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Abstract— Direction-based methods are the most powerful and1

popular palmprint recognition methods. However, there is no2

existing work that completely analyzes the essential differences3

among different direction-based methods and explores the most4

discriminant direction representation of a palmprint. In this5

paper, we attempt to establish the connection between the direc-6

tion feature extraction model and the discriminability of direction7

features, and we propose a novel exponential and Gaussian8

fusion model (EGM) to characterize the discriminative power9

of different directions. The EGM can provide us with a new10

insight into the optimal direction feature selection of palmprints.11

Moreover, we propose a local discriminant direction binary12

pattern (LDDBP) to completely represent the direction features13

of a palmprint. Guided by the EGM, the most discriminant14

directions can be exploited to form the LDDBP-based descriptor15

for palmprint representation and recognition. Extensive experi-16

ment results conducted on four widely used palmprint databases17

demonstrate the superiority of the proposed LDDBP method over18

the state-of-the-art direction-based methods.19

Index Terms— Palmprint recognition, exponential and20

Gaussian fusion model, direction binary pattern, discriminant21

direction representation.22

I. INTRODUCTION23

B IOMETRIC-BASED personal authentication has been24

widely applied in modern society due to its several25

advantages such as high-security, high-efficiency and user-26

friendliness [1], [2]. The widely used biometric traits include27
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face, fingerprint, finger/palm/hand vein, iris, voice, gait, sig- 28

nature, and so on [3]. As a relatively new and promising 29

biometric trait, a palmprint contains a number of highly dis- 30

criminative features, including not only the obvious principal 31

lines and wrinkles but also the significant ridge patterns 32

and minutiae points, most of which are considered to be 33

immutable to an individual [1], [4], [5]. Therefore, palmprint- 34

based recognition technology has the potential to achieve a 35

high accuracy and desirable performance [6]–[8]. 36

So far, there have been various palmprint feature extraction 37

and recognition methods in the literature [9]. For example, 38

Huang et al. [10] and Palma et al. [11] extracted the 39

principle lines of a palmprint for palmprint verification. 40

Morales et al. [12] extracted the scale invariant feature 41

transform (SIFT) based features for palmprint recognition. 42

Dai et al. [13] proposed a multi-feature based high-resolution 43

palmprint recognition method by fusing the principal lines and 44

minutiae points of a palmprint. Ribaric et al. [14] proposed a 45

Fisherpalm method for palmprint recognition by using Fisher’s 46

linear discriminant analysis. In addition, the study on machine- 47

learning methods, such as subspace learning [14], [15] and 48

sparse representation (SR) [16], for palmprint recognition has 49

become active. For example, Guo et al. [16] proposed a 50

palmprint recogniton method by using sparse representation. 51

Zhang et al. [17] applied the collaborative representation (CR) 52

scheme for palmprint identification. Imad et al. [18], [19] pro- 53

posed a hybrid palmprint recognition method, which used 54

2-D PCA and 2-D LDA to form an ensemble discrimi- 55

native dictionary of palmprint images, and then employed 56

SR-based classifier for feature identification. Quite recently, 57

the modern deep convolutional neural network is also 58

applied for palmprint recognition [20]–[22]. For example, 59

Izadpanahkakhk et al. [22] proposed a convolutional neural 60

network and transfer learning fusion method to extract 61

ROI and discriminative features for palmprint verification. 62

Zhong et al. [8] systematically summarized state-of-the-art 63

feature extraction and matching methods for palmprint recog- 64

nition over the past decade. It is well known that a palm- 65

print carries strong direction features along with its line and 66

texture features. Moreover, direction feature is insensitive to 67

illumination change [23]. For these reasons, more recently 68

published methods [23]–[32] focused on the extraction of the 69

direction features of a palmprint and achieved very promis- 70

ing recognition performance, which can be roughly classi- 71

fied into three categories, including the winner-take-all-based 72

1051-8215 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-6072-7875
https://orcid.org/0000-0003-2497-9519
https://orcid.org/0000-0003-0530-2123
https://orcid.org/0000-0002-2412-9330
https://orcid.org/0000-0001-5628-6237
https://orcid.org/0000-0001-9554-2379


IEE
E P

ro
of

2 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY

methods, multiple-directions-based methods, and local direc-73

tion statistics-based methods.74

The winner-take-all rule based methods [26] generally75

extract the most dominant direction feature of palmprint. They76

are based on an underlying assumption that the pixels in a77

palmprint image belong to some lines and thus carry dominant78

directions. One of the most typical methods is the competitive79

code method [26], which uses six directions of Gabor filters80

to filter a palmprint image. The direction of the Gabor filter81

that obtains the largest filtering response was extracted as the82

dominant direction of a palmprint. Similarly, the robust line83

orientation code (RLOC) method [27] designed twelve Radon-84

based filters to obtain the dominant directions of the palmprint.85

Extended from the competitive code method, the double-86

orientation coding method [28] extracted double direction87

features based on the top-two strongest line responses. In addi-88

tion, the similar rule of winner-take-all is also used in the89

block dominant orientation code [29] , fusion code [30] and90

DRCC [31] methods.91

Differently, multiple-direction-based methods propose to92

preserve the features on multiple directions. The represen-93

tative multiple-direction-based methods include the orienta-94

tion co-occurrence vector (BOCV) [33], extended BOCV95

(E-BOCV) [34], ordinal code [35], and neighboring direction96

indicator (NDI) [36] methods. For example, the BOCV method97

defined six Gabor filters to convolve with a palmprint image,98

and the results of the six filter responses were encoded.99

Extended from BOCV, E-BOCV extracted six direction code100

maps as the BOCV, and meanwhile filtered out the fragile101

direction points based on the magnitudes of filtering responses.102

In addition, the NDI method encoded the comparative response103

results between neighboring orientations among six orienta-104

tions. Sun et al. [35] extracted three orthogonal direction codes105

by using three orthogonal Gaussian filters.106

For the third category, a bank of templates are also used to107

convolve with palmprint to characterize the direction features,108

and then the statistics of one or multiple direction features109

are encoded. For example, the local line directional patterns110

(LLDP) method [37] encoded two direction features of a111

palmprint and formed the histogram-based direction descriptor.112

The LMDP method [38] calculated and concatenated the113

blockwise statistics of multiple dominant directions as the114

palmprint descriptor. Jia et al. [23] proposed a histogram115

of oriented line (HOL) method by calculating statistical116

energy on different orientations for palmprint recognition.117

Fei et al. [39] extracted the apparent direction features from118

the surface layer and the latent direction features from the119

energy map layer of a palmprint, and then a joint histogram120

is constructed as the final feature. In addition, Li et al. [40]121

extended the Local Tetra Pattern to Local Micro-structure Tetra122

Pattern (LMTrP) palmprint descriptor. Zhang et al. [17] used123

the blockwise histograms of the competitive code forming the124

feature vectors of a palmprint.125

The direction-based palmprint recognition methods with126

promising accuracies have proved the success of the direction127

features for palmprint recognition [7]. Existing work generally128

extracted different kinds of direction features of a palmprint.129

Fig. 1. The basic idea of the proposed method. For each palmprint
image, local discriminant direction binary pattern are extracted, and then
the most discriminant direction features are exploited. Further, the blockwise
histograms are correspondingly computed and concatenated to form the
LDDBP-based palmprint descriptor.

