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Abstract
For feature extraction resultedfrom Fisher

discriminant analysis (FDA), it is expected that
the optimalfeature space is as low-dimensional
as possible while its linear separability among
different classes is as large as possible. Note
that the existing theoretical expectation on the
optimal feature dimensionality may contradict
with experimental results. Due to this, we
address the optimal feature dimensionality
problem with this paper. The multi-dimension
Fisher criterion is used to measure the linear
separability of the feature space obtained using
FDA and to analyze the optimal feature
dimensionality problem. We also attempt to
answer the question "what kind of real-world
application is FDA competent for". Theoretical
analysis shows that the genuine optimal feature
dimensionality should be lower than that
presented by Jin et al. A number of experiments
illustrate that the proposed optimal feature
extraction does have advantages.

Key words: Multi-dimension Fisher criterion;
Feature extraction; Linear separability

1. Introduction

The basic target of the widely used Fisher
discriminant analysis (FDA) [1-15] is to seek a
transforming axis which is able to transform
samples into ones with maximal linear
separability. The transforming axis that leads to
the best linear separability is called optimal
transforming axis. Generally, besides the first
optimal transforming axis is available;
suboptimal transforming axes can be also
obtained. In practice, an N dimensional sample
space has N available transforming axes in
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total. Note that extended Fisher discriminant
analysis (KFDA) [16-20], which is derived from
FDA methodology, has also received much
attention.

A number of studies show that if samples
are transformed into a lower-dimensional
subspace, higher classification accuracy may be
expected [6]. For real-world applications, ifFDA
is required to extract low-dimensional features of
samples, the following problems should be
addressed. The first problem is which
transforming axes should be used for feature
extraction. The second problem, which is also
called optimal feature dimensionality problem, is
what is the optimal feature dimensionality.

Jin et al. [6] claimed that all the FDA
discriminant vectors associated with positive
Fisher criterion values are helpful to obtain
useful classification information in extracting
features of samples. As a result, they insisted that
all these discriminant vectors be used for feature
extraction. Generally, there are L- 1 available
positive Fisher criterion values, thus samples can
be transformed into a L-1 dimensional space
using the transforming axes associated with
these criterion values. This is the first attempt to
relate the optimal number of transforming axes
to the number of sample classes. On the other
hand, though these L- 1 transforming axes
associated with the positive criterion values were
expected to achieve the best classification
performance, a number of experiments did not
meet this expectation. For example, refs. [7,8,9]
all indicated that the feature space associated
with the highest accuracy did not has the
dimensionality of L- 1. In some cases, the
classification accuracy of a feature space with
the dimensionality smaller than L-1 may be
higher than that of the L-1 dimensional feature
space [10]. In addition, the following different
statement is also available: for the small training
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sample set, the optimal feature dimensionality
should be greater than L-1 [11]. It appears that
up to now there is no satisfactory solution to the
optimal feature dimensionality problem.

The remainder of this paper is organized as
follows. In section 2 we propose the notion of
the multi-dimension Fisher criterion. We also
analyze the theoretical properties of FDA. In
section 3, we analyze the physical meaning of
the multi-dimension Fisher criterion. In section 4,
we conduct several experiments to illustrate our
theoretical analysis. Section 5 offers our
conclusion.

2. The multi-dimension Fisher
criterion

The problem to seek the optimal transforming
axis of FDA is identical to the one that
maximizes the following Fisher criterion [3]:

f( w) Tsb , where S S are the
betweenclas b' ww Sww
between-class scatter matrix and the within-class
scatter matrix, respectively. Sb, SW are
respectively defined as follows:

L

Sb ZP(wi)(Mi_-iMn )(Mi_-Mn)T , (1)
i=1
L

sw = ,P )E[(Y My)y Mi)TI ]

(2)
where C0)l, 02) 0...C)L denote L classes, mi

the expectation of C(),, p((o, ) the prior of

C), , and mo the expectation of the total
samples. Suppose that the dimensionality of
original samples is N. As a result, Sb and

