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Discriminative Elastic-Net Regularized
Linear Regression
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Abstract— In this paper, we aim at learning compact and
discriminative linear regression models. Linear regression has
been widely used in different problems. However, most of the
existing linear regression methods exploit the conventional zero-
one matrix as the regression targets, which greatly narrows
the flexibility of the regression model. Another major limitation
of these methods is that the learned projection matrix fails to
precisely project the image features to the target space due to
their weak discriminative capability. To this end, we present
an elastic-net regularized linear regression (ENLR) framework,
and develop two robust linear regression models which possess
the following special characteristics. First, our methods exploit
two particular strategies to enlarge the margins of different
classes by relaxing the strict binary targets into a more feasible
variable matrix. Second, a robust elastic-net regularization of
singular values is introduced to enhance the compactness and
effectiveness of the learned projection matrix. Third, the resulting
optimization problem of ENLR has a closed-form solution in
each iteration, which can be solved efficiently. Finally, rather
than directly exploiting the projection matrix for recognition, our
methods employ the transformed features as the new discriminate
representations to make final image classification. Compared with
the traditional linear regression model and some of its variants,
our method is much more accurate in image classification.
Extensive experiments conducted on publicly available data sets
well demonstrate that the proposed framework can outperform
the state-of-the-art methods. The MATLAB codes of our methods
can be available at http://www.yongxu.org/lunwen.html.

Index Terms— Elastic-net regularization, discriminative meth-
ods, linear regression, image classification.

I. INTRODUCTION

D ISCRIMINATIVE methods (e.g., regression models)
have a good reputation in both theoretical research and

practical applications, and also have been extensively applied
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to solving many computer vision problems [1], [2]. Different
from the probabilistic models, discriminative methods typi-
cally project image features to some continuous or discrete
targets, and then exploit the projection matrix to make image
classification or regression [3], [4]. In addition, discrimi-
native methods can achieve impressive performance when
constructing robust projection matrix and providing sufficient
training samples [5], [6]. However, the problem of robust
discriminative learning has not been exhaustively explored and
perfectly solved.

Least square regression (LSR) is a typical and fundamen-
tal technique in statistics theory. Due to its mathematically
tractable and efficient solution as well as simple yet effective
formulation, LSR has been widely used in many other appli-
cations such as computer vision and pattern recognition [7].
Many variations have been proposed to enhance the perfor-
mance of the conventional LSR, such as partial LSR [8],
weighted LSR [9], and nonnegative least squares [10].
Moreover, extensive discriminative LSR methods have
been developed to improve the robustness and effective-
ness of the existing regression approaches. For example,
Xiang et al. [7] designed a general framework of discriminative
least square regression (DLSR) by introducing the ε-dragging
technique for image classification and feature selection, and
Zhang et al. [11] introduced a method of retargeted LSR
by learning transformed regression. A unified least square
framework [12] is constructed to formulate many component
analysis methods and generate their regularized and kernel
extensions. Thus, LSR model has become a popular technique
and also has been widely adopted to deal with recognition and
classification tasks [13].

Another important and fundamental variant of LSR is the
problem of least absolute shrinkage and selection operator,
i.e. LASSO [14], or sparse representation problem [6], [15].
Sparse representation based classification (SRC) method [15]
has been extensively applied to addressing the face recognition
problem, and the performance is very impressive. Subse-
quently, numerous representation based classification methods
have been proposed to improve its effectiveness, robustness
and efficiency of face recognition [16]. For example, linear
regression based classification (LRC) [17] method exploits
the linear combination of each class of training sam-
ples to represent the test sample, and then classifies the
test sample to the class which leads to the minimum
representation residual. Collaborative representation based
classification method (CRC) [18] introduces the l2-norm
regularization instead of the l1-norm regularization for efficient
face recognition. Specifically, literature [18] demonstrates that
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SRC theoretically is a special case of the collaborative repre-
sentation method, and the computational efficiency of CRC
is dramatically higher than SRC without sacrificing much
classification accuracies. Moreover, locality-constrained linear
coding (LLC) enforces the locality constraints to perform a
local embedding of the descriptors [19], [20]. In addition, the
representation based technique has been introduced to a wide
range of applications.

