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A Locality-Constrained and Label Embedding
Dictionary Learning Algorithm for

Image Classification
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Abstract— Locality and label information of training samples
play an important role in image classification. However, previous
dictionary learning algorithms do not take the locality and
label information of atoms into account together in the learning
process, and thus their performance is limited. In this paper, a
discriminative dictionary learning algorithm, called the locality-
constrained and label embedding dictionary learning (LCLE-DL)
algorithm, was proposed for image classification. First, the
locality information was preserved using the graph Laplacian
matrix of the learned dictionary instead of the conventional one
derived from the training samples. Then, the label embedding
term was constructed using the label information of atoms instead
of the classification error term, which contained discriminating
information of the learned dictionary. The optimal coding coeffi-
cients derived by the locality-based and label-based reconstruc-
tion were effective for image classification. Experimental results
demonstrated that the LCLE-DL algorithm can achieve better
performance than some state-of-the-art algorithms.

Index Terms— Dictionary learning, label embedding, locality
constrained, profile, sparse coding.

I. INTRODUCTION

IN THE past several years, dictionary learning for sparse
coding has been widely used in image classification. As a

fundamental problem in sparse coding, dictionary learning
has attracted a lot of attention in recent years. Some recent
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reviews on the sparse coding and dictionary learning can
be found in [1]–[3]. In general, the main goal of dictionary
learning is to learn the atoms from training samples. The test
samples can be sparsely represented by the learned atoms, by
which the classification task can be performed based on the
reconstruction error and/or the sparse coefficients.

Many previous studies [4]–[6] used the original training
samples as a dictionary to reconstruct the test samples, and
achieved impressive results in comparison with many well-
known face recognition algorithms. Recently, many works
demonstrated that learning a dictionary from the training
samples can lead to better performance in many image-related
applications, such as image restoration and classification.
The K-SVD algorithm is one of the well-known dictionary
learning algorithms [7]. Actually, it is a generalized k-means
clustering algorithm [8]. However, the K-SVD algorithm is
not suitable for classification tasks, because it only requires
that the learned dictionary should well reconstruct the training
samples. In order to improve the discriminative ability of the
learned dictionary, Pham and Venkatesh [9] used the results of
a linear classifier to iteratively update the K-SVD algorithm.
Thus, a dictionary containing powerful discriminative and
reconstructive ability can be obtained for image classification.
In order to further enhance the discriminative ability of the
learned dictionary, a discriminative K-SVD (D-KSVD) algo-
rithm was proposed by Zhang and Li [10]. Although those
dictionary learning algorithms achieve excellent performance
for image classification, they, generally, do not ensure locality
preservation and, thus, are not optimal, since the data may
lie on the nonlinear manifold embedded in a very high-
dimensional ambient space [11], [12], and thus the classifi-
cation performance will be degraded.

Locality information of data has been observed to be a key
issue in many real applications, especially in sparse coding
and dictionary learning. Locality is more essential than
sparsity, since locality leads to sparsity but not necessary vice
versa [13]. Therefore, more and more researchers focused on
locality preservation in sparse coding and dictionary learning.
The basic idea of learning a dictionary is to encode the training
samples while incorporating some locality constraints, which
ensures that similar training samples tend to have similar
coding coefficients. According to the manifold assumption,
Yu et al. [13] proposed a local coordinate coding (LCC)
algorithm by taking advantage of the local geometric structure
of the training samples. Although the LCC algorithm achieves
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the state-of-the-art performance with a linear classifier
for image classification, the main drawback is the high
computational cost and it is not suitable for large-scale learn-
ing problems. In order to reduce the computational complexity,
Wang et al. [14] proposed a locality-constrained linear cod-
ing (LLC) algorithm by using the distances between the bases
(atoms) and the training samples to select the k-nearest neigh-
bor atoms for coding, and set the coding coefficients of other
bases to zero. Recently, several variants of the LLC algorithm
have been proposed by adding some constraints or specific
applications, such as the specific class LLC algorithm [15],
multilevel LLC algorithm [16], nonnegative-constrained LLC
algorithm [17], and low-rank-constrained LLC algorithm [18].

Moreover, Zhou and Barner [19] proposed a locality-
constrained dictionary learning algorithm by selecting a few
latent landmark points (a subset of the training samples), and
used them to select the nearest neighbor bases for large-scale
learning problems. However, the selection of the nearest bases
is sensitive to noise in the training samples. In other words,
two training samples of the same class may select different
nearest bases if one of them is contaminated by noise. Thus,
there is a conflict when the training samples of the same
class have similar coding coefficients in the ideal case. On the
other hand, Gao et al. [20] and Zheng et al. [21] proposed
the Laplacian sparse coding algorithm, which can exploit the
dependence among the local features. Based on the assump-
tion that data points are distributed on the same manifold,
Ramamurthy et al. [22] proposed a manifold projection
method to improve the efficiency of sparse coding. In order to
identify the representation of low-dimensional subspaces from
the high-dimensional and nonnegative data, Jing et al. [23]
proposed a dictionary learning algorithm based on nonnega-
tivity and sparsity constraints together for spectral clustering.
However, since the l1 regularization term is added to the
objective functions of those algorithms, it can lead to high
computational cost and it is not suitable for large-scale training
samples. Furthermore, those algorithms do not use the label
information of the training samples, and thus the classification
performance will also be degraded.

In order to improve the performance of the learned dictio-
nary, many studies have focused on the properties of atoms.
The dictionary learning algorithms by using the coherence of
atoms were proposed in [24]–[27]. Those algorithms demon-
strate that the smaller the coherence of atoms, the better
the reconstruction ability of the learned dictionary. Since the
locality information is not considered in the dictionary learning
process, there is a limitation in improving the discriminative
ability of the learned dictionary. Recently, Shaban et al. [28]
exploited the local similarities among atoms and used them
to measure the global similarities of the training samples.
As a result, the influence of the noise can be reduced to some
extent. In addition, Jiang et al. [8] proposed a label consistent
K-SVD (LC-KSVD2) dictionary learning algorithm, which
associated the label information with the atoms to improve the
classification performance. Unfortunately, in the dictionary
learning process, those algorithms have not taken the
locality and label information of atoms into account
together. Thus, the coding coefficients of the training

samples may greatly vary. It also potentially degrades the
classification performance. Recently, Lu et al. [29] used the
row vector of the coding coefficient matrix to determine which
atoms are used in dictionary learning. Sadeghi et al. [30]
defined the row vector of the coding coefficient matrix as the
profile. It indicated which training samples used the corre-
sponding atoms to encode. This inspired us to design a new
algorithm to improve the discriminative ability of the learned
dictionary.

In this paper, we first assigned the label information to
each atom and constructed the label embedding of atoms by
using the labels of atoms and profile matrix. It encouraged the
same class atoms to have similar profiles, and it also forced
the coding coefficient matrix to be block-diagonal. Moreover,
we calculated the local similarities among the atoms to reflect
the local geometric properties of the learned dictionary. Then,
the locality constraint of atoms was constructed using the
automatic learning strategy to inherit the manifold structure of
the training samples. In addition, we used the double recon-
struction terms for dictionary learning, and then the locality
reconstruction and label reconstruction were fitted at the same
time. Therefore, it was expected to learn a discriminative
dictionary for image classification.

Our main contributions are as follows.
First, we constructed the label embedding of atoms to

encourage the same class atoms to have similar profiles.
Moreover, it also can force the coding coefficient matrix to be
block-diagonal. Thus, we can obtain the optimal representation
of the training samples.