SW are both NxN matrices. In practice, the
problem to determine multi transforming axes is
equivalent to the one which aims to maximize
the following Fisher criterion [12]:

F IW WTSbW I3WTS ww

Since multi transforming axes are required, the
criterion (3) can be named multi-dimension
Fisher criterion. The columns of the matrix W
are composed of the transforming axes. If the
W maximizes the criterion (3), it can be called
optimal transforming matrix. When there are d
transforming axes, the W is an N x d
matrix. Consequently, a sample y can be
reformed to be a d dimensional vector by the

transform z = WTy .
It is known that column vectors of the W

should consist of eigenvectors of the following
general eigenequation

SbX=ISWX. (4)
Suppose that eigen-values of (4) are

---r> AN > 0. Suppose that Sw is
a positive definite matrix. Then Eq. (4) can be
solved directly We also assume that only
distance classifiers are used for classifying
samples.

The number d of the column vectors of W
may vary from 1 to N . In this paper the feature
extraction associated with the best linear
separability is called optimal feature extraction.
In practice, two quantitative indicators are
available for the FDA transform. The first
quantitative indicator is the Fisher criterion value
of a transforming axis. The greater the value is,
the more linearly separable the features of
different classes obtained using the transforming
axis is. The second quantitative indicator is the
number of the transforming axes which can lead
to the best linear separability. We present our
analysis on the second problem via the following
theorems. Hereafter we define that the
transforming matrix W is composed of the
eigenvectors associated with the first c largest
eigen-values of (4).
Theorem 1. -k is the value of the
multi-dimension Fisher criterion associated with
w.
Proof.

Let x12,.x2 c be the eigenvectors
associated with the first c largest eigen-values
of Eq.(4) , respectively. As a consequence, we
have

Sbxi =2RSwxij < i < C

(5)
It follows by W =[x1 x2. x]
that
(WTSbW)U = XTSbX 7

(WTS W)j = XTSwXj. (6)

Note that if Ai . Ai which is almost always
satisfied for real-world applications, the
following formulas must be certain:

iSbXI=O,SWXI =O,i j, .ij N

As a result, we can be led to the following
equalities:
WTSbW = (XSbx 1)(XSbX2)...(XSbXC)
(7)
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WTSW l= (XT S x1 )(XTSWX2 ) ...(XTSWX)
. (8)
On the other hand, the following formula is
certain:

xiSbXI =i1ixSix1,1 . i . N
(9)
Substituting (9) into (7) yields

IWTSb = 2122 ...2 which says that the
WTSWWI

value of the multi-dimension Fisher criterion is
as follows:

F(W)=2422...ic. (10)
Moreover, we have the following theorems.
Theorem 2. Under the condition

A'l 2'* 2..I > 12c+l I +2 2*..IN < 1, the
multi-dimension Fisher criterion associated with
the transforming matrix W reaches its
maximum value.
Proof.

We will use the reduction to absurdity to
demonstrate this theorem. Firstly, suppose that

Al,22,._c >1 is not satisfied and instead

there are 2c < 1 , 21,22..., c- > 1 and

2c+l I2 2* IN < As a consequence, it is

certain that 2422...2C < 2122...c-1. In other
words, based on the above supposition, the
W will not result in the maximum
multi-dimension Fisher criterion value.

Secondly, assume that
Ac+1 ' AC+2'' 2IN < 1 is not satisfied and there

are AC+1 > 1 and 2c+2 ...,IN < 1

2 , 22 . c > 1 . As a result, we have

122...c < 2122...2c2c+ which also shows
that the multi-dimension Fisher criterion
associated with the W does not reach its
maximum value.

The demonstration above indicates that
under the condition of
21 22,. c > 12 c+1 2Ac+2 ... AN <l the
multi-dimension Fisher criterion associated with
W must arrive at the maximum value.