However, to the best of our knowledge, there is no work to 130

investigate the essential discriminability of different directions. 131

Therefore, the most discriminant direction representation is 132

not yet exploited. To address this, in this article, we pro- 133

pose a novel model to characterize the discriminative power 134

of different kinds of directions so that more discriminative 135

direction features can be exploited. Then, we propose an 136

effective and compact discriminant direction descriptor for 137

palmprint recognition. Fig. 1 outlines the basic framework of 138

the proposed method. Extensive experiments on different types 139

of palmprint databases are conducted to show the effectiveness 140

of the proposed method. 141

The main contributions of this paper can be summarized as 142

follows: 143

• The connection between the direction feature extraction 144

model and the discriminability of directions is estab- 145

lished, and a novel exponential and Gaussian fusion 146

model (EGM) is proposed to characterize the essential 147

discriminability of different directions of palmprints. The 148

EGM can better demonstrate the reasons why the state- 149

of-the-art methods achieve promising performance. More 150

importantly, the EGM provides us with an effective 151

guideline for the potential discriminant direction selection 152

for the optimal palmprint representation. 153

• We propose a local direction binary pattern (LDDBP) 154

for the discriminant direction feature extraction. LDDBP 155

can better describe the direction changes and implicitly 156

denotes the multiple dominant direction features of a 157

palmprint. Guided by the EGM, the top-three discrimi- 158

nant direction features are exploited from the LDDBP, 159

and a compact LDDBP-based descriptor is designed for 160

palmprint representation and recognition. 161

• Extensive experiments, as well as the comparison from 162

the state-of-the-art deep-learning methods, on four widely 163

used palmprint databases, are presented to demonstrate 164

the effectiveness of the proposed method. 165

The remainder of this paper is organized as follows. 166

Section II briefly review the related work. Section III proposes 167

a local discriminant direction binary pattern for palmprint 168

representation and recognition. Section IV conducts the experi- 169

ments, and finally section V draws the conclusion of this paper. 170
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Fig. 2. The basic procedure of the ROI extraction. (a) An input palmprint
image. (b) The low-pass Gaussian filter is used to smooth the palmprint image,
which is then converted into a binary image by thresholding, so as to obtain
the boundaries of the binary image by using a boundary tracking algorithm.
(c) The landmarks at the bottom of the gaps between fingers is used to
establish a coordinate to determine the location of the ROI. (d) The sub-
image located at a certain area of a palmprint is cropped and normalized to
a fixed size, which is the ROI of the palmprint image.

Fig. 3. The basic idea of direction feature extraction of a palmprint.
(a) A palmprint image with a clearly visible line feature. (b) A Gabor template.
(c) The upside-down intensity value map of the local patch of the palmprint.

II. RELATED WORK171

In this section, we briefly review the ROI extraction,172

the basic model of direction feature extraction, and direction173

feature representation of palmprint images.174

A. ROI Extraction175

In general, preprocessing is performed on a palmprint image176

to extract the region of interest (ROI) before feature extraction.177

The procedure of ROI extraction is depicted in Fig. 2. It is178

seen that the location of the ROI is essentially determined by179

the reference points, which are stably located at the bottom180

of gaps between the index and middle fingers and between181

the ring and little fingers. Therefore, the ROIs of palmprint182

images are generally aligned on both rotation and translation.183

B. The Basic Rule of Direction Feature Extraction184

In direction feature extraction of a palmprint, the common185

rule is to use line-structure detectors, such as Gabor filter,186

to characterize the direction feature of palmprint. To better187

illustrate the procedure of direction extraction, we take a188

palmprint image with a clearly visible line feature as an189

example, as shown in Fig. 3(a). Fig. 3 (b) depicts a Gabor190

filter with a “line-model” [26]. It is known that the black lines191

of the palmprint image usually have smaller gray values, and192

the line-model of the Gabor template has larger values. Thus,193

in real application, we usually subtract the gray values of a194

palmprint image with 255 to obtain the “upside-down” [26]195

palmprint image. Fig. 3 (c) shows the upside-down intensity196

value map of the local patch of Fig. 3 (a). It is not hard to 197

deduce that the Gabor filter with the consistent direction with 198

the line feature of the palmprint image can obtain a strong 199

filtering response. 200

Inspired by this observation, the most dominant direction 201

of palmprint can be detected by using a bank of filters with a 202

series of pre-defined directions. Among them, one filter could 203

generate the strongest filtering response with the palmprint, 204

and the direction of which should be highly similar with the 205

direction of the palmprint. Hence, the direction of the filter 206

that maximizes the filtering response can be considered as the 207

dominant direction feature of the palmprint. In general, the real 208

part of Gabor filter is the most powerful tool for direction 209

feature extraction, which has the following general function: 210

G(x, y, θ, μ, σ, β) = 1

2πσ 2 ex p{−π(
x2

σ 2 + y2

β2 )} 211

× cos(2πμ(xcosθ + ysinθ)), (1) 212

where μ is the radial frequency in radians per unit length, 213

σ and β denote the standard deviations of the elliptical 214

Gaussian along the x and y axis, respectively. The ranges 215

of x and y control the sizes of the function. The optimal 216

parameter setting can be referred to the study of [24]. θ defines 217

the direction of the Gabor function. In practice, a bank of 218

Gabor filters with directions of θ j = ( j − 1)π/Nθ is usually 219

defined, where Nθ is used as the direction number of Gabor 220

functions, and j is the corresponding direction index. To better 221

characterize the direction of palmprint, in this paper Nθ is 222

empirically set to 12. The convolution between the Gabor 223

functions and palmprint image I is as follows: 224

r j (x, y) = G(θ j ) ∗ (255 − I (x, y)), (2) 225

where “*” denotes the convolution operator. A bank of Gabor 226

functions with different directions can obtain a group of 227

convolved results with the palmprint image. Among them, 228

the Gabor function that produces the maximum convolved 229

result is selected, and the direction of which is treated as the 230

most dominant direction of the palmprint: 231

θ(I (x, y)) = arg max
θ j

r j (x, y). (3) 232

C. Direction Feature Representation 233

Direction features of palmprint images are usually repre- 234

sented by pixel-wise codes, which are also matched in pixel- 235

wise level in palmprint recognition [26], [33]. However, it is 236

inevitable that palmprint images have misalignments due to the 237

image capture device and the external environment, especially 238

for contactless palmprint images. The pixel-wise direction 239

feature codes are sensitive to small amount of registration 240

errors between the probe and gallery samples [17]. To this 241

end, the blockwise statistics, such as histograms, of direction 242

features are usually used as palmprint descriptor due to its 243

promising robustness to small misalignments. 244

The local direction based descriptor is originally designed 245

focusing on the images with rich edge features. For exam- 246

ple, local direction pattern (LDP) [41] calculated the edge 247
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responses by convolving Kirsch edge masks of a point with the248

