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Abstract

Kernel principal component analysis (KPCA) extracts features of samples with an efficiency in inverse proportion to the size of the

training sample set. In this paper, we develop a novel method to improve KPCA-based feature extraction. The developed method is the

first one that is methodologically consistent with KPCA. Experiments on several benchmark datasets illustrate that the feature extraction

process derived from the novel method is much more efficient than that associated with KPCA. Moreover, the classification accuracy

generated from the developed method is similar to that of KPCA.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Kernel principal component analysis (KPCA) [8,9], a
widely used nonlinear feature extraction method, was
derived from principal component analysis (PCA)
[1–6,10,15]. For KPCA, it is certain that a feature extractor
can be expanded in terms of all training samples in feature
space. Thus, if we use KPCA to extract features of a
sample, we should calculate all the kernel functions
between this sample and the total training samples in
advance and then implement feature extraction using these
functions. As a result, the larger the size of the training
sample set, the lower the efficiency of feature extraction.
Especially, for real-world applications with large numbers
of training samples, KPCA-based feature extraction will be
inefficient and even unfeasible. Indeed, other kernel
methods also suffer from similar problems [11–14]. Some
algorithms have been proposed to accelerate feature
extraction associated with kernel methods. Generally, these
algorithms primarily root in the following two ideas. The
first idea is based on the supposition that one or more
e front matter r 2006 Elsevier B.V. All rights reserved.
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training samples in feature space can be expressed exactly
as a linear combination of the others. Another idea is that a
feature extractor of the feature space may be expanded
approximately in terms of some vectors, which are fewer
than the total training samples and may or may not be
from the training sample set.
The first idea above seems to be reasonable and feasible

for linearly dependent training samples. In this case, there
is at least one training sample that can be expressed exactly
as a linear combination of the others. However, for some
real-world applications such as the ones associated with the
Gaussian kernel, the training samples in feature space
cannot be linearly dependent. Most of the algorithms based
on the second idea were developed only with the viewpoint
of numerical approximation and it is not clear whether
these algorithms are methodologically consistent with the
essence of KPCA or not. In addition, it is noticeable that
the expectation maximization approach proposed by
Rosipal and Girolami [7] is helpful to improve the
implementation efficiency of KPCA with a large number
of data points, though this approach is not able to improve
KPCA-based feature extraction.
With this paper, we are the first to develop such an

improved KPCA method that is still subject to the KPCA
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methodology. Superficially, it would appear that the idea
proposed by us in this paper is somewhat formally
similar to the idea for deriving fast kernel Fisher
discriminant analysis (FKFDA) [12]; however, our method
for improving KPCA are essentially different from that for
obtaining FKFDA. Our method in this paper is derived
directly from the KPCA methodology while FKFDA is
not. The feature extraction process using the improved
KPCA can be much more efficient than that using the
original KPCA. Experimental results also show that
IKPCA is similar to KPCA in classification accuracy.
The rest of this paper is organized as follows. KPCA is
briefly introduced in Section 2. Then the IKPCA method is
presented in Section 3, followed by the experimental results
shown in Section 4. Finally, the conclusion is presented in
Section 5.
2. Nonlinear PCA based on a kernel function

As a nonlinear method, KPCA is nothing but the PCA
in the feature space associated with a kernel function.
We assume that there are N training samples, x1; x2; :::; xN ,
in total. If the training samples have been mapped into a
feature space by a nonlinear function f, we may perform
PCA based on the training samples in feature space.
The correlation matrix of the feature space can be
computed by Sf ¼

1
N

PN
i¼1fðxiÞfðxiÞ

T. It is easy to
demonstrate that feature extractors in feature space
must be from the set of the eign-vectors of Sf. With these
feature extractors, we can obtain features of samples and
can also reconstruct the samples with the minimum mean-
square error. Furthermore, the following equation can be
derived:

Ka ¼ la, (1)

where ðKÞij ¼ kðxi;xjÞ. kðxi;xjÞ means the kernel function
between xi and xj. The principal component analysis
method based on the eigen-equation (1) is the so-called
KPCA.

