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Abstract— Direction-based methods are the most powerful and
popular palmprint recognition methods. However, there is no
existing work that completely analyzes the essential differences
among different direction-based methods and explores the most
discriminant direction representation of a palmprint. In this
paper, we attempt to establish the connection between the direc-
tion feature extraction model and the discriminability of direction
features, and we propose a novel exponential and Gaussian
fusion model (EGM) to characterize the discriminative power
of different directions. The EGM can provide us with a new
insight into the optimal direction feature selection of palmprints.
Moreover, we propose a local discriminant direction binary
pattern (LDDBP) to completely represent the direction features
of a palmprint. Guided by the EGM, the most discriminant
directions can be exploited to form the LDDBP-based descriptor
for palmprint representation and recognition. Extensive experi-
ment results conducted on four widely used palmprint databases
demonstrate the superiority of the proposed LDDBP method over
the state-of-the-art direction-based methods.

Index Terms— Palmprint recognition, exponential and
Gaussian fusion model, direction binary pattern, discriminant
direction representation.

I. INTRODUCTION

B IOMETRIC-BASED personal authentication has been
widely applied in modern society due to its several

advantages such as high-security, high-efficiency and user-
friendliness [1], [2]. The widely used biometric traits include
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face, fingerprint, finger/palm/hand vein, iris, voice, gait, sig-
nature, and so on [3]. As a relatively new and promising
biometric trait, a palmprint contains a number of highly dis-
criminative features, including not only the obvious principal
lines and wrinkles but also the significant ridge patterns
and minutiae points, most of which are considered to be
immutable to an individual [1], [4], [5]. Therefore, palmprint-
based recognition technology has the potential to achieve a
high accuracy and desirable performance [6]–[8].

So far, there have been various palmprint feature extraction
and recognition methods in the literature [9]. For example,
Huang et al. [10] and Palma et al. [11] extracted the
principle lines of a palmprint for palmprint verification.
Morales et al. [12] extracted the scale invariant feature
transform (SIFT) based features for palmprint recognition.
Dai et al. [13] proposed a multi-feature based high-resolution
palmprint recognition method by fusing the principal lines and
minutiae points of a palmprint. Ribaric et al. [14] proposed a
Fisherpalm method for palmprint recognition by using Fisher’s
linear discriminant analysis. In addition, the study on machine-
learning methods, such as subspace learning [14], [15] and
sparse representation (SR) [16], for palmprint recognition has
become active. For example, Guo et al. [16] proposed a
palmprint recogniton method by using sparse representation.
Zhang et al. [17] applied the collaborative representation (CR)
scheme for palmprint identification. Imad et al. [18], [19] pro-
posed a hybrid palmprint recognition method, which used
2-D PCA and 2-D LDA to form an ensemble discrimi-
native dictionary of palmprint images, and then employed
SR-based classifier for feature identification. Quite recently,
the modern deep convolutional neural network is also
applied for palmprint recognition [20]–[22]. For example,
Izadpanahkakhk et al. [22] proposed a convolutional neural
network and transfer learning fusion method to extract
ROI and discriminative features for palmprint verification.
Zhong et al. [8] systematically summarized state-of-the-art
feature extraction and matching methods for palmprint recog-
nition over the past decade. It is well known that a palm-
print carries strong direction features along with its line and
texture features. Moreover, direction feature is insensitive to
illumination change [23]. For these reasons, more recently
published methods [23]–[32] focused on the extraction of the
direction features of a palmprint and achieved very promis-
ing recognition performance, which can be roughly classi-
fied into three categories, including the winner-take-all-based
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methods, multiple-directions-based methods, and local direc-
tion statistics-based methods.

The winner-take-all rule based methods [26] generally
extract the most dominant direction feature of palmprint. They
are based on an underlying assumption that the pixels in a
palmprint image belong to some lines and thus carry dominant
directions. One of the most typical methods is the competitive
code method [26], which uses six directions of Gabor filters
to filter a palmprint image. The direction of the Gabor filter
that obtains the largest filtering response was extracted as the
dominant direction of a palmprint. Similarly, the robust line
orientation code (RLOC) method [27] designed twelve Radon-
based filters to obtain the dominant directions of the palmprint.
Extended from the competitive code method, the double-
orientation coding method [28] extracted double direction
features based on the top-two strongest line responses. In addi-
tion, the similar rule of winner-take-all is also used in the
block dominant orientation code [29] , fusion code [30] and
DRCC [31] methods.

Differently, multiple-direction-based methods propose to
preserve the features on multiple directions. The represen-
tative multiple-direction-based methods include the orienta-
tion co-occurrence vector (BOCV) [33], extended BOCV
(E-BOCV) [34], ordinal code [35], and neighboring direction
indicator (NDI) [36] methods. For example, the BOCV method
defined six Gabor filters to convolve with a palmprint image,
and the results of the six filter responses were encoded.
Extended from BOCV, E-BOCV extracted six direction code
maps as the BOCV, and meanwhile filtered out the fragile
direction points based on the magnitudes of filtering responses.
In addition, the NDI method encoded the comparative response
results between neighboring orientations among six orienta-
tions. Sun et al. [35] extracted three orthogonal direction codes
by using three orthogonal Gaussian filters.

For the third category, a bank of templates are also used to
convolve with palmprint to characterize the direction features,
and then the statistics of one or multiple direction features
are encoded. For example, the local line directional patterns
(LLDP) method [37] encoded two direction features of a
palmprint and formed the histogram-based direction descriptor.
The LMDP method [38] calculated and concatenated the
blockwise statistics of multiple dominant directions as the
palmprint descriptor. Jia et al. [23] proposed a histogram
of oriented line (HOL) method by calculating statistical
energy on different orientations for palmprint recognition.
Fei et al. [39] extracted the apparent direction features from
the surface layer and the latent direction features from the
energy map layer of a palmprint, and then a joint histogram
is constructed as the final feature. In addition, Li et al. [40]
extended the Local Tetra Pattern to Local Micro-structure Tetra
Pattern (LMTrP) palmprint descriptor. Zhang et al. [17] used
the blockwise histograms of the competitive code forming the
feature vectors of a palmprint.

The direction-based palmprint recognition methods with
promising accuracies have proved the success of the direction
features for palmprint recognition [7]. Existing work generally
extracted different kinds of direction features of a palmprint.

Fig. 1. The basic idea of the proposed method. For each palmprint
image, local discriminant direction binary pattern are extracted, and then
the most discriminant direction features are exploited. Further, the blockwise
histograms are correspondingly computed and concatenated to form the
LDDBP-based palmprint descriptor.