Second, we constructed the locality constraint of atoms
to ensure that similar profiles encouraged the corresponding
atoms to be similar. In addition, the learned dictionary
was adaptive to the training samples by the derived-graph
Laplacian matrix, which, in turn, inherited the manifold
structure of the training samples.

Third, we utilized the double reconstruction terms in the
locality-constrained and label embedding dictionary learn-
ing (LCLE-DL) algorithm to ensure that the locality-based
and label-based coding coefficients are as approximate to each
other as possible. Experimental results on the five image
databases show that the learned dictionary preserved good
reconstruction ability and discriminating ability.

The rest of this paper is organized as follows. Section II
introduces the LCLE-DL algorithm. Section III presents the
optimization methods of the LCLE-DL algorithm. Section IV
gives the relationships between the LCLE-DL algorithm and
some previous algorithms. Section V presents the experimental
results and analyses. Section VI presents the conclusions.

II. LCLE-DL ALGORITHM

Suppose we are given a set of N training samples in an n
dimension Y = [Y1, . . . ,YC ] = [y1, y2, . . . , yN ] ∈ �n×N ,
C is the class number of the training samples. Yi is a matrix
composed of all training samples of the i th class. Thus,
the label matrix of training samples Y can be defined as
H = [h1, . . . , hN ] ∈ �C×N (hi = [0, . . . , 1, . . . , 0]T ∈ �C ,
and only the j th entry of hi is nonzero, which indicates
that training sample yi comes from the j th class).
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Fig. 1. Basic model of dictionary learning.

D = [d1, . . . , dK ] ∈ �n×K is the learned dictionary
from training samples Y . K is the number of atoms. In our
algorithm, learned dictionary D has the same categories
as the training samples, and we also assume that each
class has the same atom number f . Thus, the number of
atoms K is the integral multiple of C , that is, K = f × C .
X = [x1, x2, . . . , xN ] ∈ �K×N is the coding coefficient
matrix. xi = [x1i , x2i , . . . , xK i ]T (i = 1, . . . , N ) is the
coding vector of the training sample yi corresponding to
dictionary D. Following [29], the basic model of dictionary
learning can be rewritten as in Fig. 1.

According to [30], the i th row vector of coding coefficient
matrix X is called the profile of atom di . Then, we can define
vector x̂i = [xi1, xi2, . . . , xi N ]T (i = 1, . . . , K ) as the profile
of atom di . The red rectangle in Fig. 1 shows profile x̂i , and it
indicates which training samples use atom di to encode. Thus,
the profile matrix can be defined as X T = [x̂1, x̂2, . . . , x̂K ] ∈
�N×K , and it is a transposed matrix of coding coefficient
matrix X .

According to the definition of the profile, the basic model
of dictionary learning can be rewritten as follows:
Y = d1(x̂1)

T + · · · di (x̂i )
T + · · · d j (x̂ j )

T + · · · + dK (x̂K )
T .

(1)

It can be seen that there are one-to-one correspondences
between the profiles and the atoms. If profile x̂i is a zero
vector, atom di has no contribution to reconstruct training
samples Y . Otherwise, it has some contributions to reconstruct
training samples Y . Thus, the profiles can be used to measure
the contributions of atoms to reconstruct the training samples.
Moreover, the similar profiles can encourage the corresponding
atoms to be similar, and the same class atoms also tend to have
similar profiles. Therefore, we can use the profile matrix and
properties of atoms (e.g., label and locality) to construct the
discriminative constraint term.

A. Label Embedding of Atoms

As presented in [8], if we assign a label to an atom and
construct a label constraint term, it can improve the discrim-
inative ability of the learned dictionary. In particular, for the
classification task, the learned dictionary should have powerful
discriminative ability for different classes. That is, in ideal
conditions, some atoms should only reconstruct the training
samples of the same class [31]. Therefore, it is reasonable to
assume that these atoms belong to the same class. Inspired by
the specific class dictionary learning algorithms, we can assign

the labels of the training samples to atoms. How to assign a
label to an atom is presented as follows.

1) We used a dictionary learning algorithm (e.g., K-SVD)
to learn subdictionary Di by using the i th class training
samples. If atom di ∈ Di , the label vector of atom di

can be defined as bi = [0, . . . 1, . . . , 0] ∈ �C . The sole
nonzero value of bi occurs at its i th element, which
indicates that atom di belongs to the i th class.

2) For each class, we learned subdictionary Di (i =
1, 2, . . . ,C). Then, the learned dictionary can be
denoted by D = [D1, . . . , DC ]. It contains all the atoms
of C classes, and Di is the subdictionary of the i th class.
Thus, the label matrix B of dictionary D can be defined
as B = [b1, . . . , bK ]T ∈ �K×C .

In [32], in order to group data {yi }N
i=1 into C clusters

{Fj }C
j=1, the authors defined a cluster indicator matrix S ∈N×C

as follows:
S = {si, j }N×C , if yi ∈ Fj , si, j = 1, else si, j = 0. (2)

Then, a weighted cluster indicator matrix Q was defined as
follows:

Q = [Q1, . . . , QC ] = S(ST S)−
1
2 . (3)

Following [32], we used label matrix B ∈ �K×C

of dictionary D to construct a weighted label matrix G
as follows:

G = B(BT B)−
1
2 ∈ �K×C . (4)

In order to encourage the same class atoms to have similar
profiles, we tried to use the profile matrix and labels of atoms
to construct a label embedding term. Then, we can define the
label embedding of atoms as follows:

min
V

Tr(V T GGT V ) = min
V

Tr(V T U V ) (5)

where U = GGT ∈ �K×K is the scaled label matrix of
dictionary D. Equation (5) ensures that the same class atoms
have similar profiles. The proof is presented in Appendix A.
Furthermore, it also forces the coding coefficient matrix to
be block-diagonal. Thus, the coding coefficient matrix can
be regarded as the optimal representation of the training
samples [33].

Because scaled label matrix U is constructed according
to the labels of the training samples, it is a constant in
our algorithm. According to (4) and the definition of the
weighted label matrix, we can infer that scaled label matrix U
has a block-diagonal structure. Therefore, minimizing the
label embedding term of atoms can force coding coefficient
matrix V to be block-diagonal. Fig. 2 shows that coding
coefficient matrix V on the PIE face database is nearly block-
diagonal. According to [31], in ideal conditions, some atoms
should only reconstruct the training samples of the same
class. Therefore, it is reasonable to assume that the learned
dictionary should contain different class atoms, and each class
atoms should reconstruct one class of the training samples.
Thus, the label embedding of atoms can also encourage the
training samples of the same class to have more similar coding
coefficients than other classes.
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Fig. 2. Illustration of coding coefficient matrix V learned using the proposed
algorithm on the PIE database.