It is easy to know that for the sample f(x) in feature
space, the most representative m dimensional features
extracted using KPCA form the following vector:

Y ¼

PN
j¼1a

ð1Þ
j kðxj ;xÞffiffiffiffiffi
la1

p
PN

j¼1a
ð2Þ
j kðxj ; xÞffiffiffiffiffi
la2

p � � �

PN
j¼1a

ðmÞ
j kðxj ;xÞffiffiffiffiffiffi
lam

p
" #T

,

(2)

where að1Þ; að2Þ; :::; aðmÞ are, respectively, the m eign-vectors
associated with the first m largest eigen-values la1; l

a
2; :::; l

a
m

of (1). aðiÞj denotes the jth component of the vector a(i).
According to the essence of the PCA methodology, the
feature extraction procedure based on (2) is theoretically
able to produce the minimum reconstruction error.
3. Idea and algorithm for improving KPCA

3.1. Idea of fast feature extraction

Section 2 has shown that, in the feature space, feature
extraction can be implemented using (2). However, (2)
indicates that to obtain features of a sample, we should
calculate all the kernel functions between this sample and
the total training samples, which means that the feature
extraction process associated with a training sample set of a
large size is quite inefficient. To speed up KPCA-based
feature extraction, we assume that in the feature space a
feature extractor can be expressed approximately as a
linear combination of a portion of training samples, called
nodes. The corresponding coefficients are called expansion
coefficients. The assumption is supported by the fact that
when a feature extractor is expanded in terms of all the
training samples, different training samples have dissimilar
effects on the expansion. In other words, some training
samples contribute much to the expansion, whereas the
others contribute less [13]. If we find out the ‘‘important’’
training samples, which contribute much to the expansion,
and newly expand feature extractors in terms of them, then
these ‘‘important’’ samples can be taken as the nodes.
Consequently, we can extract features of a sample using all
the kernel functions between this sample and the nodes.
Since the nodes are fewer than the total training samples,
we can lead to more efficient feature extraction process.
The strategy for determining nodes will be presented in
Section 3.2. Though ideas superficially similar to the above
assumption have been successfully applied to kernel-based
discriminant analysis methods [11,12], the corresponding
methods are distinct from our method for improving
KPCA presented below. One of the main differences
between our method in this paper and those in previous
works [11,12] is that our method is still based on the
methodology of principal component analysis, whereas the
others base their algorithms on the physical meaning of
Fisher discriminant analysis. It is also noticeable that the
method in Ref. [13] can select nodes from training samples
very easily; however, the corresponding algorithm is not
justified theoretically.
Suppose that a feature extractor ui can be expanded

approximately in terms of ui �
Ps

j¼1bjfðx
0
j Þ; soN; conse-

quently, Sfui � lui. For simplicity, we replace the sign
‘‘E’’ with ‘‘ ¼ ’’ in the context below. Then the following
set of equations is certain:

fðx0
kÞ � Sf

� �
ui ¼ l fðx0

kÞ � ui

� �
; k ¼ 1; 2; :::; s. (3)

Substituting ui ¼
Ps

j¼1bjfðx
0
j Þ into (3) arrives at

l
Xs

j¼1

bj fðx0
kÞ � fðx

0
j Þ

� �
¼

1

N

XN

i¼1

Xs

j¼1

bj fðx0
kÞ � fðxiÞ

� �
fðxiÞ � fðx0

j Þ

� �
; k ¼ 1; 2; :::; s.
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Then, we can formulate this set of equations as follows:

1

N
K1ðK1Þ

Tb ¼ lK2b, (4)

where b ¼ ½b1 b2 . . . bs�
T, ðK1Þij ¼ kðx0

i ;xjÞ; i ¼ 1; 2; :::; s; j ¼

1; 2; :::;N, ðK2Þij ¼ kðx0
i ;x

0
j Þ; i; j ¼ 1; 2; :::; s.