The low-rank minimization problem has attracted a lot
of attention due to its effectiveness on data representa-
tion [21]. It is worth noting that robust PCA (RPCA) [22]
is one of the most popular methods based on the low-
rank minimization. Providing that data are lying in a single
subspace, RPCA decomposes the observed data into two
components, the low-rank uncorrupted data term and sparse
noise term. The low-rank regression model [23] has been
studied because of the apparent advantage of the low-rank
characteristics [22], [24], [25]. Based on the traditional low-
rank linear regression (LRLR) model, Cai et al. [23] pro-
posed two low-rank regression models, i.e. low-rank ridge
regression (LRRR) and sparse low-rank regression (SLRR)
methods. Specifically, these three low-rank regression models
are equivalent to linear discriminant analysis based regres-
sions [23]. Furthermore, all of them are based on the nature of
the low-rank minimization, which can capture the underlying
structure of data correlation patterns [22], [24]. Latent low-
rank representation (LatLRR) [26] explores the unobserved
hidden information of data, and can robustly extract salient
features from noise or corrupted data. Subsequently, many
variations of the low-rank minimization have been applied
to solve different problems [3], [27]–[29]. For example,
Li and Fu [3] proposed a supervised regularization-based
robust subspace learning method by jointly removing noise
term with low-rank constraint and learning a discriminate
subspace from the clean data. Wei et al. [27] designed a
method of low-rank matrix recovery method by embedding
the structure incoherence (LRSI) information for robust face
recognition. Li et al. [28] constructed a classwise block-
diagonal structure (CBDS) dictionary by imposing the class-
wise discriminative structure regularization term to make the
samples from different classes be reconstructed with different
bases. Benefiting from recent advances on low-rank minimiza-
tion, a framework of robust regression model [2] was proposed
to solve several computer vision problems.

Nonetheless, most existing regression methods in the learn-
ing phase only focus on directly projecting the original visual
features to conventional zero-one target matrix, which pro-
vides too little freedom to fit the strict binary label matrix.
Moreover, the projection matrices learned by these methods
fail to precisely project the image features to the target
fields due to its weak discriminative capability. It is notable
that a robust and discriminative regression method should
equip with three-fold characteristics, i.e. compact projection
matrix, discriminative regression targets and robust to errors
in the data. Given these deficiencies, this paper develops a
novel elastic-net regularized linear regression (ENLR) frame-
work, and two robust ENLR methods, i.e. discriminative

ENLR and marginalized ENLR, are proposed to construct
a robust and compact regression model for multi-category
image classification. More specifically, the elastic-net regular-
ization term is accumulated to learn a more compact projection
matrix, and at the same time, enlarging the margins of different
classes is significant and beneficial to the classification tasks.
Based on the ε-dragging technique, the discriminative regres-
sion targets are further formulated to better fit regression tasks.
Moreover, marginalized regression targets are learned directly
from data by enforcing a strong constraint on the learned
targets between the true and false classes. Furthermore, instead
of directly exploiting the projection matrix for classification,
the data points under the simple linear transformation using the
learned projection matrix are employed to final classification
such that the transformed data is more discriminative and
robust to errors. In addition, the low-rank model always
suffers from heavy computational burden due to singular
value decomposition procedure. To efficiently solve it, ENLR
introduces an alternative definition of the nuclear-norm with a
strong convexity strategy such that our method can be scalable
to large data sets. To the best of our knowledge, this is for
the first time to unify the elastic-net regularization of singular
values and learning discriminative regression targets into one
framework, which is a very simple but extraordinarily effective
method for image classification. The effectiveness of the
ENLR framework is demonstrated on different classification
tasks. Therefore, the main contributions of this paper are
summarized as follows.