B. Locality Constraint of Atoms

Locality information plays an important role in the dic-
tionary learning and sparse coding algorithms. Because the
training samples often include noise and outliers in practical
applications, they may not calculate the true locality infor-
mation of the training samples. According to [28] and [34],
if a dictionary is learned by using the k-means algorithm,
the atoms can trace the manifold structure of the training
samples. Therefore, we tried to use the locality information of
the atoms to inherit the structure information of the training
samples. Since the atoms are learned from the training samples
by using a holistic algorithm, it is more robust to noise and
outliers than the training samples. In other words, the learned
dictionary is usually more stable than a single original training
sample, and it is able to smooth and reduce the influence of the
noise of original training samples and outliers. Moreover, the
atoms can be updated with the dictionary learning processing.
Therefore, the locality information of the atoms can somewhat
overcome the problem caused by the noise and the outliers.
Following [28], we constructed a nearest neighbor graph M
of dictionary D as

Mi, j =
⎧
⎨

⎩

exp

(

−‖di − d j‖2

δ

)

if d j ∈ kNN(di )

0 else
(6)

where δ is a parameter, kNN(di ) denotes the k-nearest neigh-
bors of atom di , and Mi, j reflects the similarity between atoms
di and d j . If atom di is connected with atom d j , we can assume
that the two atoms are close. In order to better represent the
locality information of atoms, we define a graph Laplacian
matrix L by using nearest neighbor graph M as follows:

L = T − M, T = diag(t1, . . . , tK ), and ti =
K∑

j=1

Mi, j . (7)

Since the K-SVD algorithm can be regarded as a generalized
k-means clustering algorithm, we used it to initialize a subdic-
tionary for each class. Then, the initialization dictionary D can
be used to construct a graph Laplacian matrix L, and it can be
updated with dictionary D. Thus, the graph Laplacian matrix L
can be used to inherit the manifold structure of the training
samples. Moreover, it is more robust to noise and outliers than
directing using the training samples. Since the profiles and

atoms have a one-to-one correspondence, we used the profile
matrix X T and the graph Laplacian matrix L to preserve the
locality information of the learned dictionary. Following [21],
a reasonable criterion for choosing a good graph Laplacian
matrix L is to minimize the following equation:

1

2

K∑

i=1

K∑

j

(x̂i − x̂ j )
2 Mi, j = Tr(X T L X). (8)

Equation (8) indicates that the similar profiles encourage
the corresponding atoms to be similar. The proof is presented
in Appendix B.

C. Objective Function of the LCLE-DL Algorithm

In order to obtain a discriminative dictionary, we combined
the label embedding and locality constraint of atoms to learn
a dictionary. Then, we used a regularization term to ensure
that the transformation between the label embedding and
locality constraint is mutual. Furthermore, it also can force
the locality-based and label-based coding coefficients to be
as close as possible. Thus, we defined the objective function
of the LCLE-DL algorithm as follows:

min
D,X,V ,L

‖Y − DX‖2
2 + αTr(X T L X)+ ‖Y − DV ‖2

2

+ βTr(V T U V )+ γ ‖X − V ‖2
2

s.t. ‖di‖2 = 1, i = 1, . . . , K (9)

where X ∈ �K×N and V ∈ �K×N are the coding
coefficient matrices, ‖Y − DX‖2

2 and ‖Y − DV ‖2
2 denote the

reconstruction error terms, and ‖X − V ‖2
2 is a regularization

term used to transfer the label constraint to/from the locality
constraint. α, β, and γ are the regularization parameters.
The first and second terms encode the reconstruction under
the locality constraint. Moreover, the second term represents
the locality information of dictionary D, which can inherit the
manifold structure of the training samples. The third and
fourth terms encode the reconstruction under label embedding.
The fourth term represents label embedding V as the profiles
of dictionary D, which forces the atoms in dictionary D from
the same class to have very similar profiles. The fifth term is
a regularization of two coding coefficients, and it ensures that
the transformation between the label embedding and locality
constraint is mutual.

Since scaled label matrix U is directly constructed using the
label matrix of the learned dictionary, scaled label matrix U
has the block-diagonal structure with strong discriminative
information. Scaled label matrix U can be viewed as a
supervised graph Laplacian matrix, so min Tr(V T U V ) means
that coding coefficient matrix V is the spectral embedding
of the graph Laplacian matrix with strong discriminative
information. At the same time, min ‖X − V ‖2

2 indicates that
coding coefficient matrix X should approximate to coding
coefficient matrix V . Thus, the discriminative information
contained in coding coefficient matrix V is transformed to
coding coefficient matrix X . Since coding coefficient matrix X
is also the spectral embedding of graph Laplacian matrix L,
min Tr(X T L X) forces graph Laplacian matrix L to be the
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graph Laplacian matrix of embedding matrix V . Note that
graph Laplacian matrix L is constructed by the learned
dictionary’s similarity; therefore, min Tr(X T L X) also forces
graph Laplacian matrix L to be with the similar discrimi-
native structure as scaled label matrix U , since the model
requires X → V . Therefore, the discriminative information
can be transformed to coding coefficient matrix X and graph
Laplacian matrix L for learning a dictionary with strong
discriminative ability. Thus, min ‖Y − DX‖2

2 will lead to a
dictionary with strong discriminative ability, since both the
dictionary’s structure/similarity and the representation coeffi-
cient are taken into account. The proposed model can not only
sufficiently use the discriminative information and transform it
to the learned dictionary but also endure a certain error, which
will further enhance the learned dictionary generality in repre-
sentation. There are three specific features that distinguish the
LCLE-DL algorithm from some previous dictionary learning
algorithms.

1) Instead of using the locality information of the training
samples, the locality information of the learned dictio-
nary is used to inherit the intrinsic geometric properties
of the training samples to some extent. It is more robust
to noise than directly using the locality information of
the training samples.

2) Instead of directly constructing the classification error
term by using the label information of training samples,
we constructed the label embedding of atoms to force
the coding coefficient matrix to be block-diagonal.

3) Differing from the K-SVD algorithm and its variations,
the dual reconstruction terms of the LCLE-DL algorithm
ensure that the locality-based and label-based coding
coefficients are as close as possible, which can transfer
the label information and locality information of atoms
to the coding coefficients.

III. OPTIMIZATION OF THE OBJECTIVE FUNCTION

In general, the atoms of the learned dictionary can be
obtained one by one by using the K-SVD algorithm. The
objective function of the LCLE-DL algorithm can be solved by
a closed form solution when some variables are fixed. There-
fore, an iteration algorithm was used to solve our objective
function, and the computational complexity was decreased.
Since there were four variables in our objective function, we
first used the K-SVD algorithm to initialize specific class dic-
tionary D and the corresponding coding coefficient matrix X .
Thus, we constructed graph Laplacian matrix L and scaled
label matrix U . Then, we fixed dictionary D and coding coeffi-
cient matrix X , and coding coefficient matrix V was obtained.
Next, we fixed dictionary D, graph Laplacian matrix L, and
coding coefficient matrix V , and coding coefficient matrix X
was obtained. Finally, we fixed coding coefficient matri-
ces X and V , and dictionary D was obtained, and then graph
Laplacian matrix L was constructed using dictionary D.

A. Initialization of the LCLE-DL Algorithm

In order to obtain scaled label matrix U and initialization
graph Laplacian matrix L, we used the K-SVD algorithm

to learn subdictionary Di and coding matrix Xi for the i th
class training samples Yi . Thus, we obtained initialization
dictionary D = [D1, D2, . . . , DC ] and coding coefficient
matrix X = [X1, X2, . . . , XC ]. Then, we constructed the label
matrix B of dictionary D according to the label matrix of
training samples. Next, we used (4) to calculate the weighted
label matrix G of dictionary D, and scaled label matrix U was
obtained using U = GGT . Moreover, the initialization graph
Laplacian matrix L was constructed using (6) and (7).

B. Learning the Coding Coefficient Matrices V and X

In order to obtain the coding coefficient matrix V , we
ignored the constant terms with respect to V in (9). Thus,
the objective function of the LCLE-DL algorithm became

min
V

‖Y − DV ‖2
2 + βTr(V T U V )+ γ ‖X − V ‖2

2. (10)

The optimal solution V was derived by taking the first-order
derivation of (10) and setting it to zero. This led to

−DT Y + DT DV + βU V + γ V − γ X = 0. (11)

Thus, the optimal V was obtained as follows:
V = (DT D + βU + γ I )−1(DT Y + γ X). (12)

Similarly, ignoring the constant terms with respect to X
in (9), we also obtained the other optimization problem as
follows:

min
X

‖Y − DX‖2
2 + αTr(X T L X)+ γ ‖X − V ‖2

2. (13)

In a similar way, the optimal X was obtained as follows:
X = (DT D + αL + γ I )−1(DT Y + γ V ) (14)

where I is an identity matrix.

