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Abstract-Kernel minimum square error (KMSE) model is
computationally more tractable than other nonlinear methods,
but it still has some drawbacks in theory and computational
problems. Moreover, the characteristic that the classification
efficiency of KMSE decreases as the size of the training sample
set increases makes KMSE yield low classification efficiency for
classification problems with a large number of training samples.
In this paper, several methods which are developed for
improving the classification efficiency of KMSE are assessed and
their shortcomings are indicated. Then, KMSE is presented as a
regression model. Taking advantage of local ridge regression, we
develop an efficient KMSE classification technique. The
proposed technique can sufficiently exploit the theoretical merit
of local ridge regression which may produce more stable
estimates with smaller variance than the least square error
technique. This technique can also determine local regularization
parameters properly and automatically, and then construct an
improved KMSE model with lower structure complex which
leads to a more efficient classification process. Experiments show
that the improved KMSE model not only classifies much more
efficiently but also obtains higher classification accuracy than
KMSE, while outperforming several existing improved KMSE
models.
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I. INTRODUCTION

The minimum square error (MSE) technique, which is
theoretically equivalent to Fisher discriminant analysis, has
received much attention in recent years. The so-called kernel
minimum squares error (KMSE) method, is a late development
of MSE. KMSE bases on the MSE technique and kernel
functions. It would appear that the implementation ofKMSE is
theoretically equivalent to sequential implementations of the
following two procedures: to transform the original sample
space (input space) into a new high-dimensional space (feature
space) and then to construct the MSE model using the data in
the feature space. On the other hand, KMSE is much more
mathematically tractable than the two phases above. By using
the kernel functions, one may not explicitly carry out the
procedure oftransforming the input space into the feature space
in implementing of KMSE. Nevertheless, for the
implementation of an ordinary nonlinear method, the two
procedures above must be explicitly carried out, and
consequently it is computationally more expensive than the
implementation of KMSE. Another theoretical property of
KMSE is that KMSE [1] may be still equivalent to LS-SVM or
Fisher discriminant analysis [2,3].
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KMSE has been proposed and applied for years yet some
theoretical and computational drawbacks exist in this model.
Moreover, the characteristic that the classification efficiency of
KMSE decreases as the size ofthe training sample set increases
is also a disadvantage for its real-world applications.
Sometime this makes KMSE incompetent for applications
which have a strict efficiency requirement. Therefore, it is very
significant to improve KMSE for efficient classification.
Though several methods for improving KMSE are available,
they have some weaknesses. We will discuss this in detail in
the next section.

II. THEORETICAL ANALYSIS ON KMSE

A Description ofKMSE
We consider two-class problems in which category labels

for the two classes are 1 and -1, respectively. Suppose that the
input space is mapped into a high-dimensional feature space
F by a nonlinear function 7 And suppose /1 samples,

x1,x 2 ***Ix4 are in class 1, while /2
samples, x l,x ,+2...,xI, are in class -1( 1±+12 = 1 ). The

MSE model for an I-training-samples set in the feature space
can be formulated as

WW+e =B,
where

W K=1 B=[1.
w

I. . . . . I
(D=

(1)

-1]T

(2)

The vector e denotes the error, and the ith entry of the
vector B is the class label of the ith training sample xi We

call w , wo discriminant vector and threshold in the feature

space F, respectively. Because w can be expressed in terms
ofw = Y1a=a (p(x, ) [5], W can be rewritten in the form of
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Ia.(p(x)]
(3)

By introducing the

k(xi, Xj ) = (p(x, )T (p(x, ), we can ob

follows, analyzing the simplest case. Generally, there are errors
in observation data. When these observation data are treated as
inputs of a mathematical model, we may say that this model
works well in controlling computational error if the errors in
the observation data are not amplified. For the KMSE model,

kernel function the matrix K is directly related to observation data with error.

tain Suppose that Ko is associated with imaginary observation

KA+ e = B, (4)
where A = [wo a,. aJ],
(K)y = k(x,, Xj-,), i=1,2,...,1, j=2,3,...l+1,
(K)ii = 11i= 1,2,...,1, (5)

B is also defined as (2) In this paper, the model formulated
using (4) is called KMSE and K is the kernel matrix of
KMSE. If A is evaluated correctly, classification can be
carried out easily as follows. The projection onto W, of a test
sample (p(x) in the feature space, is computed by

lp(x)=wo+Eaik(x,xi). (6)

If lp (x) > 0, x will be classified into class 1; otherwise x

will be classified into class -1. 1 (x) is called the classification

function of KMSE. The computational cost of KMSE is much
lower than that of ordinary nonlinear models and the
classification decision based on this model is very simple.