(1) In this paper, the elastic-net regularization of singular
values and constructing distinctive regression targets are for
the first time integrated into one unified discriminative lin-
ear regression framework. The underlying characteristics of
the elastic-net regularization of singular values are explicitly
uncovered and analyzed such that the elastic-net theory is
extended to the elastic-net regularization of singular values.

(2) By virtue of enlarging the margins of different classes,
we propose two robust elastic-net regularized linear regression
methods as well as the corresponding alternative efficient
methods. Specifically, the discriminative ENLR (DENLR)
method interpolates the ε-dragging technique into the ENLR
framework, and a more flexible marginalized ENLR (MENLR)
method is developed by directly learning the marginal regres-
sion targets from data, in which a strong marginalized con-
straint is enforced to make the learned targets distinguishable.

(3) Two efficient algorithms are proposed to solve the result-
ing optimization problems, and theoretical and experimental
analysis are conducted to prove the convexity and convergence
of the designed optimization algorithms. Additionally, the the-
oretical relationships between the proposed ENLR framework
and the prevailing LSR models are revealed.

The rest of this paper is organized as follows. We briefly
introduce some related works in Section II. Then, we describe
the proposed ENLR framework and theoretical analysis
in Section III, and optimization algorithm is presented in
Section IV. Extensive experiments are reported in Section V.
Finally, the conclusion remarks and our future work are
summarized in Section VI.
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II. RELATED WORK

A. Notation

The matrix is denoted by bold uppercase letters, e.g. X , and
the i -th row and j -th column element of matrix X is denoted
as Xi j . Column vectors are denoted by bold lower letters,
e.g. x. ‖X‖2

F = tr(XT X) = tr(X XT ) designates the
Frobenius norm of matrix X , where tr(•) is the trace operator.
‖X‖∗ is the nuclear norm of the matrix X , i.e. ‖X‖∗ = ∑

i |σi |
where σi is the i -th singular value of matrix X . XT denotes
the transposed matrix of X and I denotes an identity matrix.

B. Linear Regression Model
Linear and non-linear regression have been widely applied

to many computer vision problems, such as classification [2],
[7], [11]. Standard linear regression model for classification
is to learn a linear projection matrix in the training stage,
and uses it to project the observed image features X =
[x1, · · ·, xn] ∈ �d×n approximate to the target matrix Y =
[ y1, · · ·, yn]T ∈ �n×c by minimizing

min
D

‖XT D − Y‖2
F , (1)

where X is the given data set, D ∈ �d×c is the learned
projection matrix, and Y is the corresponding binary class
indicator matrix. Specifically, yi ∈ �c is the label vector of
the i -th sample xi , and n and c are the number of samples and
classes, respectively. A more popular-used regularized linear
regression model is formulated by addressing the following
optimization problem

min
D,b

‖XT D + enbT − Y‖2
F + λ‖D‖2

F . (2)

The general steps of the linear regression model for image
classification task are as follows. In the training stage, we
learn the projection matrix D, and any test point is estimated
by DT xte in the test step.

C. Low-Rank Linear Regression Model
The low-rank linear regression (LRLR) model [23] is a

modified version of the standard linear regression model (1).
Compared to the conventional linear regression model, a more
compact low-rank projection is learned by enforcing the rank
minimization constraint to explore the underlying correlation
structures between classes [23], and the objective function of
LRLR is formulated as

min
D

‖XT D − Y‖2
F + λrank(D). (3)

Because of the discrete property of the rank function, which
is a non-convex non-smooth problem, a tractable optimization
problem is reformulated by replacing the rank function with
the nuclear norm regularization [32], i.e.

min
D

‖XT D − Y‖2
F + λ‖D‖∗. (4)

The nuclear norm regularization can effectively discover the
hidden structures between classes such that the learned low-
rank projection matrix is more compact and discriminative
than the traditional projection matrix. The low-rank linear

regression model is demonstrated to be equivalent to the linear
discriminant analysis based regression [23]. It is worth noting
that the low-rank linear regression models can provide better
data mining results in comparison with the existing full-rank
linear regression models [23].