However, to the best of our knowledge, there is no work to
investigate the essential discriminability of different directions.
Therefore, the most discriminant direction representation is
not yet exploited. To address this, in this article, we pro-
pose a novel model to characterize the discriminative power
of different kinds of directions so that more discriminative
direction features can be exploited. Then, we propose an
effective and compact discriminant direction descriptor for
palmprint recognition. Fig. 1 outlines the basic framework of
the proposed method. Extensive experiments on different types
of palmprint databases are conducted to show the effectiveness
of the proposed method.

The main contributions of this paper can be summarized as
follows:

• The connection between the direction feature extraction
model and the discriminability of directions is estab-
lished, and a novel exponential and Gaussian fusion
model (EGM) is proposed to characterize the essential
discriminability of different directions of palmprints. The
EGM can better demonstrate the reasons why the state-
of-the-art methods achieve promising performance. More
importantly, the EGM provides us with an effective
guideline for the potential discriminant direction selection
for the optimal palmprint representation.

• We propose a local direction binary pattern (LDDBP)
for the discriminant direction feature extraction. LDDBP
can better describe the direction changes and implicitly
denotes the multiple dominant direction features of a
palmprint. Guided by the EGM, the top-three discrimi-
nant direction features are exploited from the LDDBP,
and a compact LDDBP-based descriptor is designed for
palmprint representation and recognition.

• Extensive experiments, as well as the comparison from
the state-of-the-art deep-learning methods, on four widely
used palmprint databases, are presented to demonstrate
the effectiveness of the proposed method.

The remainder of this paper is organized as follows.
Section II briefly review the related work. Section III proposes
a local discriminant direction binary pattern for palmprint
representation and recognition. Section IV conducts the experi-
ments, and finally section V draws the conclusion of this paper.
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Fig. 2. The basic procedure of the ROI extraction. (a) An input palmprint
image. (b) The low-pass Gaussian filter is used to smooth the palmprint image,
which is then converted into a binary image by thresholding, so as to obtain
the boundaries of the binary image by using a boundary tracking algorithm.
(c) The landmarks at the bottom of the gaps between fingers is used to
establish a coordinate to determine the location of the ROI. (d) The sub-
image located at a certain area of a palmprint is cropped and normalized to
a fixed size, which is the ROI of the palmprint image.

Fig. 3. The basic idea of direction feature extraction of a palmprint.
(a) A palmprint image with a clearly visible line feature. (b) A Gabor template.
(c) The upside-down intensity value map of the local patch of the palmprint.

II. RELATED WORK

In this section, we briefly review the ROI extraction,
the basic model of direction feature extraction, and direction
feature representation of palmprint images.

A. ROI Extraction

In general, preprocessing is performed on a palmprint image
to extract the region of interest (ROI) before feature extraction.
The procedure of ROI extraction is depicted in Fig. 2. It is
seen that the location of the ROI is essentially determined by
the reference points, which are stably located at the bottom
of gaps between the index and middle fingers and between
the ring and little fingers. Therefore, the ROIs of palmprint
images are generally aligned on both rotation and translation.

B. The Basic Rule of Direction Feature Extraction

In direction feature extraction of a palmprint, the common
rule is to use line-structure detectors, such as Gabor filter,
to characterize the direction feature of palmprint. To better
illustrate the procedure of direction extraction, we take a
palmprint image with a clearly visible line feature as an
example, as shown in Fig. 3(a). Fig. 3 (b) depicts a Gabor
filter with a “line-model” [26]. It is known that the black lines
of the palmprint image usually have smaller gray values, and
the line-model of the Gabor template has larger values. Thus,
in real application, we usually subtract the gray values of a
palmprint image with 255 to obtain the “upside-down” [26]
palmprint image. Fig. 3 (c) shows the upside-down intensity

value map of the local patch of Fig. 3 (a). It is not hard to
deduce that the Gabor filter with the consistent direction with
the line feature of the palmprint image can obtain a strong
filtering response.

Inspired by this observation, the most dominant direction
of palmprint can be detected by using a bank of filters with a
series of pre-defined directions. Among them, one filter could
generate the strongest filtering response with the palmprint,
and the direction of which should be highly similar with the
direction of the palmprint. Hence, the direction of the filter
that maximizes the filtering response can be considered as the
dominant direction feature of the palmprint. In general, the real
part of Gabor filter is the most powerful tool for direction
feature extraction, which has the following general function:

G(x, y, θ, μ, σ, β) = 1

2πσ 2 ex p{−π(
x2

σ 2 + y2

β2 )}
× cos(2πμ(xcosθ + ysinθ)), (1)

where μ is the radial frequency in radians per unit length,
σ and β denote the standard deviations of the elliptical
Gaussian along the x and y axis, respectively. The ranges
of x and y control the sizes of the function. The optimal
parameter setting can be referred to the study of [24]. θ defines
the direction of the Gabor function. In practice, a bank of
Gabor filters with directions of θ j = ( j − 1)π/Nθ is usually
defined, where Nθ is used as the direction number of Gabor
functions, and j is the corresponding direction index. To better
characterize the direction of palmprint, in this paper Nθ is
empirically set to 12. The convolution between the Gabor
functions and palmprint image I is as follows:

r j (x, y) = G(θ j ) ∗ (255 − I (x, y)), (2)

where “*” denotes the convolution operator. A bank of Gabor
functions with different directions can obtain a group of
convolved results with the palmprint image. Among them,
the Gabor function that produces the maximum convolved
result is selected, and the direction of which is treated as the
most dominant direction of the palmprint:

θ(I (x, y)) = arg max
θ j

r j (x, y). (3)

C. Direction Feature Representation

Direction features of palmprint images are usually repre-
sented by pixel-wise codes, which are also matched in pixel-
wise level in palmprint recognition [26], [33]. However, it is
inevitable that palmprint images have misalignments due to the
image capture device and the external environment, especially
for contactless palmprint images. The pixel-wise direction
feature codes are sensitive to small amount of registration
errors between the probe and gallery samples [17]. To this
end, the blockwise statistics, such as histograms, of direction
features are usually used as palmprint descriptor due to its
promising robustness to small misalignments.

The local direction based descriptor is originally designed
focusing on the images with rich edge features. For exam-
ple, local direction pattern (LDP) [41] calculated the edge
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responses by convolving Kirsch edge masks of a point with the
eight neighbors. Then, the top-k edge responses were selected
and binarized to construct the LDP codes, and the blockwise
histograms of which were calculated. After that, the enhanced
local directional pattern (ELDP) [42] and local directional
number (LDN) [43] encoded two selected direction features
forming the blockwise direction histogram descriptor. Inspired
by that, Luo et al. [37] proposed a local line directional pattern
(LLDP) for palmprint representation. It used both the MFRAT
and Gabor filters with twelve directions to obtain the line
responses of a palmprint, and then the similar schemes as
ELDP and LDN were used to encode two specific directions.
Lastly, the blockwise histograms of the direction codes were
computed and concatenated as the palmprint feature. Quite
recently, the blockwise statistics of direction feature codes
have been widely used as the feature representation of palm-
print images [17], [38]–[40].

