used to transform image matrices into two classes of
features. Then the two classes of features were fused for face
recognition by using a matching score fusion approach.
Although from the point of view of methodology, GPCA [27]
and 2DPCA belong to the same class of technique, that is,
they can both extract features directly from a two-dimen-
sional matrix, no closed form solution exists for GPCA and it
cannot be proved theoretically that the two 2DPCA schemes
presented in this paper are special cases of GPCA.

The rest of the paper is organized as follows. Section 2
formally presents 2DPCA and its theoretical basis and
introduces two 2DPCA implementation schemes. Section 3
presents the characteristics of the reconstruction images,
respectively, associated with the two implementation
schemes. Section 4 proposes the 2DPCA-based feature
fusion approach. Section 5 offers a brief Conclusion.
2. Theoretical basis and implementation schemes of 2DPCA

Suppose there are M images and A1, A2,y,AM are,
respectively, the matrices corresponding to these images.
The conventional 2DPCA [25] as the generation matrix
takes the following covariance matrix:

Gt ¼
1

M

XM
i¼1

ððAi � ĀÞTðAi � ĀÞÞ,
where Ā is the mean of all the image matrices. Eigenvalues
and eigenvectors of Gt should be first determined, and then
k eigenvectors associated with the k largest eigenvalues are
selected as transforming axes. The conventional 2DPCA
projects an image matrix onto these transforming axes,
respectively, and regards the resultant k projections
(k vectors) as features of the image [25]. One of the
advantages of 2DPCA is that it is much more efficient than
PCA [25]. In addition, 2DPCA has obtained promising
experimental results in the areas of feature extraction and
dimension reduction. However, it is not known whether the
approach is theoretically well-founded.

2.1. 2DPCA Scheme 1

In this paper, 2DPCA Scheme 1 is referred to as the
2DPCA technique based on the generation matrix
S1 ¼ E(ATA), where A stands for a two-dimensional
matrix. Note that the generation matrix of 2DPCA Scheme
1 is formally different from that of the conventional
2DPCA, thus we say that 2DPCA Scheme 1 formulates the
2DPCA technique as a new mathematical form. This
subsection will address this issue of whether the 2DPCA
technique is theoretically well-founded. Indeed, our analy-
sis will demonstrate that 2DPCA Scheme 1 is able to
produce the minimal reconstruction error and uncorrelated
feature vectors. Suppose that non-decreasing eigenvalues
of S1 are l1Xl2X � � �Xln. 2DPCA Scheme 1 takes the r

eigenvectors corresponding to the first r largest eigenvalues
of S1 as transforming axes to directly extract features from
a matrix. Using 2DPCA Scheme 1, we can project a matrix
onto a transforming axis to produce a feature vector
(column-feature-vector). If 2DPCA Scheme 1 exploits
multiple transforming axes for feature extraction, the
feature extraction results will be multiple column-feature-
vectors, which can form a new matrix. In this sense, we say
that 2DPCA Scheme 1 transforms an original matrix into a
new matrix with smaller dimension. We begin with the
following theorem to analyze theoretical basis of 2DPCA
Scheme 1.

Theorem 1. Measured using mean squared error, 2DPCA is

the best technique for directly transforming matrices into

feature vectors as feature vectors obtained using the 2DPCA

technique allow matrices to be reconstructed with the

minimum mean-square reconstruction error.

Proof. Suppose that image matrix A can be accurately
expressed in terms of

A ¼
Xn

i¼1

viu
T
i ; 1pi; jpn, (1)

where

uT
i uj ¼

1 i ¼ j;

0 iaj;

(
ui ð1pipnÞ
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are basis vectors, and vectors vi (1pipn) are the
corresponding coefficients. If Â ¼

Pr
i¼1viu

T
i ron; then the

deviation between Â and A will be

A� Â ¼
Xn

i¼rþ1

viu
T
i

and their mean squared error will be

EðjjA� Âjj2FÞ ¼ E½trððA� ÂÞTðA� ÂÞÞ�

¼ E½trððA� ÂÞðA� ÂÞTÞ�, (2)

where jj � jj2F denotes the square of the Frobenius norm of a
matrix.