eight neighbors. Then, the top-k edge responses were selected249

and binarized to construct the LDP codes, and the blockwise250

histograms of which were calculated. After that, the enhanced251

local directional pattern (ELDP) [42] and local directional252

number (LDN) [43] encoded two selected direction features253

forming the blockwise direction histogram descriptor. Inspired254

by that, Luo et al. [37] proposed a local line directional pattern255

(LLDP) for palmprint representation. It used both the MFRAT256

and Gabor filters with twelve directions to obtain the line257

responses of a palmprint, and then the similar schemes as258

ELDP and LDN were used to encode two specific directions.259

Lastly, the blockwise histograms of the direction codes were260

computed and concatenated as the palmprint feature. Quite261

recently, the blockwise statistics of direction feature codes262

have been widely used as the feature representation of palm-263

print images [17], [38]–[40].264

III. DISCRIMINANT DIRECTION FEATURE EXTRACTION265

In this section, a Gaussian-like model is proposed to demon-266

strate the discriminability of different directions. Further,267

a local discriminant direction binary pattern is proposed for the268

discriminant direction feature extraction. Finally, the LDDBP-269

based palmprint descriptor is formed for palmprint recognition.270

A. The Discriminability of Direction Features271

It is seen that both the dominant and other direction features272

are widely used for palmprint recognition. However, to the best273

of our knowledge, there is no work to investigate and ana-274

lyze the discriminative power of different direction features.275

Motivated by this, in this section, we aim to investigate the276

essential difference of the direction features.277

Based on the rule of direction feature extraction, the line-278

like templates with pre-defined directions are generally used,279

and the convolved results between the templates and palm-280

print image are the basis of direction feature extraction. For281

instance, some methods extract the direction features based282

on the maximum convolved values [26], [30], and some other283

methods extract the direction features based on both the284

maximal and minimal the convolved results [44]. Therefore,285

we believe that the discriminability of the direction features286

is heavily related with the convolved results between the287

templates and a palmprint. In addition, a palmprint image288

generally contains two kinds of points, namely, the points with289

visible lines such as the principal lines and the points with290

invisible line. In the following, we discuss the discriminability291

of the direction features for both kinds of the points based on292

the convolved results between the templates and the points.293

To better illustrate the direction feature extraction for a point294

with a obviously dominant direction, we take a palmprint295

image with a clearly visible line feature as an example,296

as shown in Fig. 4 (a). We use twelve Gabor filters with direc-297

tions of ( j−1)π/12( j = 1, 2, . . . , 12) to convolve the point on298

the visible line obtaining twelve filtering responses, as shown299

in Fig. 4 (b). The Gabor filter with the direction of π/4300

produces the strongest filtering response (maximum convolved301

result) among all twelve templates. Therefore, according to the302

Fig. 4. An illustration dominant direction extraction of a point within a local
patch of a palmprint image with a visible line feature. (a) A palmprint image
with a visible line direction feature. (b) The convolved results between Gabor
filters and a point of the palmprint image on twelve directions. (c) A Gabor
filter. (d) The convolution of the Gabor filter and a point within a local patch
with a line feature. (e) The convolution procedure model between the filters
and a palmprint line.

competitive code method, we take the π/4 as the dominant 303

direction feature of the point in the palmprint image, which 304

is technologically sound. In general, a Gabor filter has an 305

obvious line-model [26], as an example shown in Fig. 4 (c). 306

The filtering response between a Gabor filter and the point is 307

essentially the sum of the pixel values weighted by the Gabor 308

filter of a local patch. Theoretically, when a Gabor filter has 309

a similar direction as the palmprint line, the line-model of the 310

Gabor filter will better overlap the palmprint line, as shown 311

in Fig. 4 (d), resulting to a stronger filtering response with the 312

palmprint line. In other words, the filtering response between 313

a Gabor filter and a point in a palmprint line is theoretically 314

proportional to the overlapped area of line-models between 315

the filter and the palmprint line. We abstract the convolution 316

in Fig. 4 (d) as Fig. 4 (e). It clearly shows that the line- 317

model of the Gabor filter has a larger overlapped area with the 318

palmprint line if they have more similar directions, producing 319

a larger filtering response. Therefore, the filtering response 320

between a Gabor filter and a palmprint line is essentially 321

related to its direction difference, which can be defined as: 322

|θGabor +π − θline| mod π , where θGabor and θline represents 323

the direction angles of the line-models of the Gabor filter and 324

the palmprint line, respectively. In the following, we further 325

discuss the relationship between the filtering response and the 326

direction difference between a Gabor template and a palmprint 327

line. 328

We assume that a Gabor filter has the same direction as 329

the palmprint line. The convolution result, as well as the 330

overlapped area between the line-models of the filter and the 331

palmprint line, should be larger than that of other directions. 332

Now, if we change the direction difference to �θ , as shown 333

in Fig. 5 (a, blue arrow), the overlapped area between the 334

line-models of a Gabor filter and the palmprint line will be 335

reduced, as shown in Fig. 5 (a, from green area to blue area). 336

Then, if we further change the direction difference with the 337

same �θ , as shown in Fig. 5 (a, purple arrow), the overlapped 338

area changes by an even smaller amount than the former one, 339

as shown in Fig. 5 (a, from blue area to purple area), due to 340

the elliptical shapes of the Gabor filters. Therefore, we can 341

deduce that, starting from the direction difference of 0, as the 342

direction difference is gradually increasing, the corresponding 343

overlapped area and the filtering response (convolved result) 344

will be reduced rapidly at the beginning and then slowly 345

afterwards. The convolved result reaches its minimum value 346
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Fig. 5. The relationship between the discriminability of direction features and direction feature extraction model. (a) A convolution operation model. (b) The
convolved result distribution of an example. (c) The convolved result distribution model; and (d) The curve of the EGM.