III. DISCRIMINANT DIRECTION FEATURE EXTRACTION

In this section, a Gaussian-like model is proposed to demon-
strate the discriminability of different directions. Further,
a local discriminant direction binary pattern is proposed for the
discriminant direction feature extraction. Finally, the LDDBP-
based palmprint descriptor is formed for palmprint recognition.

A. The Discriminability of Direction Features

It is seen that both the dominant and other direction features
are widely used for palmprint recognition. However, to the best
of our knowledge, there is no work to investigate and ana-
lyze the discriminative power of different direction features.
Motivated by this, in this section, we aim to investigate the
essential difference of the direction features.

Based on the rule of direction feature extraction, the line-
like templates with pre-defined directions are generally used,
and the convolved results between the templates and palm-
print image are the basis of direction feature extraction. For
instance, some methods extract the direction features based
on the maximum convolved values [26], [30], and some other
methods extract the direction features based on both the
maximal and minimal the convolved results [44]. Therefore,
we believe that the discriminability of the direction features
is heavily related with the convolved results between the
templates and a palmprint. In addition, a palmprint image
generally contains two kinds of points, namely, the points with
visible lines such as the principal lines and the points with
invisible line. In the following, we discuss the discriminability
of the direction features for both kinds of the points based on
the convolved results between the templates and the points.

To better illustrate the direction feature extraction for a point
with a obviously dominant direction, we take a palmprint
image with a clearly visible line feature as an example,
as shown in Fig. 4 (a). We use twelve Gabor filters with direc-
tions of ( j−1)π/12( j = 1, 2, . . . , 12) to convolve the point on
the visible line obtaining twelve filtering responses, as shown
in Fig. 4 (b). The Gabor filter with the direction of π/4
produces the strongest filtering response (maximum convolved
result) among all twelve templates. Therefore, according to the

Fig. 4. An illustration dominant direction extraction of a point within a local
patch of a palmprint image with a visible line feature. (a) A palmprint image
with a visible line direction feature. (b) The convolved results between Gabor
filters and a point of the palmprint image on twelve directions. (c) A Gabor
filter. (d) The convolution of the Gabor filter and a point within a local patch
with a line feature. (e) The convolution procedure model between the filters
and a palmprint line.

competitive code method, we take the π/4 as the dominant
direction feature of the point in the palmprint image, which
is technologically sound. In general, a Gabor filter has an
obvious line-model [26], as an example shown in Fig. 4 (c).
The filtering response between a Gabor filter and the point is
essentially the sum of the pixel values weighted by the Gabor
filter of a local patch. Theoretically, when a Gabor filter has
a similar direction as the palmprint line, the line-model of the
Gabor filter will better overlap the palmprint line, as shown
in Fig. 4 (d), resulting to a stronger filtering response with the
palmprint line. In other words, the filtering response between
a Gabor filter and a point in a palmprint line is theoretically
proportional to the overlapped area of line-models between
the filter and the palmprint line. We abstract the convolution
in Fig. 4 (d) as Fig. 4 (e). It clearly shows that the line-
model of the Gabor filter has a larger overlapped area with the
palmprint line if they have more similar directions, producing
a larger filtering response. Therefore, the filtering response
between a Gabor filter and a palmprint line is essentially
related to its direction difference, which can be defined as:
|θGabor +π − θline| mod π , where θGabor and θline represents
the direction angles of the line-models of the Gabor filter and
the palmprint line, respectively. In the following, we further
discuss the relationship between the filtering response and the
direction difference between a Gabor template and a palmprint
line.

We assume that a Gabor filter has the same direction as
the palmprint line. The convolution result, as well as the
overlapped area between the line-models of the filter and the
palmprint line, should be larger than that of other directions.
Now, if we change the direction difference to �θ , as shown
in Fig. 5 (a, blue arrow), the overlapped area between the
line-models of a Gabor filter and the palmprint line will be
reduced, as shown in Fig. 5 (a, from green area to blue area).
Then, if we further change the direction difference with the
same �θ , as shown in Fig. 5 (a, purple arrow), the overlapped
area changes by an even smaller amount than the former one,
as shown in Fig. 5 (a, from blue area to purple area), due to
the elliptical shapes of the Gabor filters. Therefore, we can
deduce that, starting from the direction difference of 0, as the
direction difference is gradually increasing, the corresponding
overlapped area and the filtering response (convolved result)
will be reduced rapidly at the beginning and then slowly
afterwards. The convolved result reaches its minimum value
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Fig. 5. The relationship between the discriminability of direction features and direction feature extraction model. (a) A convolution operation model. (b) The
convolved result distribution of an example. (c) The convolved result distribution model; and (d) The curve of the EGM.

when the direction difference is about π/2, that is, the Gabor
filter and the palmprint line have perpendicular directions.
As the direction difference further gradually increases, the
convolved result will increase slowly at the beginning and then
increase rapidly. It reaches the maximum value again when
the direction difference reaches π (the same as the direction
difference of 0). We also take the convolution of Fig. 4 (b) as
an example. The filtering responses between the Gabor filters
and the palmprint line along the direction difference can be
depicted as Fig. 5 (b). It shows that the filtering response
reaches its maximum value when the direction difference
is 0. When the direction difference changes from 0 to π/12,
the corresponding filtering response is reducing more faster
than that from 6π/12 to 7π/12. Therefore, the relationship
between the direction difference and the convolved result
can be modeled as shown in Fig. 5 (c), where the x-axis
represents the direction difference and the y-axis denotes the
corresponding convolved results.

Fig. 5 (b) shows that few Gabor filters can produces
larger filtering responses. For example, only two Gabor filters
with two direction differences of 0 and 11π/12 can pro-
duce larger filtering responses (convolved results), as shown
in Fig. 5 (b, purple circles). By contrast, five Gabor fil-
ters can produce smaller filtering responses, as shown in
Fig. 5 (b, blue circles). Hence, if the directions of the Gabor
filters corresponding to the top-two filtering responses are
selected as the direction features of a palmprint, the directions
of the filters with direction differences of 0 and 11π/12 can be
easily extracted. Because very few Gabor filters can produce
as large a filtering response as them. If the directions of the
Gabor filters producing the smallest two filtering responses are
taken as the direction features of a palmprint, the directions
of the filters with direction differences of 6π/12 and 7π/12
can be extracted in this example. However, these directions
could be easily affected by small rotation or noise because
many Gabor filters can produce very close filtering responses
to them. Therefore, the direction features corresponding to
larger convolved results should be more stable than that of
the smaller convolved results, and thereby achieve a better
performance at palmprint representation.