According to (1), we have

ðA� ÂÞðA� ÂÞT ¼
Xn

i¼rþ1

viv
T
i and vi ¼ Aui.

This then allows

ðA� ÂÞðA� ÂÞT ¼
Xn

i¼rþ1

Auiu
T
i AT

to be derived. As a result, it is certain that

EðjjA� Âjj2FÞ ¼ E½trððA� ÂÞðA� ÂÞT�

¼
Xn

i¼rþ1

uT
i EðATAÞui. (3)

Â will be the best approximate to A, only if (3) reaches its
minimum. If Â is the best approximation to A, the
corresponding ui (1pipn) will be the optimal coordinate
axes for expressing A.

To obtain the optimal coordinate axes for expressing A,
we introduce the following Langragian function

f ðuiÞ ¼
Xn

i¼rþ1

uT
i EðATAÞui �

Xn

i¼rþ1

liðu
T
i ui � 1Þ.

Obviously f(ui) and (3) will reach their extremes
simultaneously. Moreover, (3) will reach its extreme, if
and only if the derivative of f(ui) with regard to ui is equal
to zero. Equating the derivative of f(ui) with respect to ui to
zero, we have S1ui–liui ¼ 0, where S1 ¼ E(ATA). Thus,
under the condition S1ui ¼ liui, (3) will obtain the extreme
value. In other words, if u1,u2,y,un are eigenvectors of the
following eigen-equation

S1u ¼ lu, (4)

(3) will be minimized. Consequently, if the r eigenvectors
associated with the r largest eigenvalues of (4) are used to
reconstruct A in terms of

Â ¼
Xr

i¼1

viu
T
i

they will produce the minimum deviation between A and Â.
This completes the proof of Theorem 1. Indeed, Theorem 1
shows that 2DPCA is the best approach for directly extract
features from matrices because 2DPCA allows the infor-
mation loss caused by the transformation process to be
minimized.
The generation matrix of 2DPCA Scheme 1, S1, is

usually evaluated by

S1 ¼
1

M

XM
i¼1

ðAT
i AiÞ,

where M is the number of training images, and Ai is the
matrix corresponding to the ith training sample. After the
eigenvector ui of

S1 ¼
1

M

XM
i¼1

ðAT
i AiÞ

is obtained, the vector vi as determined by vi ¼ Aui is called
the ith feature vector (or column-feature-vector) of the
matrix A.
Notice that 2DPCA Scheme 1 has the theoretical basis as

shown in Theorem 1; however, when the conventional
2DPCA was originally proposed as a feature extraction
approach, no any theoretical analysis was provided [25].
The relationship between 2DPCA Scheme 1 and the
conventional 2DPCA [25] is as follows: if images are
centered in advance, the generation matrix S1 of 2DPCA
Scheme 1 will be evaluated by

1

M

XM
i¼1

ððAi � ĀÞTðAi � ĀÞÞ,

where Ā is the mean of all the matrices. Thus in this case S1

is computationally equivalent to the generation matrix Gt

of the conventional 2DPCA. As a result, in this special
case, 2DPCA Scheme 1 is computationally equivalent to
the conventional 2DPCA, whereas in other cases 2DPCA
Scheme 1 is formally different from the conventional
2DPCA.
2.2. 2DPCA Scheme 2

2DPCA Scheme 2 can describes as follows. Suppose that

A ¼
Xn

i¼1

viu
T
i ; vTi vj ¼

1 i ¼ j;

0 iaj;

(

i.e. v1,v2,y,vn are treated as basis vectors for expressing A

and vectors u1,u2,y,un are the corresponding coefficients
Â ¼

Pr
i¼1viu

T
i ron; then the mean squared error of between

Â and A is

EðjjA� Âjj2FÞ ¼ E½trððA� ÂÞTðA� ÂÞ�

¼
Xn

i¼rþ1

vTi EðAATÞvi.