when the direction difference is about π/2, that is, the Gabor347

filter and the palmprint line have perpendicular directions.348

As the direction difference further gradually increases, the349

convolved result will increase slowly at the beginning and then350

increase rapidly. It reaches the maximum value again when351

the direction difference reaches π (the same as the direction352

difference of 0). We also take the convolution of Fig. 4 (b) as353

an example. The filtering responses between the Gabor filters354

and the palmprint line along the direction difference can be355

depicted as Fig. 5 (b). It shows that the filtering response356

reaches its maximum value when the direction difference357

is 0. When the direction difference changes from 0 to π/12,358

the corresponding filtering response is reducing more faster359

than that from 6π/12 to 7π/12. Therefore, the relationship360

between the direction difference and the convolved result361

can be modeled as shown in Fig. 5 (c), where the x-axis362

represents the direction difference and the y-axis denotes the363

corresponding convolved results.364

Fig. 5 (b) shows that few Gabor filters can produces365

larger filtering responses. For example, only two Gabor filters366

with two direction differences of 0 and 11π/12 can pro-367

duce larger filtering responses (convolved results), as shown368

in Fig. 5 (b, purple circles). By contrast, five Gabor fil-369

ters can produce smaller filtering responses, as shown in370

Fig. 5 (b, blue circles). Hence, if the directions of the Gabor371

filters corresponding to the top-two filtering responses are372

selected as the direction features of a palmprint, the directions373

of the filters with direction differences of 0 and 11π/12 can be374

easily extracted. Because very few Gabor filters can produce375

as large a filtering response as them. If the directions of the376

Gabor filters producing the smallest two filtering responses are377

taken as the direction features of a palmprint, the directions378

of the filters with direction differences of 6π/12 and 7π/12379

can be extracted in this example. However, these directions380

could be easily affected by small rotation or noise because381

many Gabor filters can produce very close filtering responses382

to them. Therefore, the direction features corresponding to383

larger convolved results should be more stable than that of384

the smaller convolved results, and thereby achieve a better385

performance at palmprint representation.386

Fig. 5 (c) also shows that, with a certain range of the387

convolved results (e.g., ri ), a larger convolved result value388

(e.g., r1) corresponds to a smaller range of the direction389

difference (e.g., �θ1). This means that fewer directions 390

of the templates can obtain the large convolved results. 391

Comparatively, a smaller convolved result (e.g., rn) corre- 392

sponds to a larger range of the direction difference (e.g., �θn), 393

which means that more directions of the templates can obtain 394

these smaller convolved results. In other words, suppose there 395

have many Gabor filters with various and evenly distributed 396

directions, a stronger filtering response can be produced by 397

a few Gabor filters and a smaller filtering response can be 398

easily obtained by more Gabor filters. Thus, the probability 399

of producing a larger filtering response is smaller than that of 400

producing a smaller one. We believe that the directions of the 401

Gabor filters producing larger filtering responses are more sta- 402

ble than that of producing smaller responses, and thus achieve 403

a better performance for palmprint recognition. Therefore, 404

we think that the direction of the Gabor filter that produces a 405

stronger filtering response have higher discriminability. 406

It is also seen that a palmprint usually contains many 407

points without clearly visible line features. For those points, 408

in direction feature extraction, it is believed that very few 409

templates can obtain the maximum filtering response, and 410

very few templates can reach the minimum filtering response. 411

Comparatively, a medium convolved result can be obtained 412

by more templates with more directions. Thereby, we assume 413

that the probability of the convolution results between the 414

templates and these points satisfy a Gaussian model, as shown 415

in Fig. 5 (d, blue line). In addition, we assume that the proba- 416

bility of the convolution results between the Gabor filters and 417

the palmprint points with visible lines follows an exponential- 418

like model, as shown in Fig. 5 (d, green line). A palmprint 419

generally contains different kinds of points with visible, invis- 420

ible or medium-visible dominant direction features. Therefore, 421

we can reasonably assume that the possibility of the convolved 422

result between a template and palmprint follows an exponential 423

and Gaussian fusion model (EGM), which can be represented 424

as follows: 425

pc_r ∼ λ1ek∗c_r + λ2Gaus(μ, σ 2), (4) 426

where c_r represents the convolved result, and Gaus rep- 427

resents a Gaussian function. λ1, λ2, k, μ and σ are the 428

parameters. Of them, the balance parameter, that is, λ1 and λ2, 429

can be set according the characteristics of palmprint. For 430

instance, λ1 should be larger than λ2 if a palmprint contains 431
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a large number of line features, and otherwise λ2 should be432

larger than λ1. In Fig. 5 (d), the red line shows an example of433

the EGM, where the x − axis denotes the filtering responses434

(i.e., convolved results) between the templates and the points435

in a palmprint image, and the y − axis represents the corre-436

sponding probabilities of the convolved results. For the sake437

of clarity, the value of x − axis is gradually decreasing, i.e.,438

ri > ri+1.439

From the curve of the EGM, as shown in Fig. 5 (d, red line),440

we can obtain the following findings: (1) the direction of441

the Gabor filter that produce the strongest filtering response442

generally has the best discriminability; (2) the discriminability443

of the direction features will decrease as the filtering response444

decreases, and then it will increase as the filtering response445

further decreases; (3) the direction of the Gabor filter that pro-446

duces the smallest filtering response usually have a relatively447

higher discriminability.448

The EGM generally represents the probability distribu-449

tions of the convolved results between the filters and the450

palmprint. More importantly, the model essentially reflects451

the discriminability of different direction features. The EGM452

shows that the most dominant direction generally has the453

best discriminability. This validates the effectiveness of the454

winner-take-all based methods that extract the most dominant455

direction feature of a palmprint, such as the competitive code456

and RLOC methods. Further, the directions of the templates457

producing the maximum and minimum filtering responses458

usually have higher discriminability than the neighboring459

directions of them. This is the reason why the dual competitive460

code method [44] extracted the direction features based on461

both the maximal and minimal Gabor filtering responses.462

In addition, the EGM shows that the direction feature with a463

larger line response behind the largest one possibly has higher464

discriminability. This finding is consistent with the results465

of the DOC and LLDP methods. Therefore, the proposed466

model can better demonstrate the reasons why conventional467

methods can achieve promising performance. Furthermore, the468

model provides us with an effective guideline to exploit the469

most discriminant directions for the optimal palmprint feature470

representation.471

B. Local Discriminant Direction Binary Pattern472

The conventional winner-take-all rule can only extract the473

single-dominant direction of a palmprint. However, a palm-474

print usually contains a number of crossing and fold lines,475

which lead to multiple-dominant directions in a palmprint.476

To this end, we introduce an effective scheme to represent477

the multiple-dominant direction cases of a palmprint.478

It is noted that the convolved result between a filter and479

a palmprint line is generally proportional to the overlapping480

area between the line-models of the filter and the palm-481

print line. Based on the observation, it can be deduced that482

a filter with a more closer direction to the line direction483

can produce a larger overlapped area with the line, thus484

generating a larger convolved result. A simple and effec-485

tive way to represent the relationships between two filter-486

ing responses along neighboring directions can be written487

Fig. 6. The basic idea of the LDDBP. (a) The convolved results of a point
with a visible line direction feature. (b) The LDDBP with a dominant direction
corresponding to panel a. Specially, the above circles demonstrate the circular
property of the LDDBP, where the black and white circles correspond to 1 and
0, respectively. The below binary string is the LDDBP. The arrow denotes
the starting direction and red represents the exact dominant direction. (c) A
point with double dominant directions. (d) The LDDBP with double dominant
directions corresponding to panel c.

as follows: 488

S = [s(rNθ − rNθ −1), . . . , s(r j − r j−1), . . . , s(r2 − r1), 489

s(r1 − rNθ )], (5) 490

where r j represents the convolved result on the j th direction, 491

s(x) equals to 1 if x > 0 and 0 otherwise, and Nθ is defined 492

in Section II. In other words, it is represented as “1” if the 493

convolved result along a direction is larger than that along 494

the adjacent clockwise direction, and otherwise it is marked 495

as “0”. By assigning a binomial factor 2 j for each element 496

s(r j − r j−1) in S [45], it can be transformed into a uniform 497

binary pattern, which is named the local discriminant direction 498

binary pattern (LDDBP), as follows: 499

LDDBP =
Nθ�

j=1

s(r j − rϕ( j ))2
j , (6) 500

where ϕ( j) denotes the adjacent clockwise direction index 501

of j . It is noted that LDDBP is circular and the direction 502

indices of 1 and Nθ are adjacent. That is, ϕ( j) equals to Nθ if 503

j = 1 and ( j − 1) otherwise, and it can be directly calculated 504

as follows: 505

ϕ( j) = mod( j − 2, Nθ ) + 1, (7) 506

where mod denotes the Mudulo operator. 507

The LDDBP can effectively reflect the multiple dominant 508

directions of a palmprint. Specifically, the “01” in the LDDBP 509

essentially denotes a dominant direction, where “1” means that 510

the convolved result along the current direction is larger than 511

that along the clockwise neighbor direction, and “0” denotes 512

that it is smaller than that on the counterclockwise neighbor 513

direction. The number of “01” in an LDDBP denotes the 514

number of dominant directions of a point. Further, in a “01” 515

sequence, the position of the “1” exactly represents the index 516

of the dominant direction. Fig. 6 shows the basic idea of the 517

LDDBP. The LDDBP of Fig. 6 (b), i.e., “110000001111”, 518

represents that it contains only one dominant direction at 519

3π/12. The LDDBP of “011100011000” in Fig.6 (d) denotes 520

that the current point has two dominant directions, i.e., 4π/12 521

and 10π/12. Therefore, the LDDBP can not only describe how 522

the direction feature changes and but also implicitly denotes 523

the multiple dominant direction features of a palmprint point, 524

including the number of the dominant directions and their 525

exact positions. 526
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The dominant direction number (DDN) is essentially deter-527