Fig. 5 (c) also shows that, with a certain range of the
convolved results (e.g., ri ), a larger convolved result value
(e.g., r1) corresponds to a smaller range of the direction

difference (e.g., �θ1). This means that fewer directions
of the templates can obtain the large convolved results.
Comparatively, a smaller convolved result (e.g., rn) corre-
sponds to a larger range of the direction difference (e.g., �θn),
which means that more directions of the templates can obtain
these smaller convolved results. In other words, suppose there
have many Gabor filters with various and evenly distributed
directions, a stronger filtering response can be produced by
a few Gabor filters and a smaller filtering response can be
easily obtained by more Gabor filters. Thus, the probability
of producing a larger filtering response is smaller than that of
producing a smaller one. We believe that the directions of the
Gabor filters producing larger filtering responses are more sta-
ble than that of producing smaller responses, and thus achieve
a better performance for palmprint recognition. Therefore,
we think that the direction of the Gabor filter that produces a
stronger filtering response have higher discriminability.

It is also seen that a palmprint usually contains many
points without clearly visible line features. For those points,
in direction feature extraction, it is believed that very few
templates can obtain the maximum filtering response, and
very few templates can reach the minimum filtering response.
Comparatively, a medium convolved result can be obtained
by more templates with more directions. Thereby, we assume
that the probability of the convolution results between the
templates and these points satisfy a Gaussian model, as shown
in Fig. 5 (d, blue line). In addition, we assume that the proba-
bility of the convolution results between the Gabor filters and
the palmprint points with visible lines follows an exponential-
like model, as shown in Fig. 5 (d, green line). A palmprint
generally contains different kinds of points with visible, invis-
ible or medium-visible dominant direction features. Therefore,
we can reasonably assume that the possibility of the convolved
result between a template and palmprint follows an exponential
and Gaussian fusion model (EGM), which can be represented
as follows:

pc_r ∼ λ1ek∗c_r + λ2Gaus(μ, σ 2), (4)

where c_r represents the convolved result, and Gaus rep-
resents a Gaussian function. λ1, λ2, k, μ and σ are the
parameters. Of them, the balance parameter, that is, λ1 and λ2,
can be set according the characteristics of palmprint. For
instance, λ1 should be larger than λ2 if a palmprint contains
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a large number of line features, and otherwise λ2 should be
larger than λ1. In Fig. 5 (d), the red line shows an example of
the EGM, where the x − axis denotes the filtering responses
(i.e., convolved results) between the templates and the points
in a palmprint image, and the y − axis represents the corre-
sponding probabilities of the convolved results. For the sake
of clarity, the value of x − axis is gradually decreasing, i.e.,
ri > ri+1.

From the curve of the EGM, as shown in Fig. 5 (d, red line),
we can obtain the following findings: (1) the direction of
the Gabor filter that produce the strongest filtering response
generally has the best discriminability; (2) the discriminability
of the direction features will decrease as the filtering response
decreases, and then it will increase as the filtering response
further decreases; (3) the direction of the Gabor filter that pro-
duces the smallest filtering response usually have a relatively
higher discriminability.

The EGM generally represents the probability distribu-
tions of the convolved results between the filters and the
palmprint. More importantly, the model essentially reflects
the discriminability of different direction features. The EGM
shows that the most dominant direction generally has the
best discriminability. This validates the effectiveness of the
winner-take-all based methods that extract the most dominant
direction feature of a palmprint, such as the competitive code
and RLOC methods. Further, the directions of the templates
producing the maximum and minimum filtering responses
usually have higher discriminability than the neighboring
directions of them. This is the reason why the dual competitive
code method [44] extracted the direction features based on
both the maximal and minimal Gabor filtering responses.
In addition, the EGM shows that the direction feature with a
larger line response behind the largest one possibly has higher
discriminability. This finding is consistent with the results
of the DOC and LLDP methods. Therefore, the proposed
model can better demonstrate the reasons why conventional
methods can achieve promising performance. Furthermore, the
model provides us with an effective guideline to exploit the
most discriminant directions for the optimal palmprint feature
representation.

B. Local Discriminant Direction Binary Pattern

The conventional winner-take-all rule can only extract the
single-dominant direction of a palmprint. However, a palm-
print usually contains a number of crossing and fold lines,
which lead to multiple-dominant directions in a palmprint.
To this end, we introduce an effective scheme to represent
the multiple-dominant direction cases of a palmprint.

It is noted that the convolved result between a filter and
a palmprint line is generally proportional to the overlapping
area between the line-models of the filter and the palm-
print line. Based on the observation, it can be deduced that
a filter with a more closer direction to the line direction
can produce a larger overlapped area with the line, thus
generating a larger convolved result. A simple and effec-
tive way to represent the relationships between two filter-
ing responses along neighboring directions can be written

Fig. 6. The basic idea of the LDDBP. (a) The convolved results of a point
with a visible line direction feature. (b) The LDDBP with a dominant direction
corresponding to panel a. Specially, the above circles demonstrate the circular
property of the LDDBP, where the black and white circles correspond to 1 and
0, respectively. The below binary string is the LDDBP. The arrow denotes
the starting direction and red represents the exact dominant direction. (c) A
point with double dominant directions. (d) The LDDBP with double dominant
directions corresponding to panel c.

as follows:

S = [s(rNθ − rNθ −1), . . . , s(r j − r j−1), . . . , s(r2 − r1),

s(r1 − rNθ )], (5)

where r j represents the convolved result on the j th direction,
s(x) equals to 1 if x > 0 and 0 otherwise, and Nθ is defined
in Section II. In other words, it is represented as “1” if the
convolved result along a direction is larger than that along
the adjacent clockwise direction, and otherwise it is marked
as “0”. By assigning a binomial factor 2 j for each element
s(r j − r j−1) in S [45], it can be transformed into a uniform
binary pattern, which is named the local discriminant direction
binary pattern (LDDBP), as follows:

LDDBP =
Nθ�
j=1

s(r j − rϕ( j ))2
j , (6)

where ϕ( j) denotes the adjacent clockwise direction index
of j . It is noted that LDDBP is circular and the direction
indices of 1 and Nθ are adjacent. That is, ϕ( j) equals to Nθ if
j = 1 and ( j − 1) otherwise, and it can be directly calculated
as follows:

ϕ( j) = mod( j − 2, Nθ ) + 1, (7)

where mod denotes the Mudulo operator.
The LDDBP can effectively reflect the multiple dominant

directions of a palmprint. Specifically, the “01” in the LDDBP
essentially denotes a dominant direction, where “1” means that
the convolved result along the current direction is larger than
that along the clockwise neighbor direction, and “0” denotes
that it is smaller than that on the counterclockwise neighbor
direction. The number of “01” in an LDDBP denotes the
number of dominant directions of a point. Further, in a “01”
sequence, the position of the “1” exactly represents the index
of the dominant direction. Fig. 6 shows the basic idea of the
LDDBP. The LDDBP of Fig. 6 (b), i.e., “110000001111”,
represents that it contains only one dominant direction at
3π/12. The LDDBP of “011100011000” in Fig.6 (d) denotes
that the current point has two dominant directions, i.e., 4π/12
and 10π/12. Therefore, the LDDBP can not only describe how
the direction feature changes and but also implicitly denotes
the multiple dominant direction features of a palmprint point,
including the number of the dominant directions and their
exact positions.
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The dominant direction number (DDN) is essentially deter-
mined by the “01” in an LDDBP. It is easy to check that
there is a one-to-one correspondence between sequence pairs
of “01” and “10” in an LDDBP. Therefore, the DDN can be
calculated as follows:

DDNLDDBP = 1

2

Nθ�
j=1

|s(r j − rϕ( j )) − s(rϕ( j ) − rϕ(ϕ( j )))|.

(8)

The dominant direction index (DDI), which is the position of
“1” in a “01” of an LDDBP, directly denotes the index of a
dominant direction. The DDI of an LDDBP can be obtained
as follows:

DDILDDBP = { j |s(r j − rϕ( j )) − s(rφ( j ) − r j ) = 1}, (9)

where φ( j) denotes the adjacent counterclockwise direction
index of j , which equals to 1 if j = Nθ and j + 1 otherwise.
φ( j) can be simply obtained by the following:

φ( j) = mod( j, Nθ ) + 1. (10)

The numerical results in the study of [38] show that a plenty
of points in a palmprint have multiple dominant direction
features (DDF). Actually, an LDDBP with double dominant
direction features can be divided into two sub-LDDBPs,
and each sub-LDDBP contains only one dominant direction
feature. Specifically, an LDDBP with double DDFs generally
contains two “01” and two corresponding “10” sequences.
We divide the “. . . 10 . . .” sequences in an LDDBP into “. . . 1”
and “0 . . .” to generate two sub-LDDBPs with the general form
of “0 . . . 01 . . .1,” which is named as a basic LDDBP. For
example, “011100011000” can be divided into “∗∗∗∗00011∗∗∗”
and “0111∗∗∗∗∗000.” Therefore, each sub-LDDBP can be
considered to contain only one “01” and one “10.” An LDDBP
with more than two DDFs can also be divided into multiple
sub-LDDBPs, each of which contains one “01” and one “10.”
Theoretically, the EGM is effective for each sub-LDDBP and
also a normal LDDBP.

C. LDDBP-Based Palmprint Representation

The EGM effectively demonstrates the discriminative power
of the different direction features of a palmprint. Guided
by the EGM, we see that the directions corresponding to
both the maximum and minimum convolved results usually
have the best discriminability. In addition, the directions
producing a stronger filtering response behind the strongest
response should also carry higher discriminability. To balance
the discriminability and the feature size of direction features,
in this paper, the directions corresponding to the maximum,
the second maximum and the minimum convolved results
are selected as the top-three discriminant direction features,
forming the palmprint descriptor. To simplify, the direction
feature corresponding to the kth maximum filtering response
is referred to as the kth dominant direction.

To effectively represent the selected discriminant direction
features, we first select the principal LDDBP of the points in
a palmprint. The LDDBP with only one dominant direction

feature is directly the main LDDBP (LDDBPm). For the
points with double dominant direction features corresponding
to double sub-LDDBPs, we select the sub-LDDBP having the
DDF with the maximum filtering responses as the LDDBPm ,
and another one is considered as the secondary LDDBP
(LDDBPs). Therefore, only the LDDBP with two or more
DDFs has the LDDBPs . Because very few points of a palm-
print have more than two DDFs, we only use the LDDBPm and
LDDBPs to represent a palmprint. In the following, we use a
compact scheme to label the LDDBPm and the LDDBPs .

In a basic LDDBP containing only one “01” pattern,
the second dominant direction feature is always adjacent to
the first dominant direction. Therefore, the first and second
dominant directions can be effectively labeled as: 2×D −
s(rϕ( j ) − rφ( j )), where D denotes the first dominant direction
index in the basic LDDBP. It is not hard to check that the
label range is from 1 to 2Nθ . By contrast, the conventional
methods, such as LLDP method, uses N2

θ codes to represent
the first and second dominant direction features. Therefore,
the proposed label scheme seems to be more effective than the
conventional methods.

To further compact the representation codes, we use the
direction distance to combine the last dominant direction
with the top-two dominant direction features. Particularly,
the LDDBPm is labeled as follows:

Lm = (2×Dm − s(rϕ(Dm) − rφ(Dm)) − 1)×(Nθ − 1)

+ mod(Dm − D�
m + Nθ , Nθ ), (11)

where Dm and D�
m are respectively the first and last dominant

direction indices with the maximum and minimum filtering
responses in the LDDBPm . Similarly, the LDDBPs can be
represented as:

Ls =

⎧⎪⎨
⎪⎩

0 if DDN = 1

(2×Ds − s(rϕ(Ds ) − rφ(Ds)) − 1)

×(Nθ − 1) + mod(Ds − D�
s + Nθ , Nθ ) if DDN ≥ 2,

(12)

where Ds and D�
s denote the direction indices corresponding to

the largest and smallest filtering responses, respectively, in the
LDDBPs . Lm and Ls are considered as the main and secondary
discriminant direction codes of a palmprint, respectively. For
a point of a palmprint image, the lengths of both Lm and Ls

are 2Nθ (Nθ − 1).
It is seen that different areas of a palmprint have differ-

ent textural and line characteristics. To better represent the
position-specific features and overcome the slight misalign-
ment of palmprint images, we use the blockwise-based statis-
tics to represent the palmprint images. Specifically, a palmprint
image is uniformly divided into a set of nonoverlapping
local patches. Then, we calculate the LDDBP map, includ-
ing both the LDDBPm and LDDBPs maps, for each block.
Third, we compute the blockwise histograms of Lm and Ls

for each block, and further concatenate them to form the
Lm and Ls-based descriptors of the palmprint, respectively.
It is pointed out that Ls = 0 means that an LDDBP has
non LDDBPs . Therefore, we only count Ls ≥ 1 in the
Ls histogram calculation. Finally, we concatenate both the
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Lm - and Ls -based descriptors together to form the LDDBP-
based descriptor.