C. Learning Dictionary D and Graph Laplacian Matrix L

In order to learn an optimal dictionary D, we supposed that
other variables were given in (9). Then, the objective function
of the LCLE-DL algorithm became

min
D

‖Y − DX‖2
2 + ‖Y − DV ‖2

2

s.t. ‖di‖2 = 1, i = 1, . . . , K . (15)

Thus, it became a least square problem with quadratic con-
straints and could be solved by many methods. As suggested
in [21], the Lagrange dual function was used to solve (15),
and then we had

g(λ) = inf

(

‖Y − DX‖2
2 + ‖Y − DV ‖2

2+
K∑

i=1

λi (‖di‖2 − 1)

)

(16)

where λ = [λ1, . . . , λK ], i ∈ [1, . . . , K ], and λi is
the Lagrange multiplier of the i th equality constraint
(‖di‖2−1 = 0). We defined a diagonal matrix� ∈ �K×K , and
diagonal entry �ii = λi (i = 1, . . . , K ) for all i . Equation (16)
was derived as follows:

L(D, λ) = ‖Y − DX‖2
2 + ‖Y − DV ‖2

2

+ Tr(DT D�)− Tr(�). (17)
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TABLE I

LCLE-DL ALGORITHM

In order to obtain the optimal solution of dictionary D, we
took the first-order partial derivatives of (17) and set it to zero.
Then, the optimal dictionary was obtained

D∗ = Y (X T + V T )(X X T + V V T +�)−1. (18)

For the sake of reducing the computational complexity, the
optimal dictionary D was derived using (19) by discarding �.
The optimization of which is shown in [21]

D = Y (X T + V T )(X X T + V V T )−1. (19)

Then, we used (6) and (7) to construct the graph Lapla-
cian matrix L. The proposed LCLE-DL algorithm is shown
in Table I.

D. Classification Method

Although coding coefficient matrix X and coding coefficient
matrix V are different in our algorithm, we used the regular-
ization term to force them to be as close as possible. Therefore,
we only used the coding coefficient matrix X to perform
the task of image classification in the LCLE-DL algorithm.
Following [9], a linear classifier method was used for image
classification in the LCLE-DL algorithm.

First, a classifier parameter Wx was obtained using the
coding coefficient matrix X and label matrix H of the training
samples as follows:

Wx = H X T (X X T + I )−1. (20)

Second, for a test image ỹi , its sparse representation coef-
ficient vector x̃i with the learned dictionary D was obtained
using the Orthogonal Matching Pursuit algorithm [35] algo-
rithm. Then, a label vector lx was calculated using Wx x̃i .
Finally, the label of test sample ỹi was the index corresponding
to the largest element of the label vector lx .

IV. RELATIONSHIPS BETWEEN OUR ALGORITHM

AND SOME PREVIOUS WORKS

In this section, we established the relationships between the
LCLE-DL algorithm and some previous dictionary learning
and sparse coding algorithms, such as the D-KSVD, Graph
regularized Sparse Codes algorithm (Graph-SC), and LLC
algorithms.

A. Connection to the D-KSVD Algorithm

The D-KSVD algorithm can be regarded as an extension of
the K-SVD algorithm. It adds the classification error term to
the objective function of the K-SVD algorithm. Moreover, the
LC-KSVD2 algorithm can also be regarded as an extension of
the D-KSVD algorithm. It adds the discriminative sparse code
error term to the objective function of the D-KSVD algorithm.

In [10], the objective function of the D-KSVD algorithm is

min
D,W,V

‖Y − DV ‖2
2 + α‖H − W V ‖2

2

s.t. ‖V ‖0 ≤ ξ (21)

where ‖H − W V ‖2
2 is the classification error term,

H ∈ �C×N is the label matrix of training samples Y ,
W ∈ �C×K is the classifier parameter, V ∈ �K×N is the
coding coefficient matrix, and ξ is the sparsity factor.

According to (21), if matrix W V is equal to matrix H , the
second term of (21) can achieve the minimum value. In ideal
conditions, the same class training samples should be well
reconstructed by the same class atoms [31], [33]. Therefore,
we replaced matrix W with weighted label matrix GT , and the
second term of (21) can achieve a minimum value. Since the
number of atoms K = f × C , matrix H T W was rewritten as

H T W = H T GT =

⎡

⎢
⎢
⎢
⎣

Z1 0 · · · 0
0 Z2 · · · 0
...

... · · · ...
0 0 · · · ZC

⎤

⎥
⎥
⎥
⎦

∈ �N×K (22)

where Z1 = Z2 = · · · ZC = ( f )−0.5 Z ∈ �(N/C)× f , and all
the elements of matrix Z were set to 1. Moreover, the block
matrix of coding coefficient matrix V was rewritten as

V =

⎡

⎢
⎢
⎢
⎣

P1,1 P1,2 · · · P1,C
P2,1 P2,2 · · · P2,C
...

...
...

...
PC,1 PC,2 · · · PC,C

⎤

⎥
⎥
⎥
⎦

∈ �K×N (23)
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where

Pij

=

⎡

⎢
⎢
⎣

v(i−1)× f +1,( j−1)× N
C +1 · · · v(i−1)× f +1,( j−1)× N

C + N
C

...
...

...
v(i−1)× f + f,( j−1)× N

C +1 · · · v(i−1)× f + f,( j−1)× N
C + N

C

⎤

⎥
⎥
⎦

(24)

where Pi, j ∈ � f ×(N/C)(i, j = 1, 2, . . . ,C). Thus,
from (22)–(24), we obtained

H T W V = H T GT V

= ( f )−0.5

⎡

⎢
⎢
⎢
⎣

Z × P1,1 Z × P1,2 · · · Z × P1,C
Z × P2,1 Z × P2,2 · · · Z × P2,C

...
...

...
...

Z × PC,1 Z × PC,2 · · · Z × PC,C

⎤

⎥
⎥
⎥
⎦
.

(25)

Then

Tr(H T W V )

= Tr(H T GT V )

= ( f )−0.5Tr(Z × P1,1 + Z × P2,2 + · · · + Z × PC,C ).

(26)

Since

Tr(Z × Pi,i ) =
(i−1)× f + f∑

r=(i−1)× f +1,

(i−1)× N
C + N

C∑

s=(i−1)× N
C +1

vr,s . (27)

Thus, we obtained

Tr(H T W V ) = Tr(H T GT V )

= ( f )−0.5
C∑

i=1

(i−1)× f + f∑

r=(i−1)× f +1,

(i−1)× N
C + N

C∑

s=(i−1)× N
C +1

vr,s .

(28)

It was found that (28) was just the sum of the coefficients
of the block-diagonal of the coding coefficient matrix, and the
size of block was f × (N/C). According to Appendix A, we
inferred that the essence of the label embedding of atoms was
as follows:

Tr(V T U V ) =
C∑

i=1

N∑

j=1

(v(i−1) f +1, j + · · · + vif, j)
2

=
C∑

i=1

(
(v(i−1) f +1,1 + · · · + vif,1)

2

+ · · · + (v(i−1) f +1,N + · · · + vif,N)
2

)

.