B. Drawbacks ofKMSE

Since KMSE bases its classification for every test sample
on all the kernel functions which are determined by this test
sample and all training samples, the classification efficiency of
KMSE will be in inverse proportion to the size of the training
sample set. This may make KMSE unsuitable for some
applications with a large number of training samples, especially
for ones with high efficiency requirement. Other kernel
methods also suffer the same problem [4-12].

Moreover, KMSE is also a model that seeks to determine
+ 1 parameters w0, a,...,a, using 1 equations. As a result,

these problems follow KMSE.

There is no unique solution to these parameters. Because
the available equations are fewer than the unknown parameters,
there are many possible solutions and we do not know which
one is the true solution. It would appear that one solution, may
be formally available, taking the following form:

A=( KTK) -'KTY (7-
1)

The maximum possible rank of the
1 + 1) >( 1 + 1) matrix KTK is 1 and KTK is singular.

Thus, if A i KTK) -'KTY was numerically available, it
would be quite numerically unstable. If this A is further
exploited to classify new samples, it will generalize badly and
the classification accuracy will be low. We explain it in brief as

data without error, and K = Ko + EI . In other words, the
magnitude order of the observation error is £ . We have the
following two outputs of KMSE: Y0 = KOA and Y = KA.
The norm of the deviation between these two outputs is

II Y-Yo ||=1 £ * II A ||, which shows that there is a

deviation, proportional to the norm of A, between the real
output calculated using KMSE and the output associated with
the imaginary observation data without error. As a result, the
larger the norm of A is, the greater this deviation. It is certain
that the A obtained using (7-1) must have a large norm
because of the singularity of KTK . Consequently, this
solution A must generalize badly and lead to a high
classification error rate.

It would appear that the computation of A can be formally
improved and expressed as

A=( KTK+cI) -KTY, (7-2)

where I is an identity matrix, and U a positive constant. It
may be regarded as an approach that artificially assigns one
solution, which is directly related to ,C, to the KMSE model.
However, it is not guaranteed that the artificially assigned
solution is the most suitable for KMSE and so the problem of
how to properly set the value of ,C should be addressed.

The drawbacks of KMSE presented above can be analyzed
in another way. The solution to KMSE determined in (7-1) is
the least square error solution. However, the least square error
solution is generally applied to a regression model which aims
to determine m parameters using n equations, where
n > m. The KMSE model does not belong to this class of
model. Hence, from the viewpoint of regression analysis, the
KMSE model has too many parameters to be determined
relative to the available equations.

C. Improve KMSE

As presented in section 2.2, KMSE has some drawbacks.
On the other hand, if the KMSE model can be improved by
containing fewer unknown parameters in the improved model,
then not only more stable numerical solution can be expected
but also a more efficient classification can be achieved.

Some literates improve kernel methods for efficient
classification from the point of view of numerical
approximation. For example, the numerical approximation
approach proposed by B. Scholkopf et al. [4] is one of them.
This approach bases on the supposition that one or more
training samples can be expressed as a linear combination of
the others in the feature space. Provided that this is true, an
improved kernel model must be capable to be constructed to
obtain a more efficient classification. Nevertheless, the
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supposition is not always available for any case. An obvious
exception to the supposition is the feature spaces associated
with the Gaussian kernel, in which none of the training samples
can be expressed in terms ofthe others.

The orthogonal least square error method (OLS) [5] was
also used to improve KMSE for achieving more efficient
classification. This method is usually based on Gram-Schmidt
orthogonalization [13,14], which has been shown to be
numerically unstable. More importantly, the kernel matrix of
KMSE is ill-conditioned, therefore the expectation of exactly
orthogonalizing the column vectors of the kernel matrix of
KMSE and obtaining the best improved KMSE model cannot
be satisfied [15,16].