D. LDDBP-Based Palmprint Recognition

In palmprint matching, the LDDBP-based descriptors of
palmprint images are first calculated. After that, the simple and
effective Chi-square distance is used to measure the similarity
between the two LDDBP descriptors. Suppose the two LDDBP
descriptors of two palmprint images are P and Q, respectively,
their Chi-square distance is:

χ2(P, Q) =
NH�
i=1

(pi − qi )
2

pi + qi
, (13)

where pi (qi ) is the value of P (Q) at the i th bin, and NH is
the length of the LDDBP descriptor. In summary, the similarity
of two palmprint images can be evaluated by calculating the
Chi-square distance between the LDDBP descriptors of them.
A small Chi-square distance means a high similarity between
the two compared palmprint images.

IV. EXPERIMENTS

In this section, to evaluate the effectiveness of the proposed
method, we conducted a number of experiments on four
publicly and widely used palmprint databases, including the
PolyU, IITD, GPDS and CASIA palmprint databases.

A. Palmprint Databases

The PolyU palmprint database [46] contains 7,752 palmprint
images collected from 386 palms of 193 individuals. The
images were captured in two sessions with an interval of
around 60 days. An individual was asked to provide about
10 samples for both the left and right palms. Actually,
some palms, such as the 137th palm, provided more than
17 images in the first session, and some other palms, such
as the 150th palm, provided only one image in the second
session. As a result, a palm in the PolyU database might have
about 11 to 27 samples. The ROI images with the sizes of
128 × 128 pixels have also been included in the database.

The IITD palmprint database [47] consists of 2,601 contact-
less palmprint images collected from 460 palms corresponding
to 230 subjects with both the left and right palms. Five to six
samples were captured for each palm. Specially, the left palm
of the eighth subject provided 7 palmprint images. The IITD
palmprint database has provided the corresponding ROIs with
the sizes of 150 × 150 pixels.

The GPDS palmprint database [48] includes 1,000 contact-
less palmprint images collected from the right palm of 100 vol-
unteers, each of which provided 10 palmprint images. The
GPDS database provides both the original palmprint images
and the corresponding ROIs. In our experiments, the ROIs are
resized to 128 × 128 pixels.

The CASIA palmprint database [49] contains 5,502 palm-
print images collected from 312 subjects. About 8 to 10 palm-
print images were respectively captured from the left and
right palms. It is noted that the 75th and 167th subjects
provided no palmprint image, and the last right palmprint

Fig. 7. Some typical palmprint ROI images. The palmprint images of the
first to fourth lines are selected from the PolyU, IITD, GPDS and CASIA
databases, respectively.

image of the 270th individual does not belong to the subject.
As a consequence, the used CASIA database actually includes
5,501 palmprint images from 310 subjects with 620 palms.
In the experiments, the preprocessed method in [24] is used
to crop the palmprint ROIs with sizes of 128 × 128 pixels in
the CASIA database.

The PolyU palmprint images were captured under a contact-
based device which used the user-pegs to restrict the place-
ment of palms. By contrast, the palmprint images from the
other three databases, including the IITD, GPDS, and CASIA
databases, were captured under unconstraint environment.
Therefore, palmprint images in the IITD, GPDS and CASIA
databases were possibly variant on postures, positions, scales,
and illumination. Fig. 7 shows some typical sample images
selected from the PolyU, IITD, GPDS and CASIA databases,
respectively.

B. Palmprint Identification

Palmprint identification is a one-against-many matching
process to determine the class label of a query palmprint
image. In general, a set of palmprint images with known
class labels is selected as the training sample. A query sample
will be compared with the training sample. The class label of
the training sample that has the maximum similarity with the
query sample is treated as the class label of the query sample.

In the following identification experiment, for a database,
we randomly selected n palmprint images per palm to form the
training set, and used the rest for testing, where n is set from
1 to 4. The class label of the training sample that produces the
maximum matching score, which is the smallest Chi-square
distance in the proposed method, is assigned to the query
sample. We also test the conventional powerful direction-based
methods and compare them with the proposed method. The
compared methods include the competitive code [26], ordinal
code [35], E-BOCV [34], neighboring direction indicator
(NDI) [36], LLDP [37], ALDC [39], CR_CompCode [17],
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TABLE I

THE IDENTIFICATION ACCURACY (%) (AVERAGE ACCURACIES ± STANDARD DEVIATIONS) OBTAINED BASED
ON DIFFERENT METHODS ON THE POLYU, IITD, GPDS AND CASIA PALMPRINT DATABASES

Ensemble-SRC (E-SRC) [19] and HOL [23] methods. For the
sake of a fair comparison, in the experiments, the local block
sizes of all the related methods are set as 16×16 pixels, unless
otherwise stated. All the methods are repeated 10 times and
the rank-one identification accuracies (average accuracies ±
standard deviations) are reported.

Moreover, we implement three typical deep-learning mod-
els for palmprint recognition, including the AlexNet [50],
VGG-16 [51] and ResNet-50 [52] models. AlexNet consists
of eight learned layers, five convolutional layers and three
fully connected ones. A 1000-way softmax connected with the
last fully connected layer produces the classification results.
Generally, VGG-16 has similar input and fully connected lay-
ers as the AlexNet. The main difference between the VGG-16
and AlexNet is in the hidden layers where the VGG-16 has a
total of 5 pooling layers and 13 convolutional layers with small
filter sizes of 3 × 3. All the hidden layers are equipped with
ReLU nonlinearity. Comparatively, ResNet-50 has a similar
architecture as the conventional networks except that it adds a
shortcut connection to each of the 3 layers of the 3×3 filters,
and it has 50 layers. The three CNN models are pretrained
on the ImageNet database. Then, we further train each model
with fine-turning based on 10 different gallery sets of a
palmprint database so that 40 trained models are obtained for
the four palmprint databases. It is pointed out that all the input
palmprint ROI images are resized to 256 × 256 pixels, and
the RGB channels are normalized with the same gray values
of the samples. After that, we use each model to perform
palmprint identification to obtain the average accuracies and
corresponding standard deviations.

The comparative results of palmprint identification on the
PolyU, IITD, GPDS and CASIA palmprint databases are
summarized in Table I. It can be seen that the proposed
LDDBP method generally outperforms the twelve compared
methods including the popular deep-learning methods. In the
cases of selecting one to four images for a palm as the
training samples, the proposed method can increase approxi-
mately 12.37%, 4.94%, 2.58% and 1.18%, respectively, in the
accuracies over the average accuracies of the twelve compared
methods on the PolyU databases. As for the IITD database,
the proposed method can respectively achieve approximately
27.58% 16.59%, 11.45% and 8.59% higher accuracies than the

average accuracies of the twelve compared methods. In addi-
tion, the average accuracy improvements of the proposed
method are approximately 18.63%, 12.42%, 8.32% and 6.00%
on the GPDS database, and about 17.28%, 12.69%, 8.15%
and 7.99% on the CASIA database, respectively. In particular,
in the case of selecting one sample per each palm as the train-
ing sample, the proposed method improves by approximately
0.30% over the best of the twelve compared methods on the
PolyU database. This improvement does not seem significant
due to the fact that the samples of the PolyU database are
captured using a contact-based methodology. Most methods
can achieve high accuracies of over 99%. Comparatively,
the proposed method improves around 5.41%, 5.82% and
2.05% over the best results of the twelve compared methods on
the IITD, GPDS and CASIA databases, respectively, showing
the competitive performance of the proposed method.