mined by the “01” in an LDDBP. It is easy to check that528

there is a one-to-one correspondence between sequence pairs529

of “01” and “10” in an LDDBP. Therefore, the DDN can be530

calculated as follows:531

DDNLDDBP = 1

2

Nθ�

j=1

|s(r j − rϕ( j )) − s(rϕ( j ) − rϕ(ϕ( j )))|.532

(8)533

The dominant direction index (DDI), which is the position of534

“1” in a “01” of an LDDBP, directly denotes the index of a535

dominant direction. The DDI of an LDDBP can be obtained536

as follows:537

DDILDDBP = { j |s(r j − rϕ( j )) − s(rφ( j ) − r j ) = 1}, (9)538

where φ( j) denotes the adjacent counterclockwise direction539

index of j , which equals to 1 if j = Nθ and j + 1 otherwise.540

φ( j) can be simply obtained by the following:541

φ( j) = mod( j, Nθ ) + 1. (10)542

The numerical results in the study of [38] show that a plenty543

of points in a palmprint have multiple dominant direction544

features (DDF). Actually, an LDDBP with double dominant545

direction features can be divided into two sub-LDDBPs,546

and each sub-LDDBP contains only one dominant direction547

feature. Specifically, an LDDBP with double DDFs generally548

contains two “01” and two corresponding “10” sequences.549

We divide the “. . . 10 . . .” sequences in an LDDBP into “. . . 1”550

and “0 . . .” to generate two sub-LDDBPs with the general form551

of “0 . . . 01 . . .1,” which is named as a basic LDDBP. For552

example, “011100011000” can be divided into “∗∗∗∗00011∗∗∗”553

and “0111∗∗∗∗∗000.” Therefore, each sub-LDDBP can be554

considered to contain only one “01” and one “10.” An LDDBP555

with more than two DDFs can also be divided into multiple556

sub-LDDBPs, each of which contains one “01” and one “10.”557

Theoretically, the EGM is effective for each sub-LDDBP and558

also a normal LDDBP.559

C. LDDBP-Based Palmprint Representation560

The EGM effectively demonstrates the discriminative power561

of the different direction features of a palmprint. Guided562

by the EGM, we see that the directions corresponding to563

both the maximum and minimum convolved results usually564

have the best discriminability. In addition, the directions565

producing a stronger filtering response behind the strongest566

response should also carry higher discriminability. To balance567

the discriminability and the feature size of direction features,568

in this paper, the directions corresponding to the maximum,569

the second maximum and the minimum convolved results570

are selected as the top-three discriminant direction features,571

forming the palmprint descriptor. To simplify, the direction572

feature corresponding to the kth maximum filtering response573

is referred to as the kth dominant direction.574

To effectively represent the selected discriminant direction575

features, we first select the principal LDDBP of the points in576

a palmprint. The LDDBP with only one dominant direction577

feature is directly the main LDDBP (LDDBPm). For the 578

points with double dominant direction features corresponding 579

to double sub-LDDBPs, we select the sub-LDDBP having the 580

DDF with the maximum filtering responses as the LDDBPm , 581

and another one is considered as the secondary LDDBP 582

(LDDBPs). Therefore, only the LDDBP with two or more 583

DDFs has the LDDBPs . Because very few points of a palm- 584

print have more than two DDFs, we only use the LDDBPm and 585

LDDBPs to represent a palmprint. In the following, we use a 586

compact scheme to label the LDDBPm and the LDDBPs . 587

In a basic LDDBP containing only one “01” pattern, 588

the second dominant direction feature is always adjacent to 589

the first dominant direction. Therefore, the first and second 590

dominant directions can be effectively labeled as: 2×D − 591

s(rϕ( j ) − rφ( j )), where D denotes the first dominant direction 592

index in the basic LDDBP. It is not hard to check that the 593

label range is from 1 to 2Nθ . By contrast, the conventional 594

methods, such as LLDP method, uses N2
θ codes to represent 595

the first and second dominant direction features. Therefore, 596

the proposed label scheme seems to be more effective than the 597

conventional methods. 598

To further compact the representation codes, we use the 599

direction distance to combine the last dominant direction 600

with the top-two dominant direction features. Particularly, 601

the LDDBPm is labeled as follows: 602

Lm = (2×Dm − s(rϕ(Dm) − rφ(Dm)) − 1)×(Nθ − 1) 603

+ mod(Dm − D�
m + Nθ , Nθ ), (11) 604

where Dm and D�
m are respectively the first and last dominant 605

direction indices with the maximum and minimum filtering 606

responses in the LDDBPm . Similarly, the LDDBPs can be 607

represented as: 608

Ls =

⎧
⎪⎨

⎪⎩

0 if DDN = 1

(2×Ds − s(rϕ(Ds ) − rφ(Ds)) − 1)

×(Nθ − 1) + mod(Ds − D�
s + Nθ , Nθ ) if DDN ≥ 2,

609

(12) 610

where Ds and D�
s denote the direction indices corresponding to 611

the largest and smallest filtering responses, respectively, in the 612

LDDBPs . Lm and Ls are considered as the main and secondary 613

discriminant direction codes of a palmprint, respectively. For 614

a point of a palmprint image, the lengths of both Lm and Ls 615

are 2Nθ (Nθ − 1). 616

It is seen that different areas of a palmprint have differ- 617

ent textural and line characteristics. To better represent the 618

position-specific features and overcome the slight misalign- 619

ment of palmprint images, we use the blockwise-based statis- 620

tics to represent the palmprint images. Specifically, a palmprint 621

image is uniformly divided into a set of nonoverlapping 622

local patches. Then, we calculate the LDDBP map, includ- 623

ing both the LDDBPm and LDDBPs maps, for each block. 624

Third, we compute the blockwise histograms of Lm and Ls 625

for each block, and further concatenate them to form the 626

Lm and Ls-based descriptors of the palmprint, respectively. 627

It is pointed out that Ls = 0 means that an LDDBP has 628

non LDDBPs . Therefore, we only count Ls ≥ 1 in the 629

Ls histogram calculation. Finally, we concatenate both the 630
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Lm - and Ls -based descriptors together to form the LDDBP-631