Thus, we can conclude that the r optimal basis vectors
are the r eigenvectors associated with the r largest
eigenvalues of S2v ¼ lv, where S2 ¼ E(A AT). The proof
of this statement is similar to that of Theorem 1. S2 can be
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evaluated using

1

M

XM
i¼1

ðAiA
T
i Þ,

where M still represents the number of the training
samples. The feature extraction scheme that exploits the
eigenvectors of S2 as transforming axes is called 2DPCA
Scheme 2. vTA is a feature vector of matrix A and called
row-feature-vector. In addition, it can be also proved that
if images are centered in advance, 2DPCA Scheme 2
presented above will be computationally equivalent to the
alternative form of the conventional 2DPCA presented in
Ref. [25].

2.3. Decorrelation property of 2DPCA

In this subsection, we will demonstrate that 2DPCA is
also a decorrelation technique, i.e. 2DPCA decorrelates
rows or column vectors of the matrix. In the PCA
decorrelation technique, if every sample is a p-dimensional
vector and the samples are transformed into a novel space
using PCA, the components of the data in the resultant
space will be statistically uncorrelated to each other. For
the image, PCA eliminates the correlation between the
pixels to obtain uncorrelated PCA components. Similarly,
2DPCA is able to obtain uncorrelated feature vectors of
the original image according to the following definition and
theorem.

Definition 1. The correlation coefficient between two
feature vectors vi and vj is defined as

rðvi; vjÞ ¼ covðvi; vjÞ=ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DðviÞ �DðvjÞ

p
Þ,

where

covðvi; vjÞ ¼ E½½vi � EðviÞ�
T½vj � EðvjÞ��,

DðviÞ ¼ E½½vi � EðviÞ�
T½vi � EðviÞ��,

DðvjÞ ¼ E½½vj � EðvjÞ�
T½vj � EðvjÞ��.

This definition will be valid as long as D(vi)40 and
D(vj)40. If r(vi,vj) ¼ 0, we say that feature-vectors vi and vj

are uncorrelated with each other.

Theorem 2. Feature vectors obtained using 2DPCA Schemes

1 or 2 are statistically uncorrelated to each other under the

condition that the mean of original image matrices is zero or

they have been centered in advance.

Now we prove this theorem using 2DPCA Scheme 1 and
Definition 1. Because vi ¼ Aui, vj ¼ Auj and ui, uj are two
eigenvectors of S1, we have

covðvi; vjÞ ¼ E½uT
i ½A

T � EðATÞ�½A� EðAÞ�uj �

¼ uT
i E½½AT � EðATÞ�½A� EðAÞ��uj,

E½½AT � EðATÞ�½A� EðAÞ��,
is usually evaluated using

Gt ¼
1

M

XM
i¼1

ððAi � ĀÞTðAi � ĀÞÞ,

so we have covðvi; vjÞ ¼ uT
i Gtuj. If the mean of original

image matrices is zero or they have been centered ahead of
time, Gt will be computationally equivalent to S1 as defined
in Section 2.1. As a result, we have covðvi; vjÞ ¼ uT

i S1uj.
Since uj is the jth eigenvector of S1, we have S1uj ¼ ljuj.
Thus it is certain that covðvi; vjÞ ¼ lju

T
i uj. Obviously, if i 6¼j,

then covðvi; vjÞ ¼ 0. Because vi,vj are feature vectors
generated from ui,uj, we obtain

DðviÞ ¼ liu
T
i ui ¼ li; DðvjÞ ¼ lju

T
j uj ¼ lj.

If ui,uj are eigenvectors corresponding to non-zero
eigenvalues, D(vi)40, D(vj)40 will be satisfied. As a result,
the correlation coefficient presented in Definition 1 is valid
for arbitrary two eigenvectors associated with non-zero
eigenvalues. Since i6¼j implies cov(vi,vj) ¼ 0, r(vi,vj) ¼ 0 is
always satisfied for arbitrary vi and vj corresponding to
non-zero eigenvalues. In other words, using 2DPCA
Scheme 1, we can obtain uncorrelated column-feature-
vectors. Similarly, using 2DPCA Scheme 2, we can obtain
uncorrelated row-feature-vectors. This means that Theo-
rem 2 has been proved and that 2DPCA can be also viewed
as a decorrelation technique for eliminating correlation
between vectors.
Between 2DPCA and PCA there exist clear similarities

and differences. There are two major similarities between
2DPCA and PCA. As we know, the traditional PCA-based
feature extraction is the best technique for extracting
features from vectors for it allows original vectors to be
reconstructed with the minimum mean squared error.
Similarly, 2DPCA is the best technique for directly
extracting features from matrices as it obtains less
reconstruction error than other techniques of directly
extracting features from matrices. This is the first similarity
between 2DPCA and PCA. The second similarity between
2DPCA and PCA is that they are both decorrelation
techniques.
There are three main differences between 2DPCA and