The above demonstration relates the problem for
determining nodes with an eign-value equation. In other
words, for the approximate expansion of a feature
extractor, we can determine the expansion coefficients
based on Eq. (4). We call the principal component analysis
technique using the eigen-equation (4) improved KPCA
(IKPCA). Exploiting this technique, we can carry out
feature extraction more efficiently, which will be shown in
Section 3.2. Notice that if there are N nodes i.e. s ¼ N, then
(4) will be identical to the eigen-equation associated with
KPCA.

3.2. Algorithm for determining nodes

According to the physical meaning of principal compo-
nent analysis, the feature extractors of PCA or KPCA must
be the eign-vectors of the corresponding eigen-value
equation. Moreover, the performance of the feature
extractors of either of the two methods can be assessed
by the corresponding eigen-values. In practice, when
extracting features of samples using PCA or KPCA, we
prefer a feature extractor (i.e. an eign-vector) associated
with a large eign–value to that associated with a small
eign–value, because a large eign–value means a small
construction error. IKPCA is derived from KPCA and it
may be considered an approximation version of KPCA,
thus the performance of a feature extractor of IKPCA can
be also assessed by the corresponding eign–value generated
from Eq. (4). That is, for a feature extractor (i.e. an eign–
vector) from Eq. (4), the larger the eign–value associated
with it is, the better it is. We propose to determine nodes
using the following algorithm.

Step 1. Determine the first node.
For the ith training sample xi, K1;K2; l are computed

using K1 ¼ ½kðxi;x1Þ kðxi;x2Þ . . . kðxi;xN Þ�, K2 ¼ ½kðxi;xiÞ�

and l ¼ K1ðK1Þ
T=K2, respectively. Obviously, K2 and

K1(K1)
T are both scalars and every training sample has

respective l. When all the training samples have been
searched and investigated, the one associated with the
maximum l is taken as the first node, denoted by x0

1. Then,
the matrices K1,K2 corresponding to x0

1 are recorded
as K0

1;K
0
2, respectively, i.e., K0

1 ¼ ½kðx
0
1;x1Þ kðx

0
1;x2Þ . . .

kðx0
1;xNÞ�, K0

2 ¼ ½kðx
0
1; x

0
1Þ�.

Step l. Determine the lth node.
If l � 1 nodes, x0

1;x
0
2; :::; x

0
l�1, have been determined by

the previous l � 1 steps, the lth node may be determined as
follows. Firstly, a vector k1

j is defined as

k1
j ¼ kðxj ;x1Þ; kðxj ;x2Þ; :::; kðxj ; xN Þ

� �
. (5)

Let K0
1;K

0
2, respectively, denote the matrices K1,K2

based on x0
1;x

0
2; :::; x

0
l�1, i.e., ðK0

1Þij ¼ kðx0
i ;xjÞ; i ¼
1; 2; :::; l � 1; j ¼ 1; 2; :::;N; ðK0
2Þij ¼ kðx0

i ;x
0
j Þ; i; j ¼ 1; 2; :::;

l � 1. The lth node should be from the sample set
P ¼ xjjxjax0

1; x
0
2; :::; x

0
l�1

	 

, which is a subset of the set

of the total training samples. In this step, we will take each
element of P as one candidate for the lth node and
respectively assess them for selecting the optimal candidate
as the lth node. When assessing a sample (i.e. an element) xj

from P, we define K1,K2 as

K1 ¼
K0

1

k1
j

" #
; K2 ¼

K0
2 ðk

2
j Þ

T

k2
j kðxj ;xjÞ

2
4

3
5,

where k1
j is defined as in (5), k2

j ¼ kðxj ; x0
1Þ

�
kðxj ;x0

2Þ � � � kðxj ;x0
l�1Þ�. Using the K1, K2, we can construct

an eign-value equation in the form of Eq. (4), and then we
can work out its eign-values l1; l2; :::; ll . Suppose that m