(29)

Therefore

Tr(V T W T W V )

= Tr(V T GGT V ) = Tr(V T U V )

=
C∑

i=1

((v(i−1) f +1,1 + · · · + vif,1)
2

+ · · · + (v(i−1) f +1,N + · · · + vif,N)
2). (30)

Moreover, (31), shown at the bottom of this page, shows
that the essence of the D-KSVD algorithm is to minimize
the coefficients of the coding matrix. The essence of the
label embedding term of the LCLE-DL algorithm is also to
minimize the coefficients of the coding matrix. The main
difference is that the D-KSVD algorithm reduces the sum of
part coefficients, which is the block-diagonal of the coding
coefficient matrix.

B. Connection to the Graph-SC Algorithm

The Graph-SC algorithm uses the locality information of
the training samples in the coding and dictionary learning
procedure. In [21], the objective function of the Graph-SC
algorithm is

min
D,X

‖Y − DX‖2
2 + αTr(X Lg X T )+ β‖X‖1

s.t. ‖di‖2 ≤ c, i = 1, . . . , K (32)

where Lg is the graph Laplacian matrix, and it reflects the
locality information of the training samples.

In an ideal condition, we can assume that Y = DX . Thus

Y = DX ⇒ Y X T = DX X T . (33)

If X X T is a nonsingle value matrix, then

Y X T = DX X T ⇒ Y X T (X X T )−1 = D. (34)

We defined X̄ = X T (X X T )−1, and then graph Laplacian
matrix L was constructed using dictionary D. According to
the Graph-SC algorithm, the objective function was defined
as follows:

min
Y,X̄

‖D − Y X̄‖2
2 + αTr(X̄ L(X̄)T )+ β‖X̄‖1. (35)

Therefore, the Graph-SC algorithm can also be regarded as
a special form of the LCLE-DL algorithm when the coding
coefficient matrix is exactly X T (X X T )−1.

min
W,V

‖H − W V ‖2
2 ⇔ min

W,V
Tr(V T W T W V )− min

W,V
Tr(H T W V )

⇔ min
C∑

i=1

⎛

⎜
⎜
⎜
⎝

(v(i−1) f +1,1 + · · · + vif,1)
2 + · · · + (v(i−1) f +1,N + · · · + vif,N)

2

−
(i−1)× f + f∑

r=(i−1)× f +1,

(i−1)× N
C + N

C∑

s=(i−1)× N
C +1

vr,s

⎞

⎟
⎟
⎟
⎠

(31)
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C. Connection to the LLC Algorithm

In [14], the objective function of the LLC algorithm is

min
X

N∑

i=1

‖yi − Dxi‖2 + λ‖bi 
 xi‖ (36)

where 
 denotes the elementwise multiplication

bi = exp

(
dist(yi , D)

δ

)

dist(yi , D) = [dist(yi , d1), . . . , dist(yi , dK )]T and dist(yi , d j )
is the Euclidean distance between yi and d j , and δ is used for
adjusting the weighed decay speed for the locality adaptor.
The term

∑N
i=1 ‖bi 
 xi‖ was rewritten as follows:

N∑

i=1

‖bi 
 xi‖2

=
N∑

i=1

‖bi,1xi,1 + · · · + bi,K xi,K ‖2

=
N∑

i=1

K∑

j=1

(bi, j )
2(xi, j )

2 +
N∑

i=1

K∑

j=1

j∑

s=1

bi, j xi, j bi,s xi,s . (37)

Since bi, j = dist(yi , d j ), (37) shows that the essence of the
LLC algorithm is to minimize the weighted coefficients of the
coding coefficient matrix.

The locality constrained term of the LCLE-DL algorithm
was written as follows:

Tr(X T L X)=
K∑

i=1

N∑

j=1

Mi, j ‖x̂i − x̂ j‖2

= 2
K∑

i=1

K∑

j=1

(xi, j )
2Ti,i −2

K∑

i=1

K∑

j=1

N∑

s=1

Mi, j (xi,s x j,s).

(38)

Since
∑K

i=1
∑K

j=1
∑N

s=1 Mi, j (xi,s x j,s) = Tr(X T M X) ≥ 0

min
X
(Tr(X T L X)) ≤ min

⎛

⎝
K∑

i=1

K∑

j=1

(xi, j )
2Ti,i

⎞

⎠. (39)

The essence of the locality constrained term is also to
minimize the weighted coefficients of the coding coefficient
matrix in the LCLE-DL algorithm. The difference is that the
weighted coefficients of the LCLE-DL algorithm is obtained
by calculating the similarity of atoms, while the weighted
coefficients of the LLC algorithm is obtained by calculating
the distance between the atoms and the training samples.

V. EXPERIMENTAL RESULTS AND ANALYSES

In this section, a series of experiments was performed on
the CMU PIE face database (PIE) [36], Labeled Faces in
the Wild (LFW) database [37], AR face database (AR) [38],
Caltech 101 object category database (Caltech 101) [39], and
Extended Yale B face database [40]. In order to evaluate
the performance of the LCLE-DL algorithm, we compared it
with the K-SVD [7], D-KSVD [10], LC-KSVD2 [8], Sparse
Representation-based Classification algorithm (SRC) [4],

Fig. 3. Examples of images from the PIE face database.

Linear Regression Classification algorithm (LRC) [41], and
LLC [14] algorithms. Moreover, we used the whole image
approach in these experiments. For the PIE face database,
LFW database, AR face database, and Extended Yale B face
database, we used the pixels of the whole image as a feature
vector. For the Caltech 101 database, we used the spatial
pyramid features of the whole image as a feature vector.

Moreover, we also assessed the training time and testing
time of the LCLE-DL algorithm and six comparison algo-
rithms on the five databases. The SRC algorithm uses the l1-ls
to obtain the representation coefficients of the test samples, so
we did not calculate its training time. The LRC algorithm is
implemented using the method in [41], so the training time
does not need to be calculated. The LLC algorithm obtains
the coding coefficients by using the approximated LLC, and
the codes are provided by the author.1 Moreover, the training
samples are used as the bases in the LLC algorithm, and it
also has no training time. In other words, the SRC, LRC,
and LLC algorithms do not learn any dictionary and directly
exploit the original training samples to perform classification,
so there is no training time. We used the K-SVD box to train
the dictionary, and the codes were provided by the author.2

The codes of the D-KSVD and LC-KSVD2 algorithms were
provided by the authors.3,4 In addition, the K-SVD, D-KSVD,
LC-KSVD2, and LCLE-DL algorithms use the same classi-
fication method presented in Section III-D. The MATLAB
codes of this paper can be downloaded from the website
(http://www.scholat.com/laizhihui).

A. Experimental Results on the CMU PIE Face Database
The PIE face database consists of 41 386 front-face images

of 68 persons, each person under 13 different poses, 43 differ-
ent illumination conditions, and with 4 different expressions.
Examples of images from the PIE face database are displayed
in Fig. 3.

Experimental Setting: Following [8], sparsity factor ξ = 30
was used in the K-SVD, D-KSVD, LC-KSVD2, and
LCLE-DL algorithms. Moreover, in order to make the com-
parisons fair, the number of local bases was identical to the
sparsity factor ξ in the LLC algorithm. In the following all
experiments, parameters k and δ of graph Laplacian matrix L
in (3) were set to 1 and 4, respectively. In addition, the
first five images of each person were selected to evaluate
parameters α, β, and γ, and they were determined by the
fivefold cross-validation method. The parameters were selected
from 10−5, 10−4, . . . , 1, . . . 103, 104. α, β, and γ were set
to 0.001, 0.1, and 0.01 in this experiment.