PCA. First, 2DPCA extracts features from a matrix by
directly projecting the matrix onto the transforming axes
whereas PCA extracts features from a matrix by projecting
the corresponding one-dimensional vector onto its trans-
forming axes. Indeed, PCA usually transforms an image
matrix into a vector whereas 2DPCA converts a matrix
into a new matrix. PCA is able to eliminate statistical
correlation among matrix elements whereas 2DPCA tries
to reduce correlation among row or column vectors of the
matrix. Second, 2DPCA extracts features from matrices
more efficiently than PCA. Third, implementing 2DPCA
based on matrices rather than the corresponding one-
dimensional vectors makes it easier to preserve the spatial
structure of matrices. In contrast, in PCA, some adjacent
elements of a two-dimensional matrix will not be adjacent
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when the matrix is converted into the corresponding one-
dimensional vector for feature extraction using PCA.

3. Further analysis of two classes of 2DPCA features

3.1. Comparison between two classes of 2DPCA features

Based on the two schemes of 2DPCA, we can get two
classes of features of an image. The first class of features
consists of the row-feature-vectors produced by 2DPCA
Scheme 1 and the second class of features consists of the
column-feature-vectors produced by 2DPCA Scheme 2. In
this subsection we focus on comparison analysis of the two
classes of 2DPCA features. We can reconstruct the image
using each of the two classes of features. Fig. 1 shows some
reconstruction images of a face image, which are generated
from 2DPCA Scheme 1. Fig. 2 presents several reconstruc-
tion images of the same face generated from 2DPCA
Scheme 2. We can see that the reconstruction images
associated with the Scheme 1 enhance the transverse
characteristic of the face, whereas the reconstruction
images associated with the second scheme enhance the
vertical characteristic of the face.

Now we explain the difference between reconstruction
images, respectively, obtained using the two 2DPCA
schemes from the point of view of numerical computation.
Each element of one feature vector generated from 2DPCA
Scheme 1 is a weighted sum of elements of one row of the
image matrix. However, in Scheme 2, every element of a
feature vector is a weighted sum of elements of one column
of the image matrix. Therefore, the first scheme emphasizes
mainly the row vector information of an image matrix,
whereas the second scheme emphasizes primarily the
column vector information. This is why the image in
Fig. 1 appears to enhance the transverse characteristics of
Fig. 1. Reconstructed images obtained using the 2DPCA Scheme 1. (a)–(f) are

eigenvectors of the correlation matrix.

Fig. 2. Reconstructed images obtained using 2DPCA Scheme 2. (a)–(f) are

eigenvectors of the correlation matrix. Notice that Fig. 1 and Fig. 2 are assoc
the face whereas in Fig. 2 the vertical characteristics are
enhanced. These two classes of features thus complement
each other in representing the face and we might expect to
get a higher accuracy by fusing the two classes of features.
An approach that exploits the information of the sum of
the elements of each row vector and that of each column
vector of the face image for face recognition can be found
in [19].

3.2. Feature fusion approach

To fuse the two classes of features, we propose the
following feature fusion approach. We first evaluated the
distance di (i ¼ 1,2,y,M) between the first class of features
of a test sample and that of the ith training sample. Here M

is the number of training images. Let Dmax be the
maximum value among these distances between this test
sample and all the training samples. Then di was normal-
ized by using d 0i ¼ di=Dmax; i ¼ 1; 2; . . . ;M. Features
generated from Scheme 2 were similarly used to get
normalized distance values e0i; i ¼ 1,2,y,M. We calculated
t0i using t0i ¼ d 0i þ e0i; i ¼ 1; 2; . . . ;M. We regarded t0i as the
final measurement of the distance between the test sample
and the ith training sample. We obtained t0min using t0min ¼

mint0i; i ¼ 1,2,y,M. If t0l ¼ t0min, we classified the test
sample into the class which the lth training sample belongs
to. In this paper the above approach is called feature fusion
approach.