based descriptor.632

D. LDDBP-Based Palmprint Recognition633

In palmprint matching, the LDDBP-based descriptors of634

palmprint images are first calculated. After that, the simple and635

effective Chi-square distance is used to measure the similarity636

between the two LDDBP descriptors. Suppose the two LDDBP637

descriptors of two palmprint images are P and Q, respectively,638

their Chi-square distance is:639

χ2(P, Q) =
NH�

i=1

(pi − qi )
2

pi + qi
, (13)640

where pi (qi ) is the value of P (Q) at the i th bin, and NH is641

the length of the LDDBP descriptor. In summary, the similarity642

of two palmprint images can be evaluated by calculating the643

Chi-square distance between the LDDBP descriptors of them.644

A small Chi-square distance means a high similarity between645

the two compared palmprint images.646

IV. EXPERIMENTS647

In this section, to evaluate the effectiveness of the proposed648

method, we conducted a number of experiments on four649

publicly and widely used palmprint databases, including the650

PolyU, IITD, GPDS and CASIA palmprint databases.651

A. Palmprint Databases652

The PolyU palmprint database [46] contains 7,752 palmprint653

images collected from 386 palms of 193 individuals. The654

images were captured in two sessions with an interval of655

around 60 days. An individual was asked to provide about656

10 samples for both the left and right palms. Actually,657

some palms, such as the 137th palm, provided more than658

17 images in the first session, and some other palms, such659

as the 150th palm, provided only one image in the second660

session. As a result, a palm in the PolyU database might have661

about 11 to 27 samples. The ROI images with the sizes of662

128 × 128 pixels have also been included in the database.663

The IITD palmprint database [47] consists of 2,601 contact-664

less palmprint images collected from 460 palms corresponding665

to 230 subjects with both the left and right palms. Five to six666

samples were captured for each palm. Specially, the left palm667

of the eighth subject provided 7 palmprint images. The IITD668

palmprint database has provided the corresponding ROIs with669

the sizes of 150 × 150 pixels.670

The GPDS palmprint database [48] includes 1,000 contact-671

less palmprint images collected from the right palm of 100 vol-672

unteers, each of which provided 10 palmprint images. The673

GPDS database provides both the original palmprint images674

and the corresponding ROIs. In our experiments, the ROIs are675

resized to 128 × 128 pixels.676

The CASIA palmprint database [49] contains 5,502 palm-677

print images collected from 312 subjects. About 8 to 10 palm-678

print images were respectively captured from the left and679

right palms. It is noted that the 75th and 167th subjects680

provided no palmprint image, and the last right palmprint681

Fig. 7. Some typical palmprint ROI images. The palmprint images of the
first to fourth lines are selected from the PolyU, IITD, GPDS and CASIA
databases, respectively.

image of the 270th individual does not belong to the subject. 682

As a consequence, the used CASIA database actually includes 683

5,501 palmprint images from 310 subjects with 620 palms. 684

In the experiments, the preprocessed method in [24] is used 685

to crop the palmprint ROIs with sizes of 128 × 128 pixels in 686

the CASIA database. 687

The PolyU palmprint images were captured under a contact- 688

based device which used the user-pegs to restrict the place- 689

ment of palms. By contrast, the palmprint images from the 690

other three databases, including the IITD, GPDS, and CASIA 691

databases, were captured under unconstraint environment. 692

Therefore, palmprint images in the IITD, GPDS and CASIA 693

databases were possibly variant on postures, positions, scales, 694

and illumination. Fig. 7 shows some typical sample images 695

selected from the PolyU, IITD, GPDS and CASIA databases, 696

respectively. 697

B. Palmprint Identification 698

Palmprint identification is a one-against-many matching 699

process to determine the class label of a query palmprint 700

image. In general, a set of palmprint images with known 701

class labels is selected as the training sample. A query sample 702

will be compared with the training sample. The class label of 703

the training sample that has the maximum similarity with the 704

query sample is treated as the class label of the query sample. 705

In the following identification experiment, for a database, 706

we randomly selected n palmprint images per palm to form the 707

training set, and used the rest for testing, where n is set from 708

1 to 4. The class label of the training sample that produces the 709

maximum matching score, which is the smallest Chi-square 710

distance in the proposed method, is assigned to the query 711

sample. We also test the conventional powerful direction-based 712

methods and compare them with the proposed method. The 713

compared methods include the competitive code [26], ordinal 714

code [35], E-BOCV [34], neighboring direction indicator 715

(NDI) [36], LLDP [37], ALDC [39], CR_CompCode [17], 716
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TABLE I

THE IDENTIFICATION ACCURACY (%) (AVERAGE ACCURACIES ± STANDARD DEVIATIONS) OBTAINED BASED
ON DIFFERENT METHODS ON THE POLYU, IITD, GPDS AND CASIA PALMPRINT DATABASES