1http://www.ifp.illinois.edu/~jyang29/LLC.htm.
2http://www.cs.technion.ac.il/~elad/software/.
3http://www.public.asu.edu/~qzhang53/research.html.
4http://www.umiacs.umd.edu/~zhuolin/Resources.html.
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TABLE II

AVERAGE RECOGNITION RATES AND COMPUTING TIME
ON THE PIE FACE DATABASE

Fig. 4. Average recognition rates with different numbers of atoms on the
PIE face database.

Following [42], we chose the five near frontal poses
(C05, C07, C09, C27, and C29) and used all the images under
different illuminations and expressions, and thus obtained
170 images for each person and every image was normalized
to the size of 32 × 32. We randomly selected ten images of
each person (including the first five images) as the training
samples and the remaining for testing. The LCLE-DL and six
comparison algorithms were repeated ten times. The average
recognition rates and computing time are reported in Table II.
Moreover, the numbers in the parentheses indicate the number
of atoms or training samples, and the symbol ± denotes the
standard deviation of average recognition rates.

In Table II, when the number of atoms was 680, it can
be seen that the LCLE-DL algorithm achieved a higher
average recognition rate than the six comparison algorithms.
In particular, when the number of atoms was smaller than the
number of the training samples (for example, 544), the average
recognition rate of the LCLE-DL algorithm also outperformed
the six comparison algorithms.

Moreover, we compared the average recognition rates
of the K-SVD, D-KSVD, LC-KSVD2, and LCLE-DL
algorithms using different numbers of atoms (K =
68, 136, . . . , 408, 476). The experimental results are displayed
in Fig. 4, which shows that the average recognition rates of
the K-SVD, D-KSVD LC-KSVD2, and LCLE-DL algorithms
increased with an increase in the number of atoms. Moreover,
it is obvious that the average recognition rates of the
LCLE-DL algorithm outperformed the three dictionary
learning algorithms. In addition, it is surprising that the
LC-KSVD2 performed slightly worse than the K-SVD and
D-KSVD algorithms in most cases.

Fig. 5 shows the optimization process of the LCLE-DL
algorithm for Tmax = 50 iterations using K = 680.

Fig. 5. Variations of the objective function values of the LCLE-DL algorithm
with K = 680 in the iterations.

Fig. 6. Examples of images from the LFW face database.

TABLE III

AVERAGE RECOGNITION RATES AND COMPUTING

TIME ON THE LFW FACE DATABASE

As expected, the objective function values decreased,
and thus the LCLE-DL algorithm converged very fast.

B. Experimental Results on the LFW Face Database

The LFW face database contains more than 13 000 images
of faces collected from the Web, and they are labeled with
the name of the person pictured. The main goal is to study
the problem of unconstrained face recognition. There are
1680 images of the persons with two or more distinct photos
in the database. Following [43], we selected a subset of the
LFW face database consisting of 1215 images of 86 persons,
and around 11–20 images for each person. Each image was
converted into gray image and was manually cropped and
resized to 32 × 32. Examples of images from the LFW face
database are displayed in Fig. 6.

The experiments were performed in the same way as
in Section A. The optimal parameters of the LCLE-DL
algorithm were α = 10−2, β = 10−2, and γ = 10−1.
We randomly selected eight images of each person (including
the first five images) as the training samples and the remaining
for testing. We repeated the LCLE-DL and six comparison
algorithms ten times. The average recognition rates and
computing time are shown in Table III. Moreover, the
numbers in the parentheses indicate the number of atoms
or training samples, and the symbol ± denotes the standard
deviation of the average recognition rates.
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Fig. 7. Average recognition rates with different numbers of atoms on the
LFW face database.

Fig. 8. Variations of the objective function values of the LCLE-DL algorithm
with K = 688 in the iterations.

As shown in Table III, the average recognition rate of
the LCLE-DL algorithm consistently achieved the highest
average recognition rate when the number of atoms was 688.
Moreover, the average recognition rate of the LLC algorithm
was higher than the K-SVD, D-KSVD, and LC-KSVD2
algorithms. However, they all obtained lower average recogni-
tion rates than the SRC algorithm. In general, the classification
performance of the learned dictionary is higher than those
of directly using the original training samples. However, the
experimental results indicated that using the label information
or locality information cannot always obtain higher average
recognition rates than the SRC algorithm.

The average recognition rates of the K-SVD, D-KSVD,
LC-KSVD2, and LCLE-DL algorithms using different
numbers of atoms (K = 86, 172, . . . , 430, 516) are shown
in Fig. 7. It can be seen that the average recognition rates
of the LCLE-DL algorithm significantly outperformed the
three dictionary learning algorithms as the number of atoms
increased.

The convergence of the LCLE-DL algorithm for Tmax = 30
iterations using K = 688 is shown in Fig. 8. As expected,
the objective function values decreased very fast and the
LCLE-DL algorithm converged very fast.

C. Experimental Results on the AR Face Database

The AR face database contains over 4000 images
of 126 persons. There are 26 face images of each person taken
during two sessions, and each image is taken under various
lighting conditions. Examples of images from the AR face
database are displayed in Fig. 9.

We used a subset of the AR face database consisting
of 3120 images from 120 persons. The resolution of the
AR images was 40×50. For each person, there were 12 images

Fig. 9. Examples of images from the AR face database.

TABLE IV

AVERAGE RECOGNITION RATES AND COMPUTING
TIME ON THE AR FACE DATABASE

including sunglasses and scarves. For the training samples,
we chose seven neutral images of session 1 and one cor-
rupted image of each person (the first sunglass images at
sessions 1 and 2 were not used as the training samples). Thus,
a total of 16 test images (seven neutral images at session 2
plus the remaining nine occluded images) were available
for testing. Since there were ten corrupted images of each
person (two corrupt images were used to evaluate the parame-
ters), the experiments were repeated ten times. Moreover, the
experiments were performed as the same way in Section A.
The optimal parameters of the LCLE-DL algorithm were
α = 10−4, β = 10−3, and γ = 10−3. The average recognition
rates and computing time are reported in Table IV. Moreover,
the numbers in the parentheses indicate the number of atoms
or training samples, and the symbol ± denotes the standard
deviation of the average recognition rates.

As shown in Table IV, the average recognition rate of the
LCLE-DL algorithm was the highest when the number of
atoms was 960. Moreover, it is interesting to observe that the
average recognition rates of the D-KSVD and LC-KSVD2
algorithms were nearly equal. This is because they both use
the label information in the dictionary learning processing
although they deal with it in different ways. This also
indicates that the label information can play an important role
in learning a discriminative dictionary. Since the LCLE-DL
algorithm makes use of the label embedding and locality
information of the learned dictionary, it can further improve
the classification performance.

Fig. 10 shows the average recognition rates of the K-SVD,
D-KSVD, LC-KSVD2, and LCLE-DL algorithms using
different numbers of atoms (K = 120, 240, . . . , 600, 720).
It can be seen that the average recognition rates of the K-SVD,
D-KSVD, LC-KSVD2, and LCLE-DL algorithms increased,
when the number of atoms trended to become large. Moreover,
it is obvious that the average recognition rates of the
LCLE-DL algorithm outperformed the three dictionary
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Fig. 10. Average recognition rates with different numbers of atoms on the
AR face database.

Fig. 11. Variations of the objective function values of the LCLE-DL
algorithm with K = 960 in the iterations.