4. Experiments on face recognition tasks

4.1. Experiment on the ORL database

This experiment was performed on the ORL database.
All the face images of the ORL face database were
, respectively, the reconstruction images associated with the first 1,2,3,4,5,6

, respectively, reconstructed images associated with the first 1,2,3,4,5,6

iated with the same original face image.
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obtained against a dark homogeneous background.
These images contain various facial expressions (smiling/
no smiling, open/closed eyes) and facial detail. The subjects
were in up-right, frontal position with tolerance for some
tilting and rotation of up to about 201. For each of the 40
subjects, 10 different images were created. In this experi-
ment the first 4, 5 or 6 face images of all the subjects were,
respectively, used as training samples, and the correspond-
ing remaining images were regarded as test samples.

Table 1 shows the classification accuracies of the 2DPCA
Scheme 1, Scheme 2, and the feature fusion approach on
the ORL database using the first 4,6,8,10 eigenvectors. The
feature fusion approach classifies better than both 2DPCA
Schemes 1 and 2. Table 2 shows the highest classification
accuracies of all the 2DPCA-based approaches and PCA as
Table 1

The classification accuracies (%) of 2DPCA Scheme 1 and 2, and the feature

Number

of training

images

2DPCA Scheme 1 2DPCA Scheme

The number of eigenvectors The number of e

4 6 8 10 4 6

4 80.4 82.5 82.5 81.3 78.8 80.0

5 84.0 85.5 85.0 84.0 84.5 83.5

6 92.5 93.8 93.1 91.9 91.3 91.3

Table 2

The highest classification accuracies (%) of all the approaches on the ORL da

Number of training

images

PCA 2DPCA Schem

4 88.3 (25.6 s) 82.5 (1.1 s)

5 90.5 (32.9 s) 85.5 (1.3 s)

6 95.6 (37.3 s) 93.8 (1.4 s)

The number in the bracket is the feature extraction time (unit: second) associ

100

95

90

85

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy
 p

er
ce

nt
ag

e

2 4 6 8 10
Number of tr

Fig. 3. The classification accuracies on the ORL database of 2DPCA Schemes

and the feature fusion approach with six training samples per class. The y-axis

number of transforming axes used for feature extraction. Notice that the feat

abscissa axis.
well as the corresponding feature extraction time. From
Table 2, we can see that 2DPCA Schemes 1 and 2 can
extract features more efficiently than PCA but they are not
as accurate as PCA and the proposed feature fusion
approach can perform better than any of the other
approaches. Where the first six samples of each subject
are used as training samples, the highest classification
accuracy of the feature fusion approach is 98.1% whereas
the highest classification accuracies of 2DPCA Schemes 1
and 2 and PCA are 93.8%, 91.3% and 95.6%, respectively.
The feature fusion approach is also more efficient than
PCA-based feature extraction.
Fig. 3 shows the classification accuracies of 2DPCA

Schemes 1 and 2, and the feature fusion approach with six
training samples per subject on the ORL database. The fact
fusion approach on the ORL database

2 The feature fusion approach

igenvectors The number of eigenvectors from each

scheme

8 10 4 6 8 10

80.8 81.3 88.3 87.9 88.8 88.8

85.5 86.0 92.0 89.5 91.0 91.5

91.3 91.3 98.1 97.5 96.9 96.3

tabase and the corresponding feature extraction time

e 1 2DPCA Scheme 2 The feature fusion

approach

81.3 (0.7 s) 89.2 (8.4 s)

86.0 (0.9 s) 92.0 (9.8 s)

91.3 (0.7 s) 98.1 (11.2 s)

ated with the highest accuracy.

12 14 16 18 20
ansforming axes

The first scheme
The second scheme
The fusion approach

1 (denoted by ‘‘the first scheme’’) and 2 (denoted by ‘‘the second scheme’’)

denotes classification accuracy as a percentage. The abscissa represents the

ure fusion approach uses twice as many transforming axes shown by the
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that the feature fusion approach has the best classification
accuracy implies that the two classes of features generated
from Schemes 1 and 2 contain complementary image
presentation information.