Ensemble-SRC (E-SRC) [19] and HOL [23] methods. For the717

sake of a fair comparison, in the experiments, the local block718

sizes of all the related methods are set as 16×16 pixels, unless719

otherwise stated. All the methods are repeated 10 times and720

the rank-one identification accuracies (average accuracies ±721

standard deviations) are reported.722

Moreover, we implement three typical deep-learning mod-723

els for palmprint recognition, including the AlexNet [50],724

VGG-16 [51] and ResNet-50 [52] models. AlexNet consists725

of eight learned layers, five convolutional layers and three726

fully connected ones. A 1000-way softmax connected with the727

last fully connected layer produces the classification results.728

Generally, VGG-16 has similar input and fully connected lay-729

ers as the AlexNet. The main difference between the VGG-16730

and AlexNet is in the hidden layers where the VGG-16 has a731

total of 5 pooling layers and 13 convolutional layers with small732

filter sizes of 3 × 3. All the hidden layers are equipped with733

ReLU nonlinearity. Comparatively, ResNet-50 has a similar734

architecture as the conventional networks except that it adds a735

shortcut connection to each of the 3 layers of the 3×3 filters,736

and it has 50 layers. The three CNN models are pretrained737

on the ImageNet database. Then, we further train each model738

with fine-turning based on 10 different gallery sets of a739

palmprint database so that 40 trained models are obtained for740

the four palmprint databases. It is pointed out that all the input741

palmprint ROI images are resized to 256 × 256 pixels, and742

the RGB channels are normalized with the same gray values743

of the samples. After that, we use each model to perform744

palmprint identification to obtain the average accuracies and745

corresponding standard deviations.746

The comparative results of palmprint identification on the747

PolyU, IITD, GPDS and CASIA palmprint databases are748

summarized in Table I. It can be seen that the proposed749

LDDBP method generally outperforms the twelve compared750

methods including the popular deep-learning methods. In the751

cases of selecting one to four images for a palm as the752

training samples, the proposed method can increase approxi-753

mately 12.37%, 4.94%, 2.58% and 1.18%, respectively, in the754

accuracies over the average accuracies of the twelve compared755

methods on the PolyU databases. As for the IITD database,756

the proposed method can respectively achieve approximately757

27.58% 16.59%, 11.45% and 8.59% higher accuracies than the758

average accuracies of the twelve compared methods. In addi- 759

tion, the average accuracy improvements of the proposed 760

method are approximately 18.63%, 12.42%, 8.32% and 6.00% 761

on the GPDS database, and about 17.28%, 12.69%, 8.15% 762

and 7.99% on the CASIA database, respectively. In particular, 763

in the case of selecting one sample per each palm as the train- 764

ing sample, the proposed method improves by approximately 765

0.30% over the best of the twelve compared methods on the 766

PolyU database. This improvement does not seem significant 767

due to the fact that the samples of the PolyU database are 768

captured using a contact-based methodology. Most methods 769

can achieve high accuracies of over 99%. Comparatively, 770

the proposed method improves around 5.41%, 5.82% and 771

2.05% over the best results of the twelve compared methods on 772

the IITD, GPDS and CASIA databases, respectively, showing 773

the competitive performance of the proposed method. 774

C. Palmprint Verification 775

Palmprint verification is a one-to-one palmprint matching 776

procedure. A matching is labeled as a “genuine match” if 777

both compared palmprint images are from the same palm, and 778

otherwise the comparison is named as an “impostor match”. 779

In the verification experiment of this study, each palmprint 780

image in a database is compared with all other samples 781

with the same database by using the proposed method to 782

compute the incorrect genuine matches and incorrect impostor 783

matches. After that, the false acceptance rate (FAR), the false 784

rejection rate (FRR) and the receiver operating characteristic 785

(ROC) curve are calculated to estimate the performance of the 786

proposed method. Further, we implement the representative 787

direction-based palmprint recognition methods, including the 788

competitive code, NDI, E-BOCV, LLDP, and HOL methods, 789

and compare them with the proposed method. The ROC 790

(FAR vs FRR) curves of different methods are depicted 791

in Fig. 8. It can be seen that the proposed LDDBP method 792

consistently achieves a lower FRR than the five compared 793

methods against the same FAR, and it also obtains the lowest 794

equal error rate (EER). 795

D. Palmprint Identification on the Noisy Palmprint Datasets 796

In practical applications, palmprint images are usually 797

suffer some noise due to the capture environment and 798
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Fig. 8. The ROC curves of different methods on the (a)-(d) PolyU, IITD, GPDS, and CASIA databases.

Fig. 9. The noisy palmprint image samples. The first line shows four
noisy palmprint image samples and the second line shows the corresponding
original palmprint images selected from the PolyU, IITD, GPDS and CASIA
databases, respectively.

image processing. To simulate the noisy palmprint images,799

we add different levels of Gaussian noise on the samples of800

the PolyU, IITD, GPDS and CASIA databases. Specifically,801

we add Gaussian noise with a mean of 0 and variance of 5 on802

the palmprint image samples of the PolyU and IITD databases,803

and with a mean of 0 and variance of 10 on the samples of the804

GPDS and CASIA databases, respectively, to form four noisy805

palmprint datasets. Fig. 9 shows some noisy palmprint image806

samples selected from the four synthetic datasets.807

Based on the four synthetic palmprint image datasets,808

we conduct palmprint identification to test the performance809

of the proposed method and compare it with the represen-810

tative direction-based palmprint recognition methods. In this811

study, we mainly implement the four recently representa-812

tive palmprint recognition methods achieving the competitive813

performance, including the E-BOCV, LLDP, CR_CompCode814

and HOL methods. Given a dataset, we randomly select n815

(n = 1, 2, 3, 4) images from each palm as the training samples816

and the remaining as the query samples. We run all the817

methods 10 times and summarize the identification results818

(average accuracies ± standard deviations) in Table II.819

It can be seen from the table that the performance drops of820

all the methods are small on the noisy PolyU and IITD datasets821

when compared with the results on the original palmprint data-822

bases in Table I. The main reason is that the added Gaussian823

noise on the PolyU and IITD databases is small-level, which824

does not heavily affect the quality of the palmprint images.825

By contrast, the added high-level of Gaussian noise seriously826

affect the quality of the palmprint images on the GPDS and827

CASIA databases resulting to the significant accuracy drops828

of all the methods on palmprint identification. Therefore, the829

proposed method as well as the conventional direction-based830

TABLE II

THE RANK-ONE IDENTIFICATION ACCURACY (%) OBTAINED BY

DIFFERENT METHODS ON THE NOISY POLYU, IITD,
GPDS AND CASIA PALMPRINT DATABASES

palmprint recognition methods show good robustness to small- 831

level Gaussian noise but not very good to high-level noise. 832

However, it is obvious that the proposed method always 833

achieves the highest accuracies among all the direction-based 834

methods on all the noisy palmprint image datasets. Specially, 835

when compared with the average accuracies of the four com- 836

pared methods, the proposed method improves about 1% to 3% 837

accuracy on the noisy PolyU database, and more than around 838

5% on noisy IITD, GPDS and CASIA databases, showing 839

the effectiveness of the proposed method on noisy palmprint 840

image recognition. 841

E. Intra-Comparison of LDDBP 842

It is seen that the proposed LDDBP method essentially 843

consists of two discriminant direction components, namely, 844

the LDDBPm and LDDBPs , and each component includes 845

three potential discriminant directions, namely, the first, sec- 846

ond and last dominant directions. To further validate the 847

effectiveness of the LDDBP and clarify the impact of its 848

different components, we select different components as the 849

features and compare them with the LDDBP in terms of the 850

rank-one identification accuracy. Specifically, we respectively 851

use the following direction representations to perform palm- 852

print verification, including (1) the first dominant direction, 853

(2) the combination of the first and second dominant direc- 854

tions, (3) the main discriminant direction group LDDBPm , 855

and (4) the secondary discriminant direction group LDDBPs . 856

Similarly, with the LDDBP, we use the blockwise histogram 857
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Fig. 10. The identification accuracies obtained based on different kinds of LDDBP-based descriptors on the (a)-(d) PolyU, IITD, GPDS and CASIA databases,
respectively.

of the above four kinds of direction representations to form858

four kinds of local descriptors, which are referred to as859

LDDBP f , LDDBP f s , LDDBPm , and LDDBPs , respectively.860

In the matching stage, the Chi-square distance scheme is used.861

In this study, we also randomly selected 1 to 4 (n = 1, 2, 3, 4)862

images per palm as the training samples and the remaining are863

used as the query samples. We perform every LDDBP-based864

descriptor 10 times and calculate the average accuracies of865

them, as shown in Fig. 10. In addition, the accuracies obtained866

based on the LDDBP are also included in the figure for a better867

comparison.868

From the comparative results, we can draw the follow-869

ing observations. First, the LDDBP f s performs better than870

the LDDBP f . This result indicates that combining the first871

and second dominant directions definitely improve the discrim-872

inability of using the single most dominant direction feature.873

Second, the LDDBPm always outperforms the LDDBP f s ,874

confirming the high discriminability of the direction with the875

minimum convolved result. Third, the LDDBPm consistently876

outperforms the LDDBPs on the four palmprint databases,877

indicating that the LDDBPm has higher discriminative power878

than the LDDBPs . The main reason lies in the fact that a879

number of points in a palmprint have no LDDBPs . Fourth,880

the LDDBP generally outperforms the LDDBPm . Exception-881

ally, the LDDBPm achieves a better performance than the882

LDDBP on the PolyU database. The possible reason is that883

the palmprint images of the PolyU database are contact-based884

captured, and thus these samples are high-quality and well-885

aligned. The LDDBPm has captured the most discriminative886

information, and the LDDBPs carries very few discriminative887

features that provides no helpful information to the LDDBPm888

for identification. Moreover, the LDDBP outperforms the889

LDDBPm on the other three palmprint databases, thereby890

validating the effectiveness of the LDDBPs .891

F. Discriminative Power of Different Directions892

To compare the discriminability of different direction fea-893

tures, we respectively use different directions of a palmprint894

to perform palmprint identification. Specifically, twelve Gabor895

templates with different directions are used to extract the direc-896

tion features. The direction index with the kth maximum filter-897

ing response, namely, the kth dominant direction, is selected898

as the feature code to form the blockwise descriptor. In the899

matching stage, the similar Chi-distance is used to measure900

the similarity of two direction-based descriptors. In this study,901

Fig. 11. The accuracies based on the different direction-based descriptors
for the PolyU, IITD, GPDS and CASIA databases, respectively.