In fact, under the condition of theorem 2,
W =[x1 x2'. . xc] is the optimal
transforming matrix, for it will result in the
maximal multi-dimension Fisher criterion value,
which implies that the corresponding feature
space has greater linear separability than other
feature spaces. Hence, c is the optimal feature
dimensionality. On the other hand, we can know
that the optimal feature extraction specified by

Jin does not correspond to the maximum value
of the multi-dimension Fisher criterion.
Theorem 3. The optimal feature dimensionality
proposed by Jin is generally greater than that
specified in this paper.
Proof.

It is clear that nonzero eigen-values are
more than those greater than 1. Thus, we have
L-1 < c Thus, we may say that the optimal
feature dimensionality proposed by Jin is
generally lower than that specified by us.

3. More discussion on the optimal
feature dimensionality

3.1 Threshold of Fisher criterion and its
physical meaning

In practice, to take 1 as the threshold of
Fisher criterion has the following physical
meaning: if Fisher criterion value is greater than
1, the average distance between sample features
from different classes will be greater than that
between sample features in the same class. As a
result, samples are suited to be classified by a
distance classifier and acceptable classification
performance can be expected. Now we illustrate
this by taking the two-class problem as an
example.

Suppose that the eigenvector associate with
the eigen-value 2 of SbX = Slwx is used for
feature extraction, then the one-dimensional
feature obtained by the feature extraction process

T
is z = y x , where y means an arbitrary
sample. Let z1 , Z2 be the mean-vectors of the
two classes, respectively. For the feature space,
the average squared distance between the means
of the two classes can be formulated as
follows: (z1 -Z2 )2 = XT SbX. The greater the
value of the formula is, the more severely the
features of different categories vary and the
greater the distance between the means of the
two classes is.

Similarly, the average of the variance of the
sample features in the same class is

Z=1Zje (Zji -Zi) = XSWx2 n

wherezji is the feature of the j th sample of

the i th category, and n the number of the
samples in each class. The smaller this average
variance is, the smaller the difference between
sample features in the same class is. Clearly,
large xTSbx/xTSWx = A means great linear
separability between sample features from
different categories.
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Therefore, the Fisher criterion value
smaller than 1 indicates that the distance
between sample features from the same category
is statistically larger than that between sample
features from different classes. Consequently, the
corresponding transforming axis is not of
significance for feature extraction and
consequent classification. On the other hand, a
transforming axis associated with Fisher
criterion value greater than 1 is favorable.

3.2 Analysis on multi-dimensional Fisher
criterion

The scheme of using all the eigenvectors
associated with nonzero eigen-values as
transforming axes is subject to the adding
principle of single Fisher criterion value. That is,
it is considered that the larger the sum of all the
positive single Fisher criterion values, the
greater the linear separability of a feature space
is.

The multi-dimension criterion proposed in
this paper measures the linear separability of the
feature space using the multiplication principle.
This principle is consistent with the following
fact. A Fisher criterion value less than 1 means
that the between-class distance is smaller than
the within-class distance. In practice, the value
of the multi-dimension Fisher criterion descends
while this kind of transforming axis is also used
as transforming axis. Thus, the multiplication
principle directly relate the multi-dimension
Fisher criterion value to the linear separability
measure of the feature space.

The multi-dimension Fisher criterion can
measure and compare the linear separability of
different dimensional feature spaces with the
following conclusions.
(1) If all eigen-values of the eigen-equation are
larger than 1, the maximums value of the
multi-dimension Fisher criterion generally
coincides with the transforming matrix
consisting of all available eigenvectors. Hence,
among all the feature spaces the one associated
with this transforming matrix has the maximum
linear separability. In this case, it seems that
feature extraction performed using FDA is
unuseful to improve classification performance.
(2) For the real-world case that samples are very
high-dimensional and the number of sample
categories is small, the between-scatter matrix
will have a number of zero eigen-values which
are usually computationally nonzero. As a
consequence, a lower-dimensional subspace
obtained using FDA-based transform may have a

I,

large multi-dimension Fisher criterion value.
Also, high classification accuracy may be
available.