Fig. 12. Examples of images from the Caltech 101 database.

learning algorithms. Fig. 11 shows the optimization process
of the LCLE-DL algorithm for Tmax = 100 iterations
using K = 960. As expected, the objective function values
decreased on the whole.

D. Experimental Results on the Caltech 101
Object Category Database

The Caltech 101 object category database consists of
9144 images of 102 classes (101 object classes and a back-
ground class). There are around 31–800 images for each class,
including animals, vehicles, and flowers. Following [8], the
spatial pyramid features were used in the experiments. The
spatial pyramid features were extracted based on the Scale-
Invariant Feature Transform (SIFT) features with three grids
of size 1×1, 2×2, and 4×4. The SIFT descriptors were 16×16
patches, which were densely sampled using a grid with a step
size of six pixels. Moreover, the codebook of the spatial pyra-
mid was trained using the standard k-means clustering with
k = 1021. The spatial pyramid feature was reduced to 3000
dimensions by the Principal Component Analysis methods
algorithm. The experiments were performed in the same way
as in Section A, and the optimal parameters of the LCLE-DL
algorithm were α = 10−5, β = 10−1, and γ = 1. Examples of
images from the Caltech 101 database are displayed in Fig. 12.

TABLE V

AVERAGE RECOGNITION RATES AND COMPUTING
TIME ON THE CALTECH 101 DATABASE

Fig. 13. Average recognition rates with different numbers of atoms on the
Caltech 101 database.

We randomly selected ten images (including the first five
images) of each class as the training samples and the remaining
for testing. The LCLE-DL and six comparison algorithms
were performed ten times. The average recognition rates
and computing time are reported in Table V. Moreover, the
numbers in the parentheses indicate the number of atoms
or training samples, and the symbol ± denotes the standard
deviation of average recognition rates.

As shown in Table V, the LCLE-DL algorithm achieved a
higher average recognition rate than the K-SVD, D-KSVD,
LC-KSVD2, and LLC algorithms when the number of atoms
was 1020. In particular, when the number of atoms was
smaller than the number of training samples, the D-KSVD,
LC-KSVD2, and LCLE-DL algorithms achieved higher
average recognition rates than the SRC and LRC algorithms.

In addition, the average recognition rates of the K-SVD,
D-KSVD, LC-KSVD2, and LCLE-DL algorithms using
different numbers of atoms (K = 102, 204, . . . , 612, 714)
are shown in Fig. 13. It can be seen that the LCLE-DL
algorithm achieved higher average recognition rates than
the K-SVD, D-KSVD, and LC-KSVD2 algorithms. Fig. 14
shows the optimization process of the LCLE-DL algorithm for
Tmax = 100 iterations using K = 1020. As expected, the
objective function values decreased on the whole.

E. Experimental Results on the Extended
Yale B Face Database

The Extended Yale B face database is taken under vari-
ous illumination conditions and expressions, which consists
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Fig. 14. Variations of the objective function values of the LCLE-DL
algorithm with K = 1020 in the iterations.

Fig. 15. Examples of images from the Extended Yale B face database.

TABLE VI

AVERAGE RECOGNITION RATES AND COMPUTING TIME

ON THE EXTENDED YALE B FACE DATABASE

of 2414 front-face images of 38 persons. There are
around 59–64 images for each person, and each image was
normalized to the size of 32 × 32. Examples of images from
the Extended Yale B face database are displayed in Fig. 15.

The experiments were performed in the same way as in
Section A, and the optimal parameters of the LCLE-DL
algorithm were α = 10−3, β = 10−5, and γ = 10−3.
We randomly selected 20 images of each person (including the
first five images) as the training samples and the remaining for
testing. The LCLE-DL and six comparison algorithms were
run ten times. The average recognition rates and computing
time are reported in Table VI. Moreover, the numbers in
the parentheses indicate the number of atoms or training
samples, and the symbol ± denotes the standard deviation
of average recognition rates. Table VI shows that the average
recognition rates of the LCLE-DL algorithm outperformed the
six comparison algorithms.

Moreover, we compared the average recognition rates of
the K-SVD, D-KSVD, LC-KSVD2, and LCLE-DL algorithms
using different numbers of atoms (K = 38, 76, . . . , 760),
and the experimental results were displayed in Fig. 16.

Fig. 16. Average recognition rates with different numbers of atoms on the
Extended Yale B face database.

When the number of atoms was increased, the average recog-
nition rates of the LC-KSVD2 and LCLE-DL algorithms
increased. However, since the K-SVD algorithm focuses on
only the representational power of the learned dictionary
without considering its capability for discrimination, it leads
to an unstable classification performance. With the increasing
number of atoms, the learned dictionary has more redundancy.
Thus, the discriminative ability of the learned dictionary may
degrade, and then the average recognition rates of the K-SVD
algorithm have much variation.

F. Experimental Results on the Single Constraint

In this section, in order to highlight the importance of
using two constrained terms than single one, we gave the
experimental results by only using the label embedding term
or the locality constrained term. When we only used the
label embedding term, we denoted the proposed algorithm
as the LCLE-DL-V algorithm. The objective function of the
LCLE-DL-V algorithm was

min
D,X

‖Y − DV ‖2
2 + βTr(V T U V )+ γ ‖V ‖2

2

s.t. ‖di‖2 = 1, i = 1, . . . , K . (40)

When we only used the locality constrained term, we
denoted the proposed algorithm as the LCLE-DL-X algorithm.
The objective function of the LCLE-DL-X algorithm was

min
D,X,L

‖Y − DX‖2
2 + αTr(X T L X)+ γ ‖X‖2

2

s.t. ‖di‖2 = 1, i = 1, . . . , K . (41)

The experiments were performed on the PIE face database
in the same setting as in Section A. Table VII showed the
average recognition rates of the LCLE-DL, LCLE-DL-V, and
LCLE-DL-X algorithms with different numbers of atoms on
the PIE face database. The experimental results showed that
the LCLE-DL algorithm achieved higher average recognition
rates than the LCLE-DL-V and LCLE-DL-X algorithms on
the PIE face database. The main reason was that the dual con-
straints of the LCLE-DL algorithm ensured that the locality-
based and label-based coding coefficients were as close as
possible, which can not only transform the discriminative
information to the learned dictionary but also endure a certain
error. Therefore, it is reasonable to believe that using both
label embedding and locality constrained is better than using
either of them.
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TABLE VII

AVERAGE RECOGNITION RATES OF THE THREE ALGORITHMS
ON THE PIE FACE DATABASE

G. Experimental Analyses

In Sections V-A–V-F, the experimental results on the five
image databases were elaborated. A number of interesting
points can be drawn as follows.

1) When the number of atoms is equal to the number
of training samples, the average recognition rates of
the LCLE-DL algorithm outperformed the SRC and
LRC algorithms on the five image databases. This
demonstrates that the LCLE-DL algorithm can learn a
more powerful discriminative dictionary than directly
using the original training samples. In addition, when
a smaller number of atoms is learned, the LCLE-DL
algorithm also achieved higher average recognition rates
than the SRC and LRC algorithms on the PIE face
database, AR face database, and Caltech 101 database.
A smaller number of atoms can significantly reduce the
computational cost.

2) The average recognition rates of the LCLE-DL
algorithm were higher than the LLC algorithm on
the five image databases. The reason is that the LLC
algorithm ignores the label information, which may
result in the same class training samples with different
coding coefficients. Another reason may be that the
LLC algorithm uses the distances between the training
samples and the atoms to select the k-nearest neighbor
atoms for coding. Thus, the true distance relationship
is affected by the noise of the training samples. In the
LCLE-DL algorithm, the distances among atoms are
used to select the k-nearest neighbor atoms for coding,
which can reflect the relationship of training samples to
some extent. Thus, the potential drawbacks of the LLC
algorithm are overcome by the LCLE-DL algorithm.