C. Palmprint Verification

Palmprint verification is a one-to-one palmprint matching
procedure. A matching is labeled as a “genuine match” if
both compared palmprint images are from the same palm, and
otherwise the comparison is named as an “impostor match”.
In the verification experiment of this study, each palmprint
image in a database is compared with all other samples
with the same database by using the proposed method to
compute the incorrect genuine matches and incorrect impostor
matches. After that, the false acceptance rate (FAR), the false
rejection rate (FRR) and the receiver operating characteristic
(ROC) curve are calculated to estimate the performance of the
proposed method. Further, we implement the representative
direction-based palmprint recognition methods, including the
competitive code, NDI, E-BOCV, LLDP, and HOL methods,
and compare them with the proposed method. The ROC
(FAR vs FRR) curves of different methods are depicted
in Fig. 8. It can be seen that the proposed LDDBP method
consistently achieves a lower FRR than the five compared
methods against the same FAR, and it also obtains the lowest
equal error rate (EER).

D. Palmprint Identification on the Noisy Palmprint Datasets

In practical applications, palmprint images are usually
suffer some noise due to the capture environment and
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Fig. 8. The ROC curves of different methods on the (a)-(d) PolyU, IITD, GPDS, and CASIA databases.

Fig. 9. The noisy palmprint image samples. The first line shows four
noisy palmprint image samples and the second line shows the corresponding
original palmprint images selected from the PolyU, IITD, GPDS and CASIA
databases, respectively.

image processing. To simulate the noisy palmprint images,
we add different levels of Gaussian noise on the samples of
the PolyU, IITD, GPDS and CASIA databases. Specifically,
we add Gaussian noise with a mean of 0 and variance of 5 on
the palmprint image samples of the PolyU and IITD databases,
and with a mean of 0 and variance of 10 on the samples of the
GPDS and CASIA databases, respectively, to form four noisy
palmprint datasets. Fig. 9 shows some noisy palmprint image
samples selected from the four synthetic datasets.

Based on the four synthetic palmprint image datasets,
we conduct palmprint identification to test the performance
of the proposed method and compare it with the represen-
tative direction-based palmprint recognition methods. In this
study, we mainly implement the four recently representa-
tive palmprint recognition methods achieving the competitive
performance, including the E-BOCV, LLDP, CR_CompCode
and HOL methods. Given a dataset, we randomly select n
(n = 1, 2, 3, 4) images from each palm as the training samples
and the remaining as the query samples. We run all the
methods 10 times and summarize the identification results
(average accuracies ± standard deviations) in Table II.

It can be seen from the table that the performance drops of
all the methods are small on the noisy PolyU and IITD datasets
when compared with the results on the original palmprint data-
bases in Table I. The main reason is that the added Gaussian
noise on the PolyU and IITD databases is small-level, which
does not heavily affect the quality of the palmprint images.
By contrast, the added high-level of Gaussian noise seriously
affect the quality of the palmprint images on the GPDS and
CASIA databases resulting to the significant accuracy drops
of all the methods on palmprint identification. Therefore, the
proposed method as well as the conventional direction-based

TABLE II

THE RANK-ONE IDENTIFICATION ACCURACY (%) OBTAINED BY

DIFFERENT METHODS ON THE NOISY POLYU, IITD,
GPDS AND CASIA PALMPRINT DATABASES

palmprint recognition methods show good robustness to small-
level Gaussian noise but not very good to high-level noise.
However, it is obvious that the proposed method always
achieves the highest accuracies among all the direction-based
methods on all the noisy palmprint image datasets. Specially,
when compared with the average accuracies of the four com-
pared methods, the proposed method improves about 1% to 3%
accuracy on the noisy PolyU database, and more than around
5% on noisy IITD, GPDS and CASIA databases, showing
the effectiveness of the proposed method on noisy palmprint
image recognition.

E. Intra-Comparison of LDDBP

It is seen that the proposed LDDBP method essentially
consists of two discriminant direction components, namely,
the LDDBPm and LDDBPs , and each component includes
three potential discriminant directions, namely, the first, sec-
ond and last dominant directions. To further validate the
effectiveness of the LDDBP and clarify the impact of its
different components, we select different components as the
features and compare them with the LDDBP in terms of the
rank-one identification accuracy. Specifically, we respectively
use the following direction representations to perform palm-
print verification, including (1) the first dominant direction,
(2) the combination of the first and second dominant direc-
tions, (3) the main discriminant direction group LDDBPm ,
and (4) the secondary discriminant direction group LDDBPs .
Similarly, with the LDDBP, we use the blockwise histogram
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Fig. 10. The identification accuracies obtained based on different kinds of LDDBP-based descriptors on the (a)-(d) PolyU, IITD, GPDS and CASIA databases,
respectively.

of the above four kinds of direction representations to form
four kinds of local descriptors, which are referred to as
LDDBP f , LDDBP f s , LDDBPm , and LDDBPs , respectively.
In the matching stage, the Chi-square distance scheme is used.
In this study, we also randomly selected 1 to 4 (n = 1, 2, 3, 4)
images per palm as the training samples and the remaining are
used as the query samples. We perform every LDDBP-based
descriptor 10 times and calculate the average accuracies of
them, as shown in Fig. 10. In addition, the accuracies obtained
based on the LDDBP are also included in the figure for a better
comparison.

From the comparative results, we can draw the follow-
ing observations. First, the LDDBP f s performs better than
the LDDBP f . This result indicates that combining the first
and second dominant directions definitely improve the discrim-
inability of using the single most dominant direction feature.
Second, the LDDBPm always outperforms the LDDBP f s ,
confirming the high discriminability of the direction with the
minimum convolved result. Third, the LDDBPm consistently
outperforms the LDDBPs on the four palmprint databases,
indicating that the LDDBPm has higher discriminative power
than the LDDBPs . The main reason lies in the fact that a
number of points in a palmprint have no LDDBPs . Fourth,
the LDDBP generally outperforms the LDDBPm . Exception-
ally, the LDDBPm achieves a better performance than the
LDDBP on the PolyU database. The possible reason is that
the palmprint images of the PolyU database are contact-based
captured, and thus these samples are high-quality and well-
aligned. The LDDBPm has captured the most discriminative
information, and the LDDBPs carries very few discriminative
features that provides no helpful information to the LDDBPm

for identification. Moreover, the LDDBP outperforms the
LDDBPm on the other three palmprint databases, thereby
validating the effectiveness of the LDDBPs .