feature extractors are required. We introduce a variable v

and define it as follows: if lpm, then v ¼ l1 þ l2 þ � � � þ ll ;
otherwise, v ¼ l1 þ l2 þ � � � þ lm. After all the samples
(elements) in P have been researched and investigated by
the above procedure, the maximum v is denoted by vl.
Then, the candidate associated with vl, is selected as the lth
node and denoted by x0

l . K0
1;K

0
2 are newly, respectively,

defined to be the matrices K1,K2 based on x0
1; x

0
2; . . . ; x

0
l .

The above procedure is not terminated until sXN � t

where to1, N and s are respectively the numbers of the
total training samples and the determined nodes. In
practice, the s can be empirically determined. Alternatively,
an additional classification procedure on the features
extracted using the obtained IKPCA model can assist
people to determine s (or t). That is, if s is considered to be
great enough, the obtained IKPCA model can be used to
extract features of training samples and then the classifica-
tion result on these features can help people judge whether
the current IKPCA model is powerful enough to present
the sample data or not. If the classification accuracy is
satisfactory, the node selection procedure can be termi-
nated; otherwise, this procedure continues to select nodes.
After the procedure for determining nodes is terminated,

the sample f(x) in feature space can be featured by

f ¼

Ps
j¼1b

ð1Þ
j kðx0

j ; xÞffiffiffiffiffi
l1
p

Ps
j¼1b

ð2Þ
j kðx0

j ; xÞffiffiffiffiffi
l2
p � � �

Ps
j¼1b

ðmÞ
j kðx0

j ; xÞffiffiffiffiffiffi
lm

p

" #T
,

where bðiÞ ¼ ½bðiÞ1 bðiÞ2 . . . b
ðiÞ
s �

T. bð1Þ; bð2Þ; . . . ;bðmÞ are the first
m eign-vectors associated with the first m largest eign–
values of the corresponding eign–value equation taking the
form of (4), which is based on the determined nodes
x0
1; x

0
2; . . . ; x

0
s and all the training samples x1; x2; :::; xN . It is

clear that the computational complexities of IKPCA-based
feature extraction and KPCA-based feature extraction are
o(ms) and o(mN), respectively.
Although the expectation maximization approach to

KPCA [7] can much efficiently solve the eign–value
problem associated with KPCA, the consequent feature
extraction process for a sample still depends on the kernel
functions between this sample and all the training samples,
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having the complexity of o(mN). That is, this approach is
not able to improve the efficiency of KPCA-based feature
extraction. On the other hand, while the method proposed
in this paper takes a very long time to obtain the eign–value
problem associated with the improved KPCA model, it is
very effective in speeding up KPCA-based feature extrac-
tion.
4. Experiments

To illustrate the efficiency and performance of IKPCA,
we conduct experiments on four benchmark datasets
(http://ida.first.gmd.de/�raetsch/data/). Every data set
includes 100 subsets except for ‘‘Splice’’ which has only
20 subsets. Moreover, each subset consists of one training
subset and one test subset. We use the Gaussian kernel
kðx; yÞ ¼ expð�jjx� yjj2

�
2s2Þ, and let s2 be equal to the

square of Frobenius norm of the correlation matrix of the
first training subset. The training procedure is performed
on the first training subset, and then test is implemented for
all the test subsets using the nearest neighbor classifier. For
each dataset, we test IKPCA with different t as shown in
Table 2.