Also, we have developed several improved KMSE models.
The method presented in ref [6] is not only very simple but
also computationally cheap. However, the strategy employed
in this method is so simple that it also cannot obtain the
optimal solution to the problem of improving KMSE. Another
drawback of the method is that the value of the regularization
parameter is artificially assigned and it is usually not optimal.
Compared with the method in ref.[6], the ref. [7] presents a
deliberated method to improve KMSE. However, the condition
of terminating the procedure for selecting training samples to
construct the classification function should be set using some
experience. Moreover, because a system of linear equations
should be solved in each iteration step, the method in ref [7]
has a high computational cost.

In this paper, we propose a novel improved KMSE model,
using the ideas of local ridge regression analysis and model
selection. The improved model is capable to achieve higher
classification accuracy, whereas its structure complex is lower
than the KMSE model. Experimental results show that the
improved model classifies much more efficiently than KMSE
and the greatest improvement of classification efficiency can
reach 93.5%. The experiments also show that the improved
KMSE model can achieve better classification result than
KMSE and can outperform several existing methods for
improving KMSE.

D. Ridge regression and a routine to improve KMISE

We regard B as the output of KMSE by viewing Eqs.(4)
as a input-output model. Thus,
k(, x), k(, x2 )I.kk(, xl ) can be regarded as 1 predictor
variables, while the elements of B are the values of the
predicted variable. Each output of the regression model is
decided by one observation of the 1 predictor variables. There
are 1 observations of these variables. For example, the ith
observation is (k(xi, xl), k(x, x2 ),..., k(x, xl)), which is

the ith row ofthe matrix K, too.

Further, solving (4) using (7-2) may be regarded as a ridge
regression approach. The ridge regression can produce more
stable estimate with smaller standard deviation than the least
square error technique. Although refs. [6,7] also improve
KMSE using ridge regression, the value of the regularization
parameter u is only simply artificially set. Indeed, different
values of u will lead to quite different results. Therefore, a
logical routine to improve KMSE should be the one that can

first properly set the value of , using some available means
and then can construct new KMSE model with lower structure
complex.

E. More discussion on improving KAMSE

One of the main characteristics of KMSE is that the
numbers of the predictor variables and the training samples are
identical. We also say that the complexity of the model
structure increases as the size of the training sample set
increases. This in turn means that the computational cost of
KMSE classification is proportional to the size of the training
sample set. Moreover, the accuracy of the model will become
lower and lower, and the variances of the estimates of the
parameters obtained by solving the model will get larger and
larger as the training samples become more and more. Another
potential problem is that "overfitting" usually follows high
model structure complexity. It is thus significant to construct a
new KMSE model with fewer predictor variables (i.e. lower
structure complexity) and higher model accuracy. The optimal
model construction method should achieve a model which has
a suitable structure complexity and satisfactory model
accuracy. SVM also has lower structure complexity than
KMSE, but it seems that SVM fails to obtain the optimal
structure complexity. In fact, reformative kernel methods have
theoretical advantages over SVM [8].

This paper extends theories and methodologies of
improving KMSE for efficient classification with a novel point
of view. The method developed in this paper is on a basis of
reliable theoretical background and able to achieve an
improved model with acceptable structure complexity and high
classification accuracy.

III. ALGORITHM
We here exploit ridge regression, a technique with solid

theoretical background, to obtain new KMSE model for
efficient classification. The method to be developed uses both
the global ridge regression and local ridge regression
techniques. The problem of setting the optimal global
regularization parameter is discussed and an algorithm is
proposed at first. Then, the optimal value of the global
regularization parameter is used as initial values of all local
regularization parameters. After that, an improved KMSE
model can be constructed.

A. Determine global regularization parameters
The key to ridge regression is to determine the

regularization parameters. In practice, the optimal value
of /c can be determined by using an iteration procedure based
on the following formula [17]:

f=

(8)

yTp2y trace(G-1 _uG-uG-1G)
A T A

A G-1 A trace(P)

, where G = KTK+,I , A=G-'K Y
P = I - KG-'K P is the projection matrix.
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In implementing the procedure, we set an initial value for

the U and then calculate ,u using (8) Then, the ,C is newly
I

set to ,u and (8) is repeatedly carried out in the same way till
I I

,u convergences. The final ,u is taken as the value of the ridge
regularization parameter, called global regularization
parameter.

B. Improve KMSE using local ridge regression
Local ridge regression can well present local characteristic

of data, while effectively eliminating the side-effects of
outliers. Thus the use of the local ridge technique allows the
improved KMSE to generalize well. Moreover, the use of the
model selection technique combined with local ridge regression
allows an improved KMSE with lower structure complexity to
be obtained. Therefore, the classification process associated
with the improved KMSE model is much more efficient than
that associated with KMSE.

In this subsection, we develop an algorithm for improving
KMSE using local ridge regression. Local ridge regression
derives A = (KTK + A)- KTY and

A = diag(2l, 22,..., A ) from KMSE formulated as (4).

Usually, 2i is called local regularization parameters.

Obviously, how to determine 2j properly is the key of the
I

algorithm. We take the final value of ,u obtained using (8) as
initial values of local regularization parameters. Define that
a=YTPY b =YTKYXTK
c =K'P2Kj(YTP Kj)2 a = trace(Pj)

P = KTP2K , where P. is the projection matrix, the jth

column vector K. of K has been eliminated from K, and

p2 the matrix operation p2 = p.p. The procedure of

eliminating some column vectors of the matrix K is also the
procedure of constructing the improved KMSE model. From
the point of view, the column vectors associated with positive
infinite 2 should be eliminated from the matrix K. Then

J

iXcan be calculated using

2= ca-b!3 KT PK
ba-a/3 +j+1 (9)

There are the following possible computation results [18].
If ba - a, = 0, the value of 2i will be almost infinite and

the corresponding column of the K will be eliminated. If

2i < 0 and a/3 > ba , the effect of the corresponding
column vector of the K will be equivalent to the column
vector associated with infinite local regularization parameter. It
means that the current column vector should be eliminated
from the K If 2i < 0 and a,6< ba , the effect of the
corresponding column vector of the K will be equivalent to
the column vector associated with the local regularization

parameter of "0", and the current column vector should not be
eliminated from the K while the parameter should be set to 0.
For other cases, values of local regularization parameters
should not be changed and no column vectors of K should be
eliminated. In conclusion, after we evaluate each 2i using (9),

we should revaluate the value ofthe 2 defined as follows:

goo ~~~~ifafl = axb

|oo ~~~ifK Tpj j > 'at - b)q andi bab - af

0 KjPjKj > b/ and

b) K'Pjj i K jPjK j < ca=b/i-al ba' b/if

afl > ab

al < o b

(10)

If the revaluated 2J has infinite value, the corresponding

column vectors of the matrix K should be eliminated.
Superficially, it would appear that for each J, there is an

analytic solution and no re-estimation is necessary. However,
there are other parameters to optimize and while 2J is
optimized the optimal values of the others also changes. Thus,
optimizing all the parameters together has to be done as a class
of re-estimation, doing one at a time and then repeating until
they all converge.

In the procedure of constructing the improved KMSE
model, we use the same approach of minimizing generalized
cross-validation (GCV) error [18] to determine optimal values
of the global and local regularization parameters. Consequently
the two steps on ridge regression and local ridge regression are
technically compatible. Furthermore, the use of these two steps
can allow the improved KMSE model to meet our expectation.
After the procedure, the obtained matrix K is denoted by Ks.
Thus, the resulting improved KMSE is KSAS + e = Y and

isthe solution
A = (KTK + A,)-'KTYs s s s s

As = diag(A2 22 . . 2S). K, has only s column

vectors. Suppose that Ks is in the following form:

(Ks) = k(x,,x' -),i = 1,2,...,1, j = 2,3,...s+1,
(Ks) =1,i = 1,2,..., 1, where x, x,... xare s samples
selected from the total training samples. Here we also call each
of xI, x2 ,... xs a node, a term used in [5]. Then, the
consequent classification function for a sample x is

lp(x)= w +>Loak(x,x,) where

As = [w0 a, a2 * as I Because s < 1,
the improved KMSE model will have a more efficient
classification process than the KMSE model.

IV. EXPERIMENTS

We conduct experiments on four benchmark datasets:
Cancer, Diabetis, Heart and German. Each of them contains
100 training and test subsets. For every dataset, the first
training subset is used as the training sample set and testing is
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carried out for all the test subsets, respectively. The kernel first training subset and regard it as the value of 072. The in
function exploited in this experiment iS

frttann ustadrgr ta h au f .Tepi

function= explotenI112 /2 U2)We calculate
thien isquae KMSE is set to 0.1, while the initial value of ,U associated

k(x, y) = exp(-| X-y |2 /2&2) . We calculate the square wihmpoeKMEsaloet01
sum of the standard deviation of each data component of the

TABLE 1. Classification results on each benchmark dataset (the mean and standard deviation of the percentage classification error rates on all the test subsets of
one dataset)

KMSE
The method presented in ref.[5]
The method presented in ref.[6]
Our method

Diabetis

20.1 ± 1.9

23.3± 1.9

21.4± 1.8

Cancer

19.4± 3.8

25.5 ± 4.6

20.6 ± 4.0

Heart

18.4± 3.2

16.3 ± 3.3

16.3 ± 2.9

German

23.9± 2.1

24.1 ± 2.6

19.1 ± 2.1

20.0 ± 1.7 20.6 ± 4.1 16.3 ± 3.4 19.3 ± 2.1

TABLE 2. The number of the total training samples in one training subset and the number of the "nodes" associated with three improved KMSE
Diabetis Cancer Heart German

The total number of training samples 468 200 170 700
The nodes obtained using the method presented in ref. [5] 12 6 7 8
The nodes obtained using the method presented in ref.V[6] 141 60 51 210
The nodes obtained using Our method 34(7.30o) 15(7.50o) 13(7.60o) 46(6.50o)

V. CONCLUSION

From Table 1, we can see that for all the datasets except
"Cancer", our method obtains lower classification error rate
than KMSE. This in turn means that reducing the model
structure complexity and properly setting the values of
regularization parameters do improve the model accuracy.
Moreover, Table 2 shows that our method uses fewer training
samples than the total training samples to construct the
classification function and therefore our method classifies
much more efficiently than KMSE. The ratio of the number of
the nodes determined using our method to that of the total
training samples is shown within the brackets in the last row of
Table 2. The highest and lowest ratios are 7.6% and 6.5%,
respectively. In other words, the classification time of our
method is below ten percent of that of KMSE and the least
classification time of our method is only 6.5 percent of the
classification ofKMSE.

Superficially, it would appear that the method in ref [5] can
obtain an improved KMSE with lower structure complexity i.e.
with fewer "nodes" in comparison with our method. However,
this is not to say that the method in ref.[5] classifies more
accurately than our method. In fact, the method in ref.[5] has
the highest classification error rate among the four methods. It
indicates that the method in ref.[5] cannot achieve the optimal
balance between model structure complexity and classification
accuracy. Theoretically, the kernel matrix of KMSE is not a
matrix with full column rank and consequently the true
orthogonal vector set of its column vectors cannot be exactly
obtained. Nonetheless, the ref [5] attempts to achieve an
improved KMSE model based on this orthogonal vector set.
Because of this fault, the KMSE model cannot be optimized by
the method in ref [5]. Consequently, it is not strange that the
method in ref.[5] does not do the best in improving KMSE.

The classification error rate of our method is very close to
that of the method in ref [6], whereas fewer nodes are
determined using our method than using the method in ref.[6]
and our method classifies more efficiently than the method in
ref.[6]. This comparison also demonstrates that our method can
achieve the optimal balance between model structure
complexity and classification accuracy.

The drawbacks in theory and numerical computational
problems of KMSE, which make KMSE suffer from the
problems of overfitting and generalizing poorly, are first
analyzed in detail. These problems can be overcome by using
model structure stabilization and the regularization technique.
The target of stabilizing model structure is to construct a model
with a low structure complexity i.e. few nodes, which can
generalize well. The regularization technique penalizes the
structure complexity of a model by using the regularization
parameter.

The novel method for improving KMSE may be regarded
as some combination of the method of stabilizing model
structure and the regularization technique. By contrast with the
least square error technique applied to KMSE, the use of the
local ridge regression technique allows more stable estimate
with smaller variance of a model to be obtained. Our method
can automatically determine not only the model structure
complexity but also the optimal values of the regularization
parameters. The technical routine of taking the optimal value of
the global regularization parameter as initial values of local
regularization parameters is very effective and efficient for
obtaining the convergence values of local regularization
parameters.

The experiments on benchmark datasets show that our
method developed in this paper does powerfully improve
KMSE to achieve more efficient classification as the
theoretical analysis predicts. For example, in the best case, the
classification time of the improved KMSE is only 6.5% of the
classification time of KMSE. Moreover, the improved KMSE
obtained using our method can achieve higher classification
accuracy than KMSE. The experiments also show that our
method outperforms several existing methods for improving
KMSE, getting higher classification accuracy or classification
efficiency.
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