F. Discriminative Power of Different Directions

To compare the discriminability of different direction fea-
tures, we respectively use different directions of a palmprint
to perform palmprint identification. Specifically, twelve Gabor
templates with different directions are used to extract the direc-
tion features. The direction index with the kth maximum filter-
ing response, namely, the kth dominant direction, is selected
as the feature code to form the blockwise descriptor. In the
matching stage, the similar Chi-distance is used to measure
the similarity of two direction-based descriptors. In this study,

Fig. 11. The accuracies based on the different direction-based descriptors
for the PolyU, IITD, GPDS and CASIA databases, respectively.

we randomly selected 4 samples from each palm to form the
training sample set and use the remaining samples to form the
test sample set. All the methods are repeated 10 times and
the average identification accuracies are calculated. Moreover,
for a dominant direction-based descriptor, the average accu-
racy (AVG) of the four databases is also calculated.

Fig. 11 depicts the accuracies obtained based on different
dominant direction-based descriptors using the four databases,
in which the index k on the x −axis denotes the kth dominant
direction. It can be seen that the accuracies along different
directions are distributed such as the upside-down parabola-
curves, which are consistent with the EGM. In general,
the first, the last and the second dominant direction features
usually have higher discriminability than the other directions.
Therefore, the proposed method uses the first, second and last
dominant directions to form the LDDBP descriptor.

G. The Optimal Local Block Size of LDDBP Descriptor

To overcome the small misalignment among ROIs, the pro-
posed method uses the blockwise statistical feature to represent
the exploited discriminant direction features. The conventional
methods generally set the block size to 16 × 16 pixels. It is
recognized that the optimal block size is highly related to
the quality of the palmprint images. For example, for the
palmprint images with serious misalignments after transla-
tion, a larger block size should be used, and otherwise a
smaller block size should be set. To find the optimal local
block size of the LDDBP descriptor, we conduct palmprint
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Fig. 12. The identification accuracies based on the LDDBP descriptors with different local block sizes for the (a)-(d) PolyU, IITD, GPDS and CASIA
databases, respectively.

identification based on the LDDBP descriptors using different
block sizes, including 8 × 8, 16 × 16, 24 × 24, 32 × 32, and
40 × 40 pixels, respectively, and compare their performance.
Similarly, 1 to 4 (n = 1, 2, 3, 4) palmprint images from each
palm are selected as the training samples and the rest are used
as the query samples. All the methods are repeated 10 times
and the average identification accuracies are calculated. Fig. 12
depicts the identification results based on the different block
sizes of the LDDBP.

From the comparative results, we see that a too small block
size (i.e., 8 × 8 pixels) generally obtains a low accuracy since
it cannot overcome the impact of misalignment. Furthermore,
the LDDBP descriptors with the block sizes of 24 × 24 and
32 × 32 pixels can obtain the best performance on the IITD,
GPDS, and CASIA databases. By contrast, for the PolyU
database, the descriptor with the block size of 16 × 16 pixels
achieves the highest accuracy. The possible reason is that the
palmprint images in the PolyU database are acquired using
a contact-based device with user-pegs with which the palms
are generally aligned and the qualities of them are relatively
higher. Therefore, here, a smaller local block size can better
overcome the impact of the misalignment. Comparatively, the
palmprint images in other three contactless databases have
possible variations in their translations, rotations and scales,
resulting in their serious misalignment. As a result, only a
relatively larger block size can better fix the misalignment.
Therefore, for contact-based palmprint images, the optimal
block size should be approximately 16 × 16 pixels. For con-
tactless palmprint images, the optimal block sizes are possibly
from the 24 × 24 to 32 × 32 pixels.

H. Computational Time Cost Analysis

To evaluate the computational complexity of the proposed
method, we calculated the computational time cost of the
proposed method, and compared it with the representative
direction-based methods. All algorithms were implemented
on the same platform, a PC with double-core Intel(R)
i5-3470(3.2GHz), RAM8.00GB, and MATLAB 12.0 under
Windows10.0. We repeated all the algorithms 100 times and
recorded the average time for both feature extraction and
matching, as shown in Table III.

From the table, we see that the proposed LDDBP method
takes a bit more time (about 0.04 s) than the competitive code
and NDI methods, and it has comparable computational cost

TABLE III

THE AVERAGE TIME TAKEN (s) OF FEATURE EXTRACTION AND

MATCHING IN A PALMPRINT VERIFICATION PROCESS

USING DIFFERENT METHODS

with the LLDP method. The main reason is that the most
consuming computing of a direction-based method is the con-
volution operation in direction feature extraction. More filters
used means more convolution calculation between images and
filters. As a result, some methods using six filters, including
the competitive code, ordinal code and NDI methods in feature
extraction have relatively less computational cost. By contrast,
the other methods, such as LDDBP and LLDP methods,
adopting 12 filters in feature extraction have a litter more
computational cost. Moreover, the proposed method uses more
directions in optimal direction representation, resulting in more
time taken than the LLDP methods. In addition, the feature
matching time cost of most methods are less than 1 ms. Hence,
the most time taken of palmprint recognition heavily depends
on the feature extraction. We can also see that the total time
cost of the proposed method is about 0.08 s in a whole process
of palmprint verification, which can be acceptable in real-
world applications.

For palmprint identification, in practical applications, train-
ing is usually an offline process. That is, the feature extraction
of training samples can be pre-performed offline, and thus, the
matching time is our main concern. As shown in Table III, the
proposed method has a fast matching speed (about 0.7 ms).
Therefore, the computational complexity of our proposed
method will not limit its practical applications.

V. CONCLUSION

In this paper, the essential connection between the discrim-
inability of direction features and the direction feature extrac-
tion model is established, and a Gaussian-like model, namely,
the EGM, is proposed to demonstrate the discriminative power
of different directions. The EGM is suitable for both the single-
dominant direction and multiple-dominant direction scenarios
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in a palmprint and provides a new insight into the selection
of discriminant direction features. Moreover, a novel local
discriminant direction binary pattern is proposed to completely
capture the direction features of a palmprint. Based on the
EGM, three highly potential discriminant direction features
are exploited from the LDDBP to form the LDDBP-based
descriptor for palmprint recognition. The promising effective-
ness of the proposed LDDBP method has been validated using
four widely used palmprint image benchmarks. For future
work, we are interested in extending the proposed method to
other pattern recognition tasks, such as face- and texture-based
image representation and recognition.
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