3) The average recognition rates of the LCLE-DL
algorithm were superior to the K-SVD, D-KSVD,
and LC-KSVD2 algorithms on the PIE face database,
AR face database, LFW database, and Caltech 101
database. This is probably because the D-KSVD and
LC-KSVD2 algorithms ignore the locality information
of the learned dictionary. Moreover, since the K-SVD
algorithm only focuses on the reconstructive ability,
it also leads to lower performance in classification.
However, the average recognition rates of the LCLE-DL
algorithm were worse than the K-SVD, D-KSVD, and

LC-KSVD2 algorithms on the Extended Yale B face
database when the number of atoms was lower than
456. In particular, the K-SVD and D-KSVD algorithms
achieved higher average recognition rates than the
LCLE-DL and LC-KSVD2 algorithms. When the
number of atoms was larger than 456, the LCLE-DL
algorithm achieved a better performance than the
three dictionary learning algorithms. However, the
average recognition rates of the K-SVD and D-KSVD
algorithms dropped in this case. The main reason is
that the training samples are relatively larger on the
Extended Yale B face database than the other four image
databases. This indicates that the reconstruction ability
is more important than the geometric properties when
the number of training samples is large. However, if the
data lie on the nonlinear manifold embedded in a very
high-dimensional ambient space, the learned dictionary
cannot well reconstruct the training samples and it can
degrade the classification performance. The LCLE-DL
algorithm overcomes this shortcoming by combining
the locality information and label embedding.

4) Experimental results showed that our proposed
algorithm had less training time than the D-KSVD
and LC-KSVD2 algorithms on the five databases, and
had slightly more time than the K-SVD algorithm.
The K-SVD, D-KSVD, LC-KSVD2, and LCLE-DL
algorithms had less testing time than the SRC, LRC,
and LLC algorithms on the five databases. Since
the K-SVD, D-KSVD, LC-KSVD2, and LCLE-DL
algorithms used the same classification method,
the testing time of them was nearly equal on each
database.

VI. CONCLUSION

We propose a novel dictionary learning algorithm based on
the locality and label information of the learned dictionary.
The main advantage of the LCLE-DL algorithm is that it
can learn a discriminative dictionary, from which a novel
graph Laplacian matrix can be further derived. The derived
graph Laplacian matrix is used as a local regularization term
to encode the representation coefficients. Moreover, the label
information of atoms is also used as another regularization
term to enforce the strong discriminative property of the
learned dictionary. The double reconstruction terms of the
LCLE-DL algorithm can lead to the locality reconstruction
and label reconstruction being fitted at the same time, which is
very helpful for image classification. The proposed dictionary
learning algorithm is also more robust to noise than the
conventional dictionary learning algorithms by directly using
the locality information of the training samples. Experimental
results on the five image databases demonstrate that the
LCLE-DL algorithm is overall superior to the six state-of-
the-art dictionary learning and sparse coding algorithms.

APPENDIX A

Since all class atoms have the same number f in the
LCLE-DL algorithm, we can rewrite scaled label matrix U
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as follows:

U =

⎡

⎢
⎢
⎢
⎣

U1 0 · · · 0
0 U2 · · · 0
...

... · · · ...
0 0 · · · UC

⎤

⎥
⎥
⎥
⎦

∈ �K×K (A-1)

where U1 = U2 = · · · UC = (1/ f ) × O f ∈ � f × f . O f is a
matrix and its elements are all equal to 1. It is obvious that
scaled label matrix U is a block-diagonal. Moreover, the block
matrix of profile matrix V T ∈ �N×K can be written as

V T =
⎡

⎢
⎣

1
︷ ︸︸ ︷
v̂1, . . . v̂ f ,

2
︷ ︸︸ ︷
v̂ f +1, . . . v̂2 f , . . . ,

C
︷ ︸︸ ︷
v̂(C−1)× f +1 . . . v̂K

⎤

⎥
⎦

= [Ṽ1, . . . , ṼC ] (A-2)

where v̂i = [vi1, vi2, . . . , vi N ]T ∈ �1×N (i = 1, 2, . . . , K )
and Ṽm = [v̂(m−1) f +1,v̂(m−1) f +2, . . . , v̂m f ] ∈ �N× f

(m = 1, 2, . . . ,C).
Thus

Tr(V T U V ) = Tr

(
1

f
[Ṽ1O f (Ṽ1)

T + · · · + ṼC O f (ṼC)
T ]

)

.

(A-3)

Since

Tr(Ṽm O f (Ṽm)
T ) =

N∑

j=1

(v(m−1) f +1, j + · · · + vm f, j )
2. (A-4)

Thus

min
V

Tr(V T U V )

= min
C∑

m=1

N∑

j=1

(v(m−1) f +1, j + · · · + vm f, j )
2

= min
C∑

m=1

(
(v(m−1) f +1,1 + · · · + vm f,1)

2

+ · · · + (v(m−1) f +1,N + · · · + vm f,N )
2

)

.

(A-5)

Then, if

v(m−1) f +1,1 = v(m−1) f +2,1 = · · · = vm f,1

...
...

...

v(m−1) f +1,N = v(m−1) f +2,N = · · · = vm f,N

(A-3) can achieve a minimum value.
The vectors

v̂(m−1) f +1 = (v(m−1) f +1,1 · · · v(m−1) f +1,N )
T

...
...

v̂m f = (vm f,1 · · · vm f,N )
T

are just the profiles of the mth class atoms
d(m−1) f +1, . . . , dm f . Therefore, it indicates that the label
embedding constraint encourages the same class atoms to
have similar profiles.

APPENDIX B

According to [29] and [30], the basic model of dictionary
learning can be rewritten as follows:
Y = d1(x̂1)

T + · · · di (x̂i )
T + · · · d j (x̂ j )

T + · · · + dK (x̂K )
T

(B-1)

where x̂m, (m = 1, . . . , K ) is the profile of atom dm . Then,
we can define

E =
K∑

m=1(m �=i, j )

dm(x̂m)
T . (B-2)

Thus, (B-1) becomes

Y = E + di (x̂i)
T + d j (x̂ j )

T . (B-3)

In order to obtain profile x̂i , (B-3) becomes

(di )
T (Y − E − d j (x̂ j )

T ) = (di )
T di (x̂i )

T . (B-4)

Thus

(x̂i )
T = ((di )

T di )
−1(di)

T (Y − E − d j (x̂ j )
T ). (B-5)

Similarly

(x̂ j )
T = ((d j )

T d j )
−1(d j )

T (Y − E − di (x̂i )
T ). (B-6)

For the sake of simplicity, we can define

ψ j = ((d j )
T d j )

−1(d j )
T . (B-7)

Then

(x̂i )
T − (x̂ j )

T

= ψi (Y − E − d j (x̂ j )
T )− ψ j (Y − E − di (x̂i )

T )

= (ψi − ψ j )(Y − E)+ ψ j di (x̂i )
T − ψi d j (x̂ j )

T . (B-8)

Thus, if x̂ j = x̂i , (B-8) becomes

(ψi − ψ j )(Y − E)+ (ψ j di − ψi d j )(x̂ j )
T = 0. (B-9)

Since (Y − E) �= 0 and x̂ j �= 0, di = d j . Therefore,
it demonstrates that the similar profiles can encourage the
corresponding atoms to be similar.
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