4- Experiments
4.1 Experiment on face images

We transformed the images of AR face
database into grey-level ones and cropped them
to obtain images each having 60X60 pixels. We
performed the first face recognition experiment
using parts of typical images per individual as
training samples. That is, the first, fifth, eighth,
eleventh and fourteenth images of each
individual, which characterize all typical
variations of an individual face (as shown in the
first row of Fig. 1) and are called typical images,
were used as training samples, while the others
were employed as test samples. The
classification process is called classification on
typical facial variations. Table 1 tells us that our
approach and Jin's approach proposed in ref.[6]
obtain accuracies of 75.6% and 75.4%,
respectively.

Face classification under the condition of
varying facial expression was also performed,
followed by the face recognition using face
images with varying lighting condition. For each
of these two cases, two samples of every class
were used as members of the training sample set,
while six samples from the same category would
be taken as test samples. Both the cases selected
the first and fourteenth images of each class as
training samples. In face classification task with
varying facial expression, the test sample set
included the second, third, fourth, fifteenth,
sixteenth and seventeenth samples of every class,
which contains expressions such as smile, anger
and scream. For face recognition using images
with varying lighting, the test sample set
consisted of the fifth, sixth, seventh, eighteenth,
nineteenth and twentieth images of every class.

From Table 1, we can see that our approach
and the approach in ref. [6] obtained two
comparable accuracies, 85.3% and 85.4%, when
classifying faces with varying expression. For
face recognition under the condition of varying
lighting, accuracies of our approach and the
approach in ref. [6] were 82.9% and 82.7%,
respectively. Moreover, our approach used fewer
transforming axes than the approach in ref. [6] to
extract features of samples. Therefore, it is
certain that our approach took less time than the
approach of ref.[6] to perform feature extraction
and consequent classification.
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aO) bO) cO) dO) eO)

a) b) c) d) e) f)

a') b') c') d') e') f')

g) h)

g') h')
Fig 1. The first row shows some samples of an individual in AR database. These images characterize all
typical facial variations of an individual. The second row shows images used for face classification
using images with varying expression. a) and e) were selected as training samples, while b),c),d), f) ,g)
and h) were included in the test sample set. The third row shows images used for face recognition on

images with varying lighting. a') and e') were selected as training samples, while b'),c'),d'), f') ,g')
and h') were taken as test samples. Note that a) and a') denote the same image, while e) and e') mean
another identical image.

Table 1. Experimental result on AR face images

Classification accuracy of typical facial variations
Accuracy under the condition of varying expression
Accuracy under the condition of varying lighting

4.2 Experiment on palmprint images

We collected 300 left palmprint images from
50 subjects, each having 6 palmprint images.
The training set consists of the first three images
of every subject, while the test sample set is
composed of the other images. Table 2 shows
that both our approach and the approach of
ref.[6] produced the same accuracy, 83.3%. In
addition, because more transforming axes were
used by the feature extraction procedure
proposed in ref.[6], the approach in ref.[6] would
take longer time than our approach to extract
features of samples and to classify them.

Table 2. Classification
palmprint image database

Our
approach

Classification 83.3%
accuracy

performance on

Approach in
ref. [6]
83.3%

5. Conclusion

This paper clearly presents the physical
meaning of the single Fisher criterion and

Our approach The approach in ref. [6]
75.6% 75.4%
85.3% 85.4%
82.9% 82.7%

multi-dimension Fisher criterion. While the
single Fisher criterion identifies the discriminant
performance of a transforming axis, the
multi-dimension Fisher criterion measure the
linear separability of the feature space obtained
using multi transforming axes. The
multi-dimension Fisher criterion may be also
used to compare the linear separability of two
different-dimensional feature spaces. Optimal
transforming matrix, defined as the one that is
associated with the maximum multi-dimension
Fisher criterion, is able to result in the maximal
linear separability. It appears the maximum
multi-dimension Fisher value may coincide with
the best classification performance. Moreover,
according to the multi-dimension Fisher
criterion, it is probably that FDA is more
suitable for feature extraction in the case with
high-dimensional samples and a few sample
classes than opposite cases.
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