Every test subset has a classification error rate, so we can
figure out the average error rate of one dataset. We can
also obtain the deviation of the classification error rate on
a dataset. Tables 1 and 2 show the experimental results of
KPCA and IKPCA on the four data sets. It appears that
IKPCA extracts features of samples much more efficiently
than KPCA. It is noticeable that, for the data set ‘‘Splice’’
whose data dimensionality is 60, IKPCA classifies much
more accurately than KPCA. For the data set ‘‘Banana’’,
the classification accuracy of IKPCA is slightly lower than
that of KPCA. As for the classification performance on
Table 1

Experimental result of KPCA on benchmark data sets

Number of feature

extractors

Average error rate and the

deviation of the error rate

Splice 100 25.5(2.6)

90 24.7(2.5)

80 24.0(2.4)

70 21.8(2.2)

Diabetes 100 11.5(2.8)

90 11.7(2.8)

80 11.5(2.8)

70 11.8(2.9)

Banana 100 13.8(0.2)

90 13.8(0.2)

80 13.8(0.2)

70 13.8(0.2)

Cancer 70 9.0(3.2)

60 8.5(3.0)

50 8.5(3.0)

40 9.8(3.3)

Notice that for two numbers A,B in the form of A(B) in this table, A means
data sets ‘‘Diabetes’’ and ‘‘Cancer’’, there are similar
classification error rates for the two methods when t is not
less than 0.5. For the cases in which t is less than 0.5,
IKPCA generally obtained slightly higher error rates for
these two datasets. To further assess IKPCA, we obtain an
IKPCA model using one training sample subset and then
classify all the other training sample subsets and the test
samples using the features generated from every IKPCA
model, respectively. The average error rate and the
deviation presented in Table 3 also show that IKPCA is
capable of obtaining the most representative features of
samples. All these results indicate that IKPCA does
perform well in feature extraction as we expect.
5. Conclusion

If KPCA is used to extract features of a sample, all the
kernel functions between this sample and the total training
samples should be computed in advance. As a result, for
real-world applications with large numbers of training
samples, KPCA will perform feature extraction much
inefficiently. Although some methods have been proposed
to improve KPCA for achieving efficient feature extraction,
they all do not take the principle of KPCA into account in
establishing the improved KPCA model. In this paper, we
develop the IKPCA algorithm to improve KPCA for more
efficient feature extraction. The algorithm is feasible and
reasonable; besides it is still subject to the PCA methodol-
ogy, which makes it distinct from the existing algorithms
for improving KPCA. For IKPCA, the feature extractors
also should be the eign–vectors associated with large eign–
values of the corresponding eign–value equation. The
experimental results on the benchmarks show that IKPCA-
based feature extraction is much more efficient than
Total number of

training samples

Feature extraction

time (s)

Training time (s)

1000 2130 56.0

2096 55.6

2036 55.1

2020 54.6

468 380 7.9

360 7.1

350 7.0

341 6.7

400 8147 5.2

7875 4.9

7640 4.6

7059 4.4

200 27.6 0.99

25.9 0.94

25.3 0.92

23.8 0.84

the average error rate and B denotes the deviation of the error rate.

http://ida.first.gmd.de/~raetsch/data/
http://ida.first.gmd.de/~raetsch/data/
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Table 2

Experimental result of IPCA on benchmark data sets

Number of

feature

extractors

Average error rate and the deviation of the error rate Feature extraction time (s) Training time (s)

Splice t ¼ 0.1 t ¼ 0.15 t ¼ 0.2 t ¼ 0.25 t ¼ 0.1 t ¼ 0.15 t ¼ 0.2 t ¼ 0.25 t ¼ 0.1 t ¼ 0.15 t ¼ 0.2 t ¼ 0.25

100 18.6(1.8) 18.8(1.9) 18.4(1.8) 17.8(1.8) 799 802 808 813 1254 4225 8433 15675

90 18.2(1.8) 17.8(1.8) 18.0(1.8) 17.8(1.8) 778 782 785 789 1240 4148 8412 15584

80 18.7(1.9) 17.3(1.7) 18.4(1.8) 17.5(1.8) 762 763 767 781 1236 4114 8395 15541

70 19.1(1.9) 17.2(1.7) 17.7(1.8) 17.6(1.7) 735 739 743 749 1231 4045 8371 15529

Diabetes t ¼ 0.3 t ¼ 0.4 t ¼ 0.5 t ¼ 0.6 t ¼ 0.3 t ¼ 0.4 t ¼ 0.5 t ¼ 0.6 t ¼ 0.3 t ¼ 0.4 t ¼ 0.5 t ¼ 0.6