III. THE PROPOSED ENLR FRAMEWORK

In this section, we focus on learning a compact and dis-
criminative regression model for robust multi-category image
classification. For linear regression model, compact projection
matrix and discriminative regression targets are both impor-
tant. We introduce an elastic-net regularization of singular
values term to formulate robust projection matrix, and the
enlarged slack regression targets are constructed to improve
its discriminant. Therefore, an elastic-net regularized linear
regression (ENLR) framework and two discriminative linear
regression methods are proposed for image classification.

A. A General Framework of Elastic-Net Regularized
Linear Regression Model

To learn a compact and discriminative projection matrix,
a general framework of elastic-net regularization based linear
regression model is formulated as

min
D
φ(D)+ λ1‖D‖∗ + λ2

2
‖D‖2

F , (5)

where λ1 and λ2 are the regularization parameters for balanc-
ing respective terms. The most straightforward regression loss
function is φ(D) = ‖XT D − Y‖2

F . For the above objective
function (5), we have the following proposition.

Proposition 1: Objective function (5) is a robust regression
problem with an elastic-net regularization of singular values.

The singular value decomposition (SVD) factorizes the
linear transformation matrix D into

D = U�V T =
r∑

i=1

uiσiv
T
i , (6)

where r = min{c, d} is the rank of D, ui ∈ �d and vi ∈ �c

are respectively the left and right singular vectors of D, and
σi is the i -th singular value of matrix D.

It is notable that the nuclear norm of matrix D can be
interpreted as a sum of the singular values, i.e. ‖D‖∗ =∑r

i |σi |, and the Frobenius norm of matrix D is ‖D‖2
F =

tr(D DT ) = tr(U�V T V�UT ) = tr(�2) = ∑
i |σi |2. Thus,

by integrating the nuclear norm and the Frobenius norm
penalties of matrix D, we have the elastic-net regularization of
singular values term, i.e. ‖D‖∗ +‖D‖2

F = ∑
i |σi |+∑

i |σi |2.
Typically, the large singular values always highlight the

components where the fundamental information lies. It is
interesting to note that the singular values can directly reflect
the importance of underlying components of data. For exam-
ple, smaller singular values always come from the redundant
or noise-contaminated components when the data contains
redundant information or noise. It seems natural to use the
measurement of singular values to analyze data. Based on
these observations, the elastic-net regularization of singular
values provides an advisable approach to removing the redun-
dant components based on the following proposition.
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Proposition 2: The elastic-net regularization of singular
values can effectively enable automatic grouped variable
selection of principal components and continuous shrinkage
of redundant components.

Based on Proposition 1, we know that the elastic-net reg-
ularization of singular values is composed of the l2-norm
and l1-norm regularization of singular values. It is known
that the l2-norm regularization of singular values tends to
shrink a variable towards zero but generally keeps all the
components in the model, which may lead to redundant
information in predictors. However, this deficiency of the
l2-norm regularization fortunately generates the grouping char-
acteristic in the model-fitting procedure. On the contrary,
the l1-norm regularization of singular values can produce
automatic selection of principal information and continu-
ous shrinkage of redundant information simultaneously [14].
However, one significant limitation of the l1-norm regulariza-
tion is that when the correlations among a group of variables
are very high, it tends to select only one variable from the
group, but neglects the remaining ones, which may lead to sub-
optimal results. The feasible way of overcoming this deficiency
is to regard the highly-correlated group as a whole to make
variable selection, i.e. grouped variable selection. Therefore,
it is reasonable to mix the l2-norm and l1-norm regularization
of singular values, yielding the elastic-net regularization of sin-
gular values, which can effectively enable automatic grouped
variable selