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Abstract—The recently proposed Robust Principle Component
Analysis (RPCA) has been successfully applied in background
subtraction. However, low-rank decomposition makes sense on
the condition that the foreground pixels (sparsity patterns) are
uniformly located at the scene, which is not realistic in real-
world applications. Our work reconstructs the input video data
and aims to make the foreground pixels not only sparse in space
but also sparse in ‘“time”. Therefore, we propose a Joint Video
Frame Set Division and RPCA-based (JVFSD-RPCA) method
for background subtraction. In addition, we use the motion
as a priori knowledge which has not been considered in the
current subspace-based methods. The proposed method consists
of two phases. In the first phase, we propose a Lower Bound-
based Within-Class Maximum Division (LBWCMD) method to
divide the video frame set into several subsets. In this way,
the successive frames are assigned to different subsets in which
the foregrounds are located at the sceme randomly. In the
second phase, we augment each subset with the frames with a
small quantity of motion. To evaluate the proposed method, the
experiments are conducted on real-world and public datasets. The
comparisons with the state-of-the-art background subtraction
methods validate the superiority of our method.

Index Terms—Within-class maximum division, Motion priori
knowledge, Low-rank decomposition, Background subtraction.

I. INTRODUCTION

OR numerous computer vision tasks, such as indoor

surveillance [1], anomaly detection [2], sports video anal-
ysis [3], traffic surveillance [4] etc., background subtraction
has been a fundamental step to segment out the motion objects
for high level vision understanding. Usually, the scene suffers
from various influence including lighting changes and dynamic
backgrounds. Owing to the complex environment and real-time
requirement of the surveillance system, many methods [1], [6]-
[9] had been proposed to overcome the above problems. These
state-of-the-art methods work well under certain conditions.
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However, it is not an easy task to handle all the above problems
by using a single method. Generally speaking, background
subtraction methods can be classified into three categories, i.e.
statistic-based methods [5]-[13], classification-based methods
[14], [15] and subspace-based methods [1], [16]-[24].

The Gaussian background modeling [5] has been a classical
statistic-based method and is very popular in the surveillance
system. Later researches developed this model to the multi-
Gaussian versions [6]-[9] for background subtraction. Since
these methods are of the parametric-based type whose param-
eters are hard to learn and adjust when it comes to the com-
plex environment, literatures [10], [11] preferred to the non-
parametric methods for background pixel modeling. However,
these methods cannot well deal with the continuous changing
situations. Unlike the background subtraction method at the
pixel level, [12] and [13] modeled the background at the
region level. The region-based method is capable of handling
the noise, illumination variations and dynamic environment.
Since background subtraction can be viewed as a classification
problem, neural network [14] and support vector machines
[15] are also exploited for foreground detection. For these
methods, a learning procedure is necessary before the detection
stage. They show a good adaptation to the learned situations.
However, they are not flexible to the new cases which had
not been considered in the learning stage. Recent researches
on subspace analysis consider that the background lies in a
low dimensional subspace, i.e. eigenspaces. Such eigenspaces
enable the algorithms to resist a variety of contamination.
Tsai et al. [1] assumed that the background and foreground
are two independent signals and extracted the foreground by
independent component analysis. Cevher et al. [16] proposed
to use compressive sensing to recover the region of interest.
However, the theory requires that the foreground occupies
a small portion of the scene. Early in 2000, the classical
Principal Component Analysis (PCA) had been used in back-
ground modeling [17]. But it is vulnerable when the data is
contaminated by the noise. Later, Torre et al. [18] extended
classical PCA to develop the Robust Principal Component
Analysis with M-estimation (RPCA-ME) which is more adap-
tive to noise corruption, alignment errors and occlusion. Unlike
RPCA-ME, the Robust Principal Component Analysis (RPCA)
model proposed in [19] treated background subtraction as a
matrix decomposition problem. It is reported that RPCA is
able to recover the low-rank and sparse components of a data
matrix even though a quantity of entries of the matrix are
contaminated with arbitrary noise intensity.

For a measurement matrix M € R™*™2 with partial
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Fig. 1: Results on a rush hour sequence. (a) is a frame
from Pets 2006 s7. (b) and (c) are the low-rank and sparse
components of RPCA. (d) is the binary image of (c). (e) and
(f) are the low-rank and sparse components of the proposed
method. (g) is the binary image of (f).

missing entries or being contaminated by noise, there exist
many realistic applications that need to recover its original
signal and the corresponding noise signal. In other words,
we are required to obtain the decomposition M = Lg + S,
where L is a low-rank matrix, S is a sparse matrix, and both
components are allowed to have random intensity.

Let o;(M) be the i-th singular value of M, ||[M||. :=
>-;0i(M) and |[M[|y = 3, |M;;| denote the kernel norm
and /; norm of matrix M respectively, then under rather
weak assumption, RPCA is able to accurately recover low-
rank matrix Ly and sparse matrix Sy by solving the following
mathematical model.

minimize||L||« + A||S||1

1
s.t. L+S=M M

In the application of background subtraction, the foreground
and background in each frame are referred to the sparse and
low-rank components of RPCA model. As introduced in [19]-
[24], RPCA has given a promising result in background sub-
traction. The online version of RPCA proposed by Qiu et al.
[20] enabled the subspace-based background subtraction to be
in real time. Mu et al. [21] exploited the random projection and
SVD to accelerate the calculation efficiency with controllable
loss of the performance. Bao et al. [22] proposed an inductive
RPCA to handle gross corruptions and new data efficiently.
Ding et al. [23] combined a Bayesian framework with RPCA
to broaden the adaptation of the algorithm in a wide range of
noise levels. Zhou et al. [24] proposed a ‘Go Decomposition’
model and used a bilateral random projection technique to
acquire the low-rank and sparse components as well as the
noise.

It should be noted that the RPCA model makes sense under
two assumptions : (1) the genuine signal Ly is of low-rank
but not sparse; (2) the sparsity patterns should be uniformly
distributed in the sparse matrix at random [19]. However,
such assumptions may not be fully satisfied in real-world
applications. With these reasons, in background subtraction,
RPCA still has its own shortcomings as follows: (1) It requires
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Fig. 2: The statistical distribution of a pixel values of the
sequence used in Fig. 1. (a) shows the statistical distribution
of the pixel values. Group one is the statistics of the number of
the pixel values from the frame subset obtained by our method.
(b) is the statistical distribution of the same pixel values by
using our augmented method. The augmented group is the
statistics of the number of the pixel values from the augmented
set obtained by the method in Section V.

the moving objects are uniformly located at random. It fails to
detect the objects if they are always located at a limited region
of the scene; (2) It does not make use of the motion message.
For example, we find out that RPCA is not effective for the
rush hour sequence as shown in Fig. 1 (d). Obviously, the
rush hour sequence is full of ‘noise’ (namely the foreground)
that largely decreases the quality of recovering the low-rank
and sparse components. Considering the values of a pixel on
this sequence, we run all the frames and obtain the statistical
distribution of the pixel values, see in Fig. 2 (a). The values
around 100 give a good estimation of this pixel. However,
the values that are far away from 100 come from the moving
objects and have side effect on the low-rank decomposition.
Our question is: Can we make use of the motion message and
change the value distribution of the pixel to the one shown
in Fig. 2 (b)? If it works, it will be much easier and more
effective to recover the low-rank and sparse components.

In this paper, unlike RPCA that processes the whole se-
quence for signal recovery, we take advantage of the motion
message and devise a new framework to divide the video
frames into several groups. In each group, the statistical
distribution of pixel values is supposed to be contaminated
by less ‘noise’ than ever before. The idea of the frame set
division and frame set augmentation reduces the motion in
each subset and provides more genuine background pixels,
which facilitates RPCA to obtain better low-rank and sparse
components. First, we estimate the position of the moving
objects and ratio of the foreground pixel to all the pixels
in each frame by using a simple background subtraction
technique. Second, we propose a Lower Bound-based Within-
Class Maximum Division (LBWCMD) method to divide the
video frame set into several subsets based on the position
information. Third, the frames will be ranked in ascending
order based on the ratio of the foreground pixel to all the
pixels and the top several frames will be added in each frame
subset to construct the groups. Our results on the rush hour
image are shown in Fig. 1 (e)(f)(g). More results are shown in
Section VII. To summarize, our contributions are as follows:
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TABLE I: Variables of our method

: Video frame set;

: Number of divisions of video frame set;

: A subscript, 1 = 1,2, ,m;

: The i-th basic set ( X; C Q);

: The ¢-th division set with motion ( P; C €);

: The i-th non-motion set ( Q; C );

: The i-th augmented set with slight motion ( Y; C Q);
: The i-th group set, Z; = X; |JY;.

JIxTED

SECT

(1) We made use of the motion priori knowledge and joined
the video frame set division and low-rank decomposition for
background subtraction. The frame set division is beneficial
to the recovery of low-rank and sparse components.

(2) A new method called LBWCMD reconstructed the video
frame set to obtain several subsets. The proposed method
assigns the successive frames to different subsets as much as
possible so that the low-rank decomposition is conducted on
each frame subset with less motion. In fact, as shown in Fig.
1 (c)(d), matrix M constructed by all the frames with highly
dense motion is not good for low-rank decomposition.

(3) We had proposed a framework to accomplish the
background subtraction with frame set division and low-rank
decomposition. The framework will be stated in detail in the
following sections.

The remainder of the paper is organized as follows. Section
II gives an overview of the proposed problem and our solution.
Section III shows the estimation of priori motion information.
Section IV presents the proposed LBWCMD method in detail.
Section V illustrates the augmented set construction and
shows the implementation of the whole framework. Section
VI discusses the parameter tuning. The experimental results
are described in Section VII. We make a conclusion of this
paper in Section VIII.

II. METHOD OVERVIEW
A. Problem Statement

The variables that we used in this problem are shown in
Table I. For RPCA-based background subtraction [19], [21],
[23] the authors stacked all video frames as column vectors
one by one into matrix M. Then a low-rank decomposition
algorithm is performed to recover the low-rank and sparse
components, see the flow chart in Fig. 3 (a). It should be noted
that, the highly dense motion appears in a local region has a
great impact on the recovery results. It is hard to extract good
low-rank and sparse components in such a situation. With this
reason, a promising idea is to assign the successive frames to
different frame subsets to alleviate such a phenomenon. Our
problem is as follows. For a frame set Q with || = n, whether
there is a finite division to €2, namely Q2 = UZ.:L2 o Xi
when RPCA is applied on X;(i = 1,2,--- ,m), the yrec’:overy
of the low-rank and sparse components is better than that of
the low-rank and sparse components decomposed from the
frame set €. If it exists, how to obtain such a division?

B. The Proposed Method

The theoretical finding in [19] pointed out that low-rank
decomposition makes sense on the condition that the sparsity
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Fig. 3: Flow charts of RPCA and the proposed framework
for background subtraction. (a) is the flow chart of RPCA for
background subtraction. (b) is the flow chart of the proposed
framework for background subtraction.

patterns are uniformly distributed in the sparse matrix at
random [19]. However, realistic situations may not satisfy this
condition. Therefore, when we divide a video frame set, our
division principle is to let the moving objects be uniformly
located at random in each subset. This is what the proposed
LBWCMD (in Section IV) does to satisfy the above condition.
It should be noted that if successive frames are assigned to
the same subset, the sparsity patterns will be restricted in
a limited region of the scene which is not good for low-
rank decomposition. To this end, successive frames should
be assigned to different subsets. Let’s study the following
division scheme: Q = Ui=1,2,~-,m P, PNP,=2,i#j
and each element in P; is selected from 2 using LBWCMD
method. P; can be regarded as division set. However, the
scale of P; is too small for running RPCA. We propose to
make use of the motion priori knowledge to devise a new
division scheme to make up such a deficiency, see in Fig. 3
(b). Firstly, we divide €2 into division set P; and non-motion
set Q;, namely 2 = Ui:l,Q,---,m, P; Ui:1,2,--~,m Q; where P;
consists of the frames with motion and (); consists of the
frames with no motion. P; and (); can produce a basic set
X; = P;|JQ;. Then, we extract the frames with slight motion
in ) to obtain the augmented set Y;, where the elements in Y;
are not included in X;. Finally, the basic set and the augmented
set collaborate together to construct group set Z; = X; JY;.
RPCA will be performed on the group sets to run the recovery
task. The division set P; will be obtained by LBWCMD. Non-
motion set (); and augmented set Y; will be obtained by using
the methods in Section III and V respectively.
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(a) (b)

Fig. 4: Centroids of the largest foreground region. (a) shows
the largest foreground region in successive frames. (b) is the
projections of the centroids on a plane.

III. ESTIMATION OF PRIORI MOTION INFORMATION

The motion in the video has a great influence on the
quality of low-rank decomposition. For the whole sequence,
if the moving objects appear in a local region of the scene,
then according to our analysis in Section II-B, the low-rank
decomposition results will not be good. This is the reason
why we use a new designed strategy to scatter the successive
frames to different subsets. Before the division tasks, we
need to evaluate the motion priori knowledge in advance. In
this section, we estimate and utilize the ratio of the moving
area and the centroids of the objects. To this end, a simple
background subtraction technique [5] is used to extract the
moving information.

We take the centroid of the largest foreground block in each
frame as division criterion. The reasons are as follows: (1) The
largest block in the foreground reflects the major movement
in a frame. Fig. 4 (b) shows the projection of all the centroids
of the largest foregrounds in a plane. It gives a clear picture
of the motion distribution. (2) The utilization of the centroid
of the largest foreground block can accelerate data processing.
(3) Adjacent centroids can reveal the continuous movement of
the object along the time axis, since the positions of an object
in successive frames are normally the nearest.

By performing the simple background subtraction method
[5], we can obtain a coarse motion estimation. Fig. 4 (a)
shows that the foreground images are in alignment along
the time axis. Both the green area and white area are the
foregrounds in each frame, whereas the green part is the largest
foreground block. The centroid of the largest foreground block
can be viewed as a representation of the foreground. It roughly
reflects the motion distribution of a video sequence, see in
Fig. 4 (b). We summarize the procedure of the motion priori
knowledge estimation as follows.

For n video frames ) ¢ N"*v (k = 1,2,---,n), let
B®) F(k) be the corresponding background and foreground.
Let o € (0,1) be a weight coefficient.

Firstly, we obtain the foreground of the k-th frame using

k) — |I(k) _ B(k—l)‘ )
and thresh the foreground into binary image F'G using

255 F®)(z,y)>T

3)

TABLE II: Variables of the proposed models

U . A division which divides the frames into different subsets;
Uy : The k-th subset of €2;

AI.{C : The event that frame I; is assigned to Wy with division U;
ﬁ . A centroid set of ;

n : The number of the centroids of I';

z; . A centroid of the i-th frame of ;

T : The k-th centroid set of Wy;
Yyr; : The j-th centroid of Yy,
Hpr  : The convex set of I

H%k : The convex set of Y, with division U;
r: . a radius;
gc 7n): The number of the centroids in a ball with centroid x and
»7 radius 7.

where T is a predefined threshold. Update the corresponding
background using

B®) = a1® 4 (1 - a)B* 1. (4)
Then we find the largest foreground block through optimizing

S = argmax Area(FA;), )
FA,;
where F'A; is the j-th foreground block of F'G and Area(z)
is the total number of nonzero pixels in x. Calculate the center
of S to obtain

o= (225p.a) 2 ySp.a)
25(pa) " 25(pa)

and update the centroid set, namely

o) = ok=V{ J{c}. (7)

Finally, we obtain the centroid set ®* as soon as we go through
n video frames.

The basic set X;(i = 1,2,--- ,m) consists of the division
set P; and non-motion set ;. The non-motion set @; is easily
obtained and it is used for reducing the ratio of contamination
in the frame set. The reason for using the division set P; is
to scatter the successive frames as much as possible. We will
discuss how to obtain P; in the next section.

) (6)

IV. LBWCMD METHOD
A. Model of Frame Set Division

To alleviate the influence of the motion on low-rank decom-
position, we consider to reconstruct the frame set {2 to obtain
the group sets Z; (¢ = 1,2,--- ,m) where Q = Ui:1,2,--- m Zi-
As mentioned in Section II-B, the division set P; constitutes
an important part of the group set Z;. Since the centroid set ¢
of the video has been obtained, we divide the frames to acquire
the division set P; based on the locations of the centroids. To
this end, the following two facts should be taken into account:

(1) The successive frames with motion should be assigned
to different subsets as much as possible.

(2) The spatial distribution of the centroid set of each frame
subset should be consistent with the spatial distribution of the
centroid set of (2.

The former tries to apportion the recovery work to each
subset, while the latter guarantees the centroids in each subset
come from the whole scene, not a local region of the scene. To
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start with, we list the variables used in the following models
in Table II.

To model the first fact, we use a strategy U to divide the
frame set 2 and we have Q@ = U,_;5 ..., Vi, VeV =
@(k # 1). Then, a probability optimization is used to describe
the problem, see the mathematical model (8). In other words,
Uopt should maximize the combinational probability of A%
and Agjq, namely the probability of successive frames being
assigned to different subsets. For our problem, we constrain
0 to a small value so as to control the distribution manner
of the successive frames. If we set 4 = 1, it means the

successive frames will be assigned to different subsets as much

as possible.

i#]
i,7€{1,2,--- ,n}

P(AL,AS  p#q|li—j] <5). 8)

Uopt = arg max
U

To model the second fact, not only the local similarity but al-
so the global similarity between the spatial distributions of the
centroid set I' and YT, needs to be considered. Therefore, we
put forward that the following two goals should be achieved
as much as possible.

(a) The convex hull Hgk of the centroid set Y should
occupy almost the same space as the convex hull Hr of the
centroid set I';

(b) The density of the centroid set T, should be almost the
same as the density of the centroid set I'.

For the first goal, our model is as follows. Let I' =
{z;;i = 1,2,---,n} be the centroid set of . With di-
vision U, the centroid set I' is divided into m subsets
T, = {ykaj =1,2,--- ,nk}(k =1,2,--- ,m). That is,
I = Uk:1,2,~--,m Tk,TkﬂTt = @(k‘ 75 t),zz;l N = N.
The convex hulls of I" and its subset Y are

n n
Hp ={) mailei €T, mi=1m; € 0,1}, (9
=1 =1
and
Nk Nk
HY =0 Gunilyns € Tr D& = 1,& €[0,1]}. (10)
j=1 j=1

Therefore, the first goal proposed for the second fact seeks the
following optimization

|Hr NV HY, |

Uopt = arg max Z ] ,

(11)
That is, U,p; should maximize the intersection of Hr and
Hgk However, (11) only measures a global property of the
similarity between the centroid sets.

Our second goal serves as a complementary of the prob-
lem. Since Y is a subset of I', we can find the centroids
which simultaneous belong to I' and Y. Therefore, we have
v = yrj, ¥ € I(j = 1,2,--- ,ng). In T', we center a ball
with radius 7 on 2., the number of the centroids in this ball
are regarded as NV o) Similarly, in T, the number of the

centroids in the ball centered at y; with radlus ris NY (g or)"
( .+ »/|L'| should
T)/\Tk| as much

The second goal pursuits that the ratio NV,

be approximately equal to the ratio N

as possible. Therefore, the second goal tries to optimize the
following mathematical problem
m ng

Uppt = argmlnzz |N(x ~/ITl=

k=1 j=1

yk7 r)/|Tk| | (12)

Though the total number of elements in Yy is smaller than
that in I', the difference between the ratios can be as small as
possible.

We incorporate global and local measurements into the same
objective function. Then the mathematical model of the second
fact is

1j5=1

NgE

5 yk T)/‘T’“||

Uopt = arg min

v ;;1 |Hr N HY,

The objective functions of (8) and (13) are difficult to
optimize directly. However, this problem can be regarded as an
optimization problem of the discrete centroids. Therefore, it is
of importance to evaluate the relations between the centroids
of a subset and the relations between the centroids of different
subsets.

. (13)
|/|Hr|

B. The Proposed Solution - LBWCMD

Based on the two facts we have mentioned, actually our
problem is to maximize the distances between the centroids
in a subset and minimize the distances between the centroids
in different subsets. This problem is quite different from
the clustering problems [26] we have seen commonly. In
this paper, we propose a lower bound based measurement to
describe the distance between the two centroids from the same
subset or different subsets so as to obtain a reasonable solution
of the problem. For the well known k-mean method [26], to
accomplish the clustering task, it needs to answer the following
two questions after the initialization. (a) Which sample in the
class should be removed? (b) Which class should the removed
sample be added to? Follow the same procedures as k-mean
but rather different intrinsic principles, we demonstrate the
proposed method as follows. First, we initialize m subsets of
the centroid set I'. Then, for the centroids in a subset, we have
to tackle with the following two problems. (1) Which centroid
should be the candidate that has to be transferred to another
subset? (2) Which subset should the centroid be assigned to
when the centroid has to be transferred?

For the first problem, we propose to use a ball centered at
a centroid with radius r to determine whether this centroid
should be excluded from the subset. Based on the first fact,
adjacent centroids should be assigned to different subsets. Let
n; be the number of the centroids in the i-th subset (i =
1,2,---,m). Let x5 = (x;,27;) be the j-th centroid in the
i-th subset, j = 1,2,--- ,n;. Define a ball set A;; = {b| b1 —
x})? + (b — ) < r2} for z;;, where b = (b1,b2) is a
centroid inside the ball. A centroid z;; should be removed
only if the following two restrictions are satisfied.

(1) The first restriction is {xlq} # O, xig € Ayj and g # 3.

(2) The second restriction is [{x},,}| <m —1, z,, € Ay,
Tpg = Argmn ;= pgl) (14)
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Fig. 5: The centroids are distributed to seven subsets. (a) shows
the r-ball of centroid O contains centroid A from the same
subset. (b) shows the situation which meets the first restriction
but not the second one, namely r-ball of centroid O contains
the centroids from all subsets.

and p # i.

The first restriction shows that some centroids that are from
the same subset as x;; fall into r-ball of x;;. Therefore, x;;
should be the candidate to be removed so as to maintain the
space structure of the centroids in the :-th subset, that is, no
more than two centroids from the same subset can coexist
in a r-ball. However, the second restriction guarantees that
at least one subset is available for z;; to be transferred to,
meanwhile the space structure of the centroids in this subset
is well maintained. Optimization problem of (14) obtains all
the centroids that are the nearest to x;; from other subsets.
The second restriction shows that these centroids are in the r-
ball of z;;. However, if all the subsets have the centroids (the
nearest one to x;; in each subset) in the r-ball of x;;, namely
Happr = 1,2, ;mpUzii} C Ay, it is not necessary
to transfer centroid x;; to another subset. Because, in such
a situation, two centroids of a subset will be in a r-ball.
Therefore, we need additional restriction |{z},,}| < m—1 and
p # 1. In Fig. 5 (a), seven subsets have been initialized. The
r-ball of centroid O contains centroid A that comes from the
same subset as centroid O. So centroid O is the candidate to be
removed. In addition, subsets 1, 2, 4 and 6 have the centroids
in r-ball of centroid O and not less than three subsets have no
centroid in the r-ball. Hence, centroid O should be removed
from subset 1. However, Fig. 5 (b) gives a situation which
meets the first restriction but not the second one. Therefore,
in such a situation, centroid O should not be removed.

For the second problem, based on the second fact, we need
to guarantee the motion of each subset comes from the whole
scene. Therefore, for the centroids in a subset, the within-
class distances should be maximized. We propose to assign
centroid z;; to the p’-th subset with the following condition,

{zpa NN =2,

! f— ] PR p—
p = argmaxim % — Zpq
P

E (15)

and p # i. The formulas {z, ,}(A;; = @ and p # i try to
exclude the existing subsets in which the centroids fall into
r-ball of z; ;. In order to determine an optimal subset that the
selected centroid x;; should be assigned to, we consider the
remaining subsets which contain the centroids outside r-ball

Algorithm 1 Lower bound based within-class maximum division (LB-
WCMD)

Input: X € NY*" number of subsets m, lower bound r, initial values
for number of iterations v = 0, thresh 7' = 20, flag b = 0, constant
T=25

1: Initialization:

Ny 1 i=1,2,- ,m—1
¢ n—(m—1) i=m ’
m j=mm-+1,---,n"

2: while b equals to 0 and u < T" do

3: fori=1,2,--- ,mdo

4:  if N¢(3) <1 then continue. end if

5: Extract samples with label 7 from X to obtain Y;.
6: Ny, = N¢(i);

7 for j =1,2,---, Ny, do

8 Extract the j-th sample from Y; to obtain x;.

9

d=argming dp, s.t. dp = lz; —zpll, p=1,2,---, Ny;

and p # j.
10: if d < r then
11: dc(k) = arg ming, d, s.t. d, = lz; — yrqll, Yrq is the

g-th sample from the k-th subset, k = 1,2,--- ,m, k # 1.
12: 8= Xkm1,2,0 i 1it 1, ,m (7 = de(K)),
1 >0
8(z) = {O z<0’

13: l = argmaxy dc(k),k=1,2,--- ,m and k # i.
14: if s <m —1or|Ny, — Ny,| <7 then
16: L(j) « 1.
17: Ne(l) < Ne(1) + 1.
18: end if
19: end if
20: end for
21: end for

22: dg(k) = argming, di,dk = ||Ykp—Ykqll, Yk is the j-th sample
from the k-th subset, k =1,2,--- ,m, p,g=1,2,--+, N¢(k)
and p # q.

23t s=3 4 19.. m0(dg(k)—r).

24: if s is equal to m then b = 1. end if

25 uw<+u+1.

26: end while

Output: Ny, L.

of x; ;. We rank these subsets in descending order based on
the distances between x; ; and each subset. The top ranking
subset, namely the p’-th subset, is the best selection. The
dashed lines in Fig. 5 (a) show the nearest distances between
centroid O and other subsets. Among all the nearest distances,
the one between centroid O and centroid D is the largest.
Based on the within-class maximum principle, centroid O
should be assigned to subset 3. The details of the method are
described in Algorithm 1. The proposed LBWCMD method
can assign successive frames to different subsets by a lower
bound strategy which gives an approximate solution to (8).
Moreover, this method ensures the spatial distribution of each
centroid subset meets (13) as much as possible.

We now give a concise demo to demonstrate the main
steps of LBWCMD method. Fig. 6 (a) shows several centroids
for division. Let m = 3, » = 2.5. According to step 1 of
LBWCMD, the i-th centroid is assigned to the ¢-th division,
1=1,2,--- ,m—1, and the rest of the centroids are assigned
to the m-th subset as shown in Fig. 6 (b). Suppose that the
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Fig. 6: A concise demo of LBWCMD. (a) is the original
distribution of the centroids. We first initialize the states of the
centroids as shown in (b). According to LBWCMD, centroids
A, B, C and D become square, triangle, square and triangle
markers respectively as shown in (c), (d), (e) and (f).

centroids with the square marker are from the first subset,
the ones with the triangle marker are from the second subset
and the ones with the circle marker are from the third subset.
According to step 8 to 19 of Algorithm 1, centroid A is
assigned to the farthest subset outside r-bound of centroid
A. As shown by the dash line in Fig. 6 (b), centroid A should
be assigned to the first subset. Then, we go through centroid
B, C and D based on the same idea. Similarly, the division
results are shown in Fig. 6 (c)(d)(e)(f) respectively. Fig. 6 (f)
shows that the proposed method not only separates adjacent
centroids to different subsets, but also enable each subset to
maintain almost the same spacial distribution as the original
centroid set.

By using the proposed LBWCMD method, we can map the
corresponding frames to the division set P;(i = 1,2,--- ,m)
based on the already known centroid subsets.

V. AUGMENTED SET CONSTRUCTION

Although we have finished the construction of the basic sets.
It is not yet ready to carry on RPCA on these basic sets. First,
the scale of each basic set is much smaller than ever before,
which results in insufficient number of frames for the low-
rank decomposition. Second, there are still more possibilities
for us to make full use of the motion priori knowledge. In
this section, we propose to construct an augmented set as a
supplementation for each basic set. To this end, the frames
with a small quantity of motion will be selected. Let s; be
the area of the binary foreground f; of the j-th frame, j =
1,2,--- ,n. Based on s;, we sort the foreground in ascending
order to obtain { f,|sk, < sk, <--- <sp,,5=1,2,---,n},
where the top |a x n] frames are selected to construct set
M = {fx;lj =1,2,---, |axn]} that composed of the frames
with a small quantity of motion. Let Y; be the augmented set
which is corresponding to basic set X;, i = 1,2,--- ;m. Y;
includes the frames in M but not in X;. Therefore, Y; acts as
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Algorithm 2 Augmented set construction (ASC)
Input: Basic set X;, foreground set {f;} and its corresponding area
sj,J =1,2,--+ ,n, initial values for o, Y; = &,i =1,2,--- ;m.
1: Sort {f;} based on s; in ascending order to obtain
{fkj‘skl S Sko S S skn’j = 1727"' 7”}'
2: Select the top v x n] frames to construct set M = {fx,},
j:1727"' J_OéXTLJ.
3:for j=1,2,---,|a xn| do
4: fori=1,2,--- ,mdo
if fkj € X,L then
Y « Yi U{fx; }-
end if
end for
9: end for
Output: Y;,i=1,2,--- ,m.

Algorithm 3 Joint Video Frame Set Division and RPCA-based back-
ground subtraction (JVFSD-RPCA)

Input: n video frames I(F) e NAXw “number of partitions m, lower
bound r, initial values for c.

1: Use the proposed method in Section III to obtain centroid set ®
which consists of the centroids of major moving objects in all
frames and set () with non-motion frames.

2: Put the centroids in ® as column vectors of data matrix X. Take
X as input for Algorithm 1 (LBWCMD) to assign the centroids to
m divisions. Then we have division set P;,¢ = 1,2,--- ,m.

3: Divide @Q into m subsets Q;,7 = 1,2,--- ,m. Merge P; and Q;
to obtain basic set, namely X; = P; |JQ;. The index of frames in
Xiis{li; |j=1,2,--,|Xs|; i=1,2,--- ,m}.

4: Use Algorithm 2 (ASC) to construct the augmented set Y; and
merge it with the basic set X; to obtain the group set Z; = X;(JY;.

5: Run RPCA on each group set Z; to isolate the corresponding
background and foreground for each frame.

Output: Background set {B;,,;} and foreground set {Fj, },j =
1’27""|Xi|;i:1727"'7m' .

a supplementation to the basic set. The details for constructing
the augmented sets are summarized in Algorithm 2.

Ultimately, we divide €2 into 71, Zs, - -+ , Z,,, namely Q =
Uiz12... ;m Zi» where Z; = X;|JY;. The full name of the
whole framework is Joint Video Frame Set Division and
RPCA-based background subtraction (JVFSD-RPCA) which
is described in Algorithm 3.

VI. PARAMETER TUNING OF «

The proposed LBWCMD consists of three parameters,
namely m, r and a. m indicates the number of divisions of
video frame set.  describes the distance between the locations
of two people. We will consider the values of these two
parameters in the next Section. For the third parameter «, it
reflects the number of frames with slight motion. The larger
« is, the more these types of frames exist. Our rule for setting
the value of this parameter is as follows. Define a step function

1 ,2<0

16
0 ,x>0. (16)

g(r) =

i)
Let %f() stand for the ratio of the foreground pixel to all

the pixels in the frame, where F(*) is the i-th foreground which
is estimated by the method used in Section III. Therefore, the
ratio of the number of these types of frames to n is

n

rea(F®
f =3 [g(Alff) —e| (17)
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TABLE III: Parameter setting for the point set division

Point set Value of m  Value of r
Decentralized assembled points 6 70
Straight walking points 4 3
Random walking points 4 5
Uniformly distributed points 6 28

Then, we define

flx) L flx)>0

5 @) <o (1)

It means that the proposed method pursues the frames with
slight motion as much as possible.

VII. EXPERIMENTAL RESULTS

In this section, two groups of experiments were used to
evaluate the effectiveness of JVFSD-RPCA and a detailed
complexity analysis of the proposed method was given. Since
the LBWCMD method is the core of our method, in the first
group of experiment, we created four kinds of artificial point
sets to test the performance of LBWCMD. In the second group
of experiment, we compared JVFSD-RPCA with the state-
of-the-art subspace-based background subtraction methods,
including Robust Principle Component Analysis (RPCA) [19],
Go Decomposition (GoDec) [24], Principle Component Analy-
sis (PCA) [17] and Robust Principle Component Analysis with
M-Estimation (RPCA-ME) [18]. Moreover, we also compared
the proposed method with the statistic-based, classification-
based and non-parametric methods, including Mahalanobis
Distance (MD) [27], Improved Gaussian Mixture Model (G-
MM) [28], Self-Organizing-based method (SOBS) [14] and
Kernel Density Estimation (KDE) [10]. All the comparisons
will be conduced on real-world and public sequences.

A. Experiments on Artificial Point Sets

For a certain point set, the proposed LBWCMD method
can maximize the within-class distances while maintaining
the spatial distribution in each subset. In this subsection,
we created four artificial point sets to validate it. The point
sets include the decentralized assembled points, straight walk-
ing points, random walking points and uniformly distributed
points, which are shown in Fig. 7 (a)(b)(c)(d). We also used
the objective function values of (11), (12) and (13) to evaluate
the performance of LBWCMD.

The lower bound r plays an important role in LBWCMD.
It decides the minimum distance between the two points from
the same subset. If r is too small, the points cannot be assigned
to different subsets as much as possible. On the contrary, if r
is too big, there will be an unbalance number of the points in
the subsets. Therefore, a proper value of r should be used. In
this experiment, we used the parameters in Table III to divide
the point sets.

The division results are shown in Fig. 8. Obviously, the
adjacent points can be assigned to different subsets while
the spatial distribution of each subset is well maintained. We
can see some numerical results in Table IV. It shows that
the convex hull of each subset largely overlaps with that
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Fig. 7: Attificial point sets for division. (a) shows the de-
centralized assembled points. (b) shows the straight walking
points. (c) shows the random walking points. (d) shows the

uniformly distributed points.
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Fig. 8: Results of LBWCMD on the point sets. The division
results of decentralized points, straight walking points, random
walking points and uniformly distributed points are shown in
(a), (b), (c) and (d) respectively.

of the original point set except for subset 4 of the random
walking point set. Because some of the points in the random
walking point set are not well aligned. In addition to the global
similarity, the local similarity related to the point sets are well
obtained. A comprehensive evaluation of the effectiveness of
LBWCMD is shown in the last row in Table IV. The smaller
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TABLE IV: The effectiveness of LBWCMD on the point sets

Decentralized Straight Random  Uniformly
assembled  walking walking distributed
points points points points
subset 1 84.90% 97.00% 91.75% 84.11%
Global | subset 2 88.49% 97.00% 86.31% 89.13%
similarity | subset 3 80.12% 97.00% 85.70% 77.90%
in (11) for] subset 4 86.63% 97.00% 24.14% 85.82%
all subsets| subset 5 82.87% AN AN 87.80%
subset 6 84.54% AN AN 86.55%
Local similarity in
(12) 0 2.88 2.19 6.71
Objective function
value of (13) 0 0.74 0.76 1.31

the objective function value of (13) is, the better subsets we
had obtained. Among all the objective function values, the one
of the uniformly distributed point set is the worst. The main
reason is that some badly aligned points are not well handled.
Nevertheless, it is concluded from the overall results that the
proposed method is feasible to make a good division to the
point sets.

B. Experiments on video datasets

In this subsection, we conducted the experiments on 11
real-world and public sequences. The sequences include three
challenging ones (Fighting and two Walking with occlusion
sequences) captured by ourselves, Intelligent room [29], three
sequences (WaterSurface, Meeting room, Switch light) from
Li’s Dataset [37], two sequences (Highway, Pedestrians) from
Change Detection Dataset [31], Dance bootstrapping from
Competition dataset [32] and Pets 2006 S7 [25]. We compared
JVESD-RPCA with RPCA [19], GoDec [24], PCA [17],
RPCA-ME [18], MD [27], SOBS [14], GMM [28] and KDE
[10]. The source codes of RPCA, GoDec and RPCA-ME can
be downloaded at [33], [34] and [35] respectively. [17] did not
provide the source code of PCA for background subtraction.
Hence, we implemented this code by ourselves. The source
codes of MD, SOBS, GMM and KDE can be downloaded at
the website of BGSlibrary [36].

In these experiments, all the ground truths of the frames
were used to evaluate the performances of the methods. If
the detected regions are included in the ground truth, they are
true positive, otherwise they are false positive. We adopted
the similarity measurement used in [37] to evaluate the per-
formances of the methods. Let D be a detected region and G
be the ground truth on the corresponding frame. The similarity
measurement between D and G is defined as

DNG

S(D.6) = g

19)

If the detected foreground is exactly the same as the ground
truth, the similarity approaches to 1. On the contrary, if the
detected foreground has no overlap with the ground truth, the
similarity approaches to 0. Therefore, we can conveniently
evaluate the performance of JVFSD-RPCA and other methods
with similarity measurement (19).

1) Parameters setting: For our method, three parameters
need to be determined, namely m, r and . We used m = 10
and r = 6 for all the sequences. o can be determined by
(18) with empirical values ¢ = 0.01 and § = 0.05. For
RPCA, as mentioned in [19], the suggested value of A is
1/+/max(wh,n), where w and h are the width and height of
the frame. However, we discovered that the suggestion does
not work in our experiments. To this end, we multiplied A by a
weight p so as to make a proper balance between the low-rank
and sparse components. Hence we obtained A\ by

P — (20)

where p = 0.06. For GoDec, we set the rank of measurement
matrix to 2 and used the default values of the iteration
parameters in the algorithm. For RPCA-ME and PCA, the
number of principle components were set to 10. Since these
subspace-based methods are of the batch types for dealing with
the coming frames, we used every 300 frames to construct
the measurement matrix for background subtraction. After the
foreground had been extracted by the subspace-based methods,
a threshold of 25 was adopted to convert the results into binary
images. For MD method, the sensitivity, noise variance and
learning rate were set to 100, 150 and 30, respectively. For
SOBS method, the training sensitivity, learning rate in training
phase and training steps were set to 245, 255 and 55 while the
testing sensitivity and learning rate in testing phase were set
to 130 and 62, respectively. For GMM method, three Gaussian
models were used and the learning rate was set to 0.008. For
KDE method, the window size was set to 100.

2) Experiments on Different Environments: In this subsec-
tion, we compared the performances of the methods mentioned
above on different environments including four indoor se-
quences (Fighting, Intelligent room, Meeting room and Dance
bootstrapping) and two outdoor sequences (WaterSurface and
Highway). The Fighting sequence was captured by ourselves
with the length of 300. We labeled the ground truths of the
frames on every 10 frames. The resolution with 352x288 was
used for the experiment. The Intelligent room sequence has a
length of 300 and a resolution of 320x240. According to [29],
the frames range from 82 to 299 are provided with ground
truths when the person starts to walk into the room. The
WaterSurface and Meeting room sequences contain dynamic
backgrounds. The former is of the length of 633 and the
latter is of the length of 2964. Both sequences are in the
resolution of 160x128. According to [37], for each sequence,
20 ground truths are provided on the key frames to evaluate the
performances of the algorithms. The Highway sequence has
a length of 1700 and a resolution of 320%240. The ground
truths are provided in the range of 470 to 1700. For the
Dance bootstrapping sequence, it has a length of 747 with the
resolution of 384 x240. All the ground truths of the frames are
provided. We ran 9 algorithms on 6 sequences. The results of
the average similarities on the sequences are shown in Table V.
The results in bold font highlight the highest average similarity
among all the methods on the same sequence. The proposed
JVFSD-RPCA outperforms other methods on four sequences.
In another two sequences, the competitiveness of our method



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. XX, NO. X, X X 10

Fig. 9: Comparison results on different sequences. The first to the sixth rows show the detection results on 221-th frame of
Fighting, 216-th frame of Intelligent room, 1615-th frame of WaterSurface, 23857-th frame of Meeting room, 1615-th frame
of Highway and 338-th frame of Dance bootstrapping sequences. The first and the second columns shows the original image
and its ground truth. The third to the eleventh columns show the results of JVESD-RPCA, RPCA, GoDec, RPCA-ME, PCA,

MD, SOBS, GMM and KDE respectively.

TABLE V: Average similarities (%) on different sequences

Sequence JVESD-RPCA  RPCA  GoDec RPCA-ME  PCA MD SOBS GMM KDE
Fighting 57.26 48.27 17.32 41.37 37.69 3574 2261 36.04  42.09
Intelligent room 64.33 63.38 61.76 45.27 2696 2831 6392 31.67 63.17
WaterSurface 76.84 32.08 76.12 20.70 9.18 5049 7646 3213 74.67
Meeting room 70.40 42.00 71.91 37.47 2237 45.62 5136 3875 41.90
Highway 67.76 64.60 15.17 54.25 48.06 46.07 5398  67.10 47.10
Dance bootstrapping 89.09 89.22 15.57 74.56 46.61 79.70  51.17  76.06  46.79

is almost the same as GoDec on Meeting room sequence and
RPCA on Dance bootstrapping sequence. Some examples of
the foreground extraction results are shown in Fig. 9. The
second column shows the ground truth of the corresponding
frame. Our result is shown in the third column. We can see
that the proposed method performs well on all the sequences.
However, some of the algorithms, like RPCA-ME, PCA and
GMM do not work well on WaterSurface and Meeting room
sequences. RPCA works well on most of the sequences.
However, if the moving objects stay for a while in a fixed
location of the scene, RPCA can’t extract the entire foreground
of the object. Differ from RPCA, the proposed JVFSD-RPCA
pursuits the sparsity not only in space but also in “time”
and exploits the frames with slight motion to provide more
genuine backgorund pixels for low-rank decomposition. With
these situations, JVFSD-RPCA is much more competitive than
RPCA. Form the eighth and eleven column of Fig. 9, we can
find that the MD method is quite sensitive to the noises and
KDE cannot perform well on Meeting room, Highway and
Dance bootstrapping.

3) Experiments on strong lighting sequences: In this sub-
section, we evaluated the algorithms under strong lighting situ-
ations. Two sequences were used for testing. One is an outdoor
Pedestrians sequence with strong lighting. The sequence has
a length of 1099 and a resolution of 360x240. The other is

an indoor Switch light sequence which first turns off the light
and then turns on the light causing strong lighting changes.
The sequence is with the length of 1546 and resolution of
160x128. Pedestrians sequence provides the ground truths in
the range of 300 to 1099 and Switch light sequence provides
20 ground truths of the key frames for performance evaluation
according to [37]. We performed all the algorithms on the two
sequences. The average similarities results are shown in Table
VI. Our method obtains better foreground extraction results
than the other methods. See the second row in Fig. 10, RPCA-
ME, PCA, SOBS and GMM do not obtain good results under
the situation of Switch light. MD and KDE are much more
sensitive to lighting changes comparing with other methods.
4) Experiments on challenging sequences with serious oc-
clusion: To further evaluate the performances of all the
algorithms, we used three challenging sequences for the exper-
iments. Two Walking with occlusion sequences were captured
by ourselves. Both sequences are of the length of 400 and
have a resolution of 352x288. We labeled the ground truths
on every 10 frames. The Walking I and Walking Il sequences
are shown in the first and second rows of Fig. 11. The
third sequence is Pets 2006 S7 with a length of 1200 and a
resolution of 360x288. This sequence is the most challenging
one among all the seven sequences in Pets 2006 Dataset. Many
people appear in the scene. Moreover, the occlusion between
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Fig. 10: Comparison results on strong lighting sequences. The first to the second rows show the detection results on 467-th
frame of Pedestrians and 2507-th frame of Switch light sequences. The first and the second columns shows the original image
and its ground truth. The third to the eleventh columns show the results of JVESD-RPCA, RPCA, GoDec, RPCA-ME, PCA,

MD, SOBS, GMM and KDE respectively.

Fig. 11: Comparison results on challenging sequences with serious occlusion. The first to the third rows show the detection
results on 211-th frame of Walking I, 171-th frame of Walking II and 841-th frame of Pets 2006 S7 sequences. The first and
the second columns shows the original image and its ground truth. The third to the eleventh columns show the results of
JVESD-RPCA, RPCA, GoDec, RPCA-ME, PCA, MD, SOBS, GMM and KDE respectively.

TABLE VI: Average similarities (%) on strong lighting sequences

Sequence JVFSD-RPCA  RPCA  GoDec RPCA-ME PCA MD SOBS GMM KDE
Pedestrians 73.66 73.53 52.53 72.77 5841 6525 66.14  72.07 48.84
Switch light 61.68 57.23 59.32 38.23 2923  11.09 23.14 36.20 8.36

TABLE VII: Average similarities (%) on challenging sequences

Sequence JVFESD-RPCA  RPCA  GoDec RPCA-ME PCA MD SOBS GMM KDE

Walking 1 66.45 52.68 16.02 49.28 43.46 47.67 5398 4774 4843
Walking 11 68.89 4791 9.34 46.44 45.18 27.80 16.18 40.05 24.89
Pets 2006 S7 71.82 53.68 20.22 37.05 25.07 3227 4043 31.16  44.60

the people happens quite often. Since no ground truths of this
sequence are provided, we labeled the ground truths on every
10 frames and totally used 120 ground truths for evaluation.
The detailed testing results of all the methods on Walking I,
Walking Il and Pets 2006 S7 sequences are shown in Fig.
12, 13 and 14. It can be seen from three similarity curves
that JVFSD-RPCA outperforms other methods among most
of the frames with ground truths. Walking II sequence has the
most serious occlusion phenomenon among three challenging
sequences. Even under such a situation, JVFSD-RPCA still
can obtain a satisfactory result. However, the performances of
other methods drop down as shown in Fig. 13. The average
similarities of all the algorithms on three sequences are illus-
trated in Table VII which validate the effectiveness of JVFSD-
RPCA on challenging sequences with serious occlusion. More
vivid demonstration of the foreground extraction results can be
found in Fig. 11.

We present the rational explanation of the experimental
results as follows. The subspace-based methods take all the
successive frames as adjacent column vectors of a matrix and

try to obtain the sparse component or outlier of this matrix.
It can be regarded as a global scheme for background sub-
traction. However, in the crowded sequence, the background
does not appear frequently owing to the highly dense walking
flow. The global scheme fails when it comes to this situation.
Unlike the global scheme, the JVFSD-RPCA takes the motion
priori knowledge into account, then the proposed LBWCMD
method can assign the successive frames to different subsets.
With this reason, the frames in each subsets are not continuous,
which means the measurement matrix is not only sparse
in space but also sparse in “time”. This can alleviate the
influence of the highly dense movement to some extent. In
addition, we augmented each subset by using the frames with
a small quantity of motion. This also can provide more genuine
background pixels and prompt good recovery results. For
the other methods, they usually need a training or learning
phase to produce suitable parameters to detect the foreground.
However, good parameters are very hard to obtain under the
situation with serious occlusion.
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TABLE VIII: Flops of the main steps in Algorithm 1

Main steps in Algorithm 1 Flops
9 3uNy, —3v—1
11 3vn —m + 1 — 3vNy;
22 %v >y N%,i - %’un —-m

C. Complexity analysis of the proposed method

The proposed method is summarized in Algorithm 3, which
consists of Algorithm 1 and Algorithm 2. For Algorithm 1, the
flops of the main steps are listed in Table VIII, where n is the
number of samples, v is the dimension of a sample, m is the
number of subsets, Ny, is the number of samples of the ¢-th
subset in a certain while loop and 7' is the maximum iteration
times within while loop. Since the sample is the location of
moving object, v = 2. Taking all the steps into consideration,
the maximum complexity of Algorithm 1 is O(T'mn?). For
Algorithm 2, the main complexity is produced in step 1 which
consists of foreground pixel counting and foreground area
sorting. The former costs O(nwh) and the latter costs O(n?),
where h and w are respectively the height and width of an
image. However, in our problem, wh > n. Therefore, The
complexity of Algorithm 2 is O(nwh). For Algorithm 3, the
complexity of step 1 is easy to evaluate, namely O(nwh).
Step 2 and 4’s complexities are related to Algorithm 1 and
2, which have been discussed above. The complexity of step
3 is O(m). Finally, we execute step 5 to run RPCA on each
group set. The complexity of RPCA has been discussed in
[21], namely O(nwhmin(n,wh)). In summary, the complexity
of the proposed method is O(nwhmin(n,wh)). For other
subspace-based methods, the complexity of GoDec, RPCA-
ME and PCA is O(nwh7) [24], O(nwhk) [18] and O(n?)
where 7 is the predefined low rank of measurement matrix
and k is the number of principle components of measurement
matrix, respectively.

Since the proposed method is based on RPCA, the pre-
processing procedures have to be completed at first. Then
RPCA is conducted on each group set Z;(i = 1,2,--- ,m)
to extract the foregrounds. Although the complexity of the
proposed method is of the same level as RPCA, the counting
flops of the proposed method are more than RPCA. Based on
the design of the proposed method as shown in Fig. 3 (b),
the executions of RPCA on the group sets are independent
actually. Therefore we can use parallel computing technique
to accelerate the speed of the proposed method. For the sake
of completeness, we compare the execution times of all the
methods on Windows XP system with 3.4GHz CPU and 8GB
RAM. The experiments were run 10 times over different
sequences. The average execution times are listed in Table IX.
The results in bold font highlight the longest execution time
among all the methods on the same sequence. Obviously, the
efficiency of GoDec is the lowest among all the methods. On
the contrary, RPCA-ME holds the highest efficiency among
all the methods. The proposed method runs about 1.5 seconds
slower than RPCA on average. Since the proposed method
has completed some optimization steps before RPCA, JVFSD-
RPCA costs a little more time in background subtraction.
Even though JVFSD-RPCA costs more time, experiments in
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Fig. 12: Comparison results on Walking I
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Fig. 13: Comparison results on Walking II

11 sequences show that our method is more competitive than
the other methods.

VIII. CONCLUSION

Unlike current subspace-based background subtraction
methods, we took advantage of the motion priori knowledge
and proposed a new JVEFSD-RPCA method for background
subtraction. The coarse motion estimation in Section III pro-
vides us the locations of the objects and the ratios of the
foreground areas in the frames. Based on the centroids of the
moving objects, we firstly developed LBWCMD method to
divide the video frame set into different subsets for allevi-
ating the influence of the highly dense movement. Then we
constructed an augmented set using the frames with a small
quantity of motion which facilitates us to obtain more genuine
background pixels in each subset. By integrating the above
two phases, we finally obtained the group sets, in which the
moving objects are uniformly located at random. The proposed
method makes the foreground pixels sparse not only in space
but also in “time”.
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TABLE IX: Average execution times (s) of the methods on different sequences

Sequence JVFSD-RPCA RPCA GoDec PRCA-ME PCA MD SOBS GMM KDE
Intelligent room 12.7 11.0 17.9 2.0 2.5 5.0 54 44 4.6
Walking 1 19.8 19.3 21.5 2.8 34 7.3 7.7 6.7 6.9
WaterSurface 19.9 17.6 25.6 2.2 49 9.7 10.2 8.7 7.1
Dance bootstrapping 27.1 25.7 33.2 3.1 6.7 11.2 12.0 10.1 10.5
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Fig. 14: Comparison results on Pets 2006 S7

Experiments on various challenging sequences validated the
competitiveness of the proposed method comparing with the
state-of-the-art background subtraction methods. The charac-
teristics of the proposed method can be concluded from the
experiments. First, LBWCMD can maintain the number of
the frames in each subset at the same level. This is very
important since the unbalanced scale of the subset will result
in bad background extraction results. Second, JVFSD-RPCA
works well in the situations of lighting changes or large size
of occlusion such as sequence Walking II. However, some of
the other methods fail in these situations. Third, the proposed
method is an improved version of RPCA and it concentrates
on enhancing the effectiveness of foreground detection results.
Some optimization steps are completed before RPCA which
results in more counting flops than RPCA. In order to make
JVESD-RPCA applicable, we can use the parallel computing
technique to accelerate the speed of the proposed method.
Experimental results in 11 sequences show that the proposed
method is more competitive than the other methods. In the
future, we will pay more attention to further improving the
efficiency of the algorithm.
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