4.2. Experiment on the Yale database

The Yale database contains face images with a variety of
expressions such as normal, sad, happy, sleepy, surprised,
and winking, all obtained under differing lighting condi-
tions. In some images, the faces wear glasses. The first 1,2, or
3 face images of every subject were, respectively, selected as
training samples and the others were used as test samples.

Table 3 shows the classification accuracies of Schemes 1
and 2, and the feature fusion approach on the Yale
Table 3

The classification accuracies (%) of the first scheme, the second scheme and t

Number

of training

images

2DPCA Scheme 1 2DPCA Scheme

The number of eigenvectors The number of e

4 6 8 10 4 6

1 41.3 42.7 46.7 44.7 37.3 39.3

2 55.2 60.0 57.8 56.6 47.4 52.6

3 73.3 70.8 70.0 71.7 67.5 70.0

Table 4

The highest classification accuracies (%) of all the approaches on the Yale da

Number of training

images

PCA 2DPCA Schem

1 54.0 (6.0 s) 46.7 (0.3)

2 65.9 (6.2 s) 65.2 (0.3 s)

3 83.3 (7.0 s) 73.3 (0.3 s)

The number in the bracket is the feature extraction time (unit: second) associ
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Fig. 4. The classification accuracies on the Yale database of 2DPCA Schemes

and the feature fusion approach with six training samples per class. The y-axis

number of transforming axes used for feature extraction. Notice that the feat

abscissa axis.
database. The feature fusion approach has the best
recognition accuracy. Table 4 shows the highest classifica-
tion accuracies of all the approaches and the corresponding
feature extraction time on the Yale database. Schemes 1
and 2 are more efficient than PCA but not as accurate. The
feature fusion approach is also more accurate than 2DPCA
Schemes 1 and 2 and it extracts the corresponding features
faster than PCA-based feature extraction (as shown in
Table 4). Fig. 4 shows the classification accuracies of
2DPCA Scheme 1, 2DPCA Scheme 2, and the feature
fusion approach with three training samples per class on
the Yale database. This experiment shows again that
the two classes of features obtained using 2DPCA
Schemes 1 and 2 contain complementary image presenta-
tion information.
he feature fusion approach of 2DPCA on the Yale database

2 The feature fusion approach

igenvectors The number of eigenvectors from each

scheme

8 10 4 6 8 10

39.3 38.7 50.0 50.7 53.3 54.7

51.9 51.9 60.0 65.2 64.4 65.9

70.0 69.0 75.0 79.2 79.2 80.0

tabase and the corresponding feature extraction time

e 1 2DPCA Scheme 2 The feature fusion

approach

39.3 (0.3) 54.7 (2.1 s)

52.6 (0.3 s) 65.9 (2.8 s)

70.0 (0.3 s) 82.7 (3.6 s)

ated with the highest accuracy.

12 14 16 18 20
nsforming axes

The first scheme
The second scheme
The fusion approach

1 (denoted by ‘‘the first scheme’’) and 2 (denoted by ‘‘the second scheme’’)

denotes classification accuracy as a percentage. The abscissa represents the

ure fusion approach uses twice as many transforming axes shown by the
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5. Conclusion

2DPCA, which directly transforms image matrices into
feature vectors, is an efficient feature extraction technique
for two-dimensional matrix. In this paper, we firstly
formulated 2DPCA as a new mathematical form having
two implementation schemes and then used the proposed
mathematical form to show the theoretical basis of
2DPCA. It is shown that 2DPCA is the best approach
for directly extract features from matrices. This means that
both 2DPCA Schemes 1 and 2 are effective means of
feature extraction and dimension reduction. The two
different schemes transform original images into two
different spaces. 2DPCA Scheme 1 enhances the transverse
characteristic of face images, whereas 2DPCA Scheme 2
enhances the vertical characteristic of face images. In this
sense, the two classes of features obtained using 2DPCA
Schemes 1 and 2 are complementary for face image
presentation. We designed a feature fusion approach to
combine the features generated from the first scheme and
the second scheme. The experimental results on the ORL
and Yale face image databases show that the proposed
feature fusion approach is able to greatly improve the
classification accuracy of 2DPCA.
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