we randomly selected 4 samples from each palm to form the 902

training sample set and use the remaining samples to form the 903

test sample set. All the methods are repeated 10 times and 904

the average identification accuracies are calculated. Moreover, 905

for a dominant direction-based descriptor, the average accu- 906

racy (AVG) of the four databases is also calculated. 907

Fig. 11 depicts the accuracies obtained based on different 908

dominant direction-based descriptors using the four databases, 909

in which the index k on the x −axis denotes the kth dominant 910

direction. It can be seen that the accuracies along different 911

directions are distributed such as the upside-down parabola- 912

curves, which are consistent with the EGM. In general, 913

the first, the last and the second dominant direction features 914

usually have higher discriminability than the other directions. 915

Therefore, the proposed method uses the first, second and last 916

dominant directions to form the LDDBP descriptor. 917

G. The Optimal Local Block Size of LDDBP Descriptor 918

To overcome the small misalignment among ROIs, the pro- 919

posed method uses the blockwise statistical feature to represent 920

the exploited discriminant direction features. The conventional 921

methods generally set the block size to 16 × 16 pixels. It is 922

recognized that the optimal block size is highly related to 923

the quality of the palmprint images. For example, for the 924

palmprint images with serious misalignments after transla- 925

tion, a larger block size should be used, and otherwise a 926

smaller block size should be set. To find the optimal local 927

block size of the LDDBP descriptor, we conduct palmprint 928



IEE
E P

ro
of

12 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY

Fig. 12. The identification accuracies based on the LDDBP descriptors with different local block sizes for the (a)-(d) PolyU, IITD, GPDS and CASIA
databases, respectively.

identification based on the LDDBP descriptors using different929

block sizes, including 8 × 8, 16 × 16, 24 × 24, 32 × 32, and930

40 × 40 pixels, respectively, and compare their performance.931

Similarly, 1 to 4 (n = 1, 2, 3, 4) palmprint images from each932

palm are selected as the training samples and the rest are used933

as the query samples. All the methods are repeated 10 times934

and the average identification accuracies are calculated. Fig. 12935

depicts the identification results based on the different block936

sizes of the LDDBP.937

From the comparative results, we see that a too small block938

size (i.e., 8 × 8 pixels) generally obtains a low accuracy since939

it cannot overcome the impact of misalignment. Furthermore,940

the LDDBP descriptors with the block sizes of 24 × 24 and941

32 × 32 pixels can obtain the best performance on the IITD,942

GPDS, and CASIA databases. By contrast, for the PolyU943

database, the descriptor with the block size of 16 × 16 pixels944

achieves the highest accuracy. The possible reason is that the945

palmprint images in the PolyU database are acquired using946

a contact-based device with user-pegs with which the palms947

are generally aligned and the qualities of them are relatively948

higher. Therefore, here, a smaller local block size can better949

overcome the impact of the misalignment. Comparatively, the950

palmprint images in other three contactless databases have951

possible variations in their translations, rotations and scales,952

resulting in their serious misalignment. As a result, only a953

relatively larger block size can better fix the misalignment.954

Therefore, for contact-based palmprint images, the optimal955

block size should be approximately 16 × 16 pixels. For con-956

tactless palmprint images, the optimal block sizes are possibly957

from the 24 × 24 to 32 × 32 pixels.958

H. Computational Time Cost Analysis959

To evaluate the computational complexity of the proposed960

method, we calculated the computational time cost of the961

proposed method, and compared it with the representative962

direction-based methods. All algorithms were implemented963

on the same platform, a PC with double-core Intel(R)964

i5-3470(3.2GHz), RAM8.00GB, and MATLAB 12.0 under965

Windows10.0. We repeated all the algorithms 100 times and966

recorded the average time for both feature extraction and967

matching, as shown in Table III.968

From the table, we see that the proposed LDDBP method969

takes a bit more time (about 0.04 s) than the competitive code970

and NDI methods, and it has comparable computational cost971

TABLE III

THE AVERAGE TIME TAKEN (s) OF FEATURE EXTRACTION AND

MATCHING IN A PALMPRINT VERIFICATION PROCESS

USING DIFFERENT METHODS

with the LLDP method. The main reason is that the most 972

consuming computing of a direction-based method is the con- 973

volution operation in direction feature extraction. More filters 974

used means more convolution calculation between images and 975

filters. As a result, some methods using six filters, including 976

the competitive code, ordinal code and NDI methods in feature 977

extraction have relatively less computational cost. By contrast, 978

the other methods, such as LDDBP and LLDP methods, 979

adopting 12 filters in feature extraction have a litter more 980

computational cost. Moreover, the proposed method uses more 981

directions in optimal direction representation, resulting in more 982

time taken than the LLDP methods. In addition, the feature 983

matching time cost of most methods are less than 1 ms. Hence, 984

the most time taken of palmprint recognition heavily depends 985

on the feature extraction. We can also see that the total time 986

cost of the proposed method is about 0.08 s in a whole process 987

of palmprint verification, which can be acceptable in real- 988

world applications. 989

For palmprint identification, in practical applications, train- 990

ing is usually an offline process. That is, the feature extraction 991

of training samples can be pre-performed offline, and thus, the 992

matching time is our main concern. As shown in Table III, the 993

proposed method has a fast matching speed (about 0.7 ms). 994

Therefore, the computational complexity of our proposed 995

method will not limit its practical applications. 996

V. CONCLUSION 997

In this paper, the essential connection between the discrim- 998

inability of direction features and the direction feature extrac- 999

tion model is established, and a Gaussian-like model, namely, 1000

the EGM, is proposed to demonstrate the discriminative power 1001

of different directions. The EGM is suitable for both the single- 1002

dominant direction and multiple-dominant direction scenarios 1003
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in a palmprint and provides a new insight into the selection1004

of discriminant direction features. Moreover, a novel local1005

discriminant direction binary pattern is proposed to completely1006

capture the direction features of a palmprint. Based on the1007

EGM, three highly potential discriminant direction features1008

are exploited from the LDDBP to form the LDDBP-based1009

descriptor for palmprint recognition. The promising effective-1010

ness of the proposed LDDBP method has been validated using1011

four widely used palmprint image benchmarks. For future1012

work, we are interested in extending the proposed method to1013

other pattern recognition tasks, such as face- and texture-based1014

image representation and recognition.1015
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