100 11.7(2.9) 11.7(2.8) 11.4(2.8) 11.4(2.8) 187 212 234 257 1217 3064 6395 10232

90 12.1(2.9) 12.2(2.9) 11.9(2.9) 12.1(2.9) 186 209 230 251 1208 3055 6374 9819

80 11.4(2.7) 11.6(2.8) 11.6(2.8) 11.9(2.9) 181 203 227 248 1204 3053 6335 9620

70 12.4(3.0) 12.3(2.9) 12.0(2.9) 12.1(2.0) 173 199 221 242 1199 3051 6329 9561

Banana t ¼ 0.3 t ¼ 0.4 t ¼ 0.5 t ¼ 0.6 t ¼ 0.3 t ¼ 0.4 t ¼ 0.5 t ¼ 0.6 t ¼ 0.3 t ¼ 0.4 t ¼ 0.5 t ¼ 0.6

100 14.7(0.2) 14.2(0.2) 14.1(0.2) 14.2(0.2) 2809 3771 5038 6701 527 1272 3519 6112

90 14.1(0.2) 14.2(0.2) 14.2(0.2) 14.1(0.2) 2769 3623 4996 6395 505 1264 3291 5009

80 14.2(0.2) 14.2(0.2) 14.2(0.2) 14.1(0.2) 2599 3544 4584 5822 484 1262 3194 4987

70 14.3(0.3) 14.2(0.2) 14.2(0.2) 14.2(0.2) 2573 3405 4328 5626 454 1259 2740 4971

Cancer t ¼ 0.4 t ¼ 0.45 t ¼ 0.5 t ¼ 0.55 t ¼ 0.4 t ¼ 0.45 t ¼ 0.5 t ¼ 0.55 t ¼ 0.4 t ¼ 0.45 t ¼ 0.5 t ¼ 0.55

70 9.9(3.5) 9.6(3.4) 9.2(3.3) 9.3(3.2) 11.5 12.2 13.5 13.6 80.8 131.5 154.4 210.8

60 9.2(3.2) 8.9(3.1) 8.6(2.9) 8.9(3.0) 10.8 11.4 12.1 12.8 79.1 113.8 154.3 209.9

50 8.5(3.0) 8.2(2.9) 8.6(2.9) 8.2(2.9) 10.4 11.1 11.7 12.4 77.9 111.7 153.3 209.8

40 8.1(3.0) 7.9 (2.9) 8.1(2.9) 8.1(2.9) 9.8 10.6 11.2 11.8 77.7 111.1 153.0 209.5

Notice that for two numbers A,B in the form of A(B) in this table, A means the average error rate and B denotes the deviation of the error rate.

Table 3

Experimental results (the means of the average error rate and the

deviation) of KPCA and IKPCA models generated from every training

sample subset

Splice Diabetes Banana Cancer

KPCA 22.1(2.0) 12.2(1.5) 14.4(1.6) 10.6(1.9)

IKPCA 18.0(2.3) 12.1(1.7) 14.5(0.7) 10.4(1.2)

The number of features extractors used for feature extraction is 70. For

data set ‘‘Splice’’ t is set to be 0.25, while for the other data sets t is set to

be 0.5. The number in the bracket means the mean of the deviation of the

corresponding error rates.

Y. Xu et al. / Neurocomputing 70 (2007) 1056–10611060
KPCA-based feature extraction. Moreover, classification
using the features generated from IKPCA can produce
a satisfactory accuracy. On the other hand, IKPCA
obtains the efficient feature extraction process at the extra
cost of running the time-consuming node selection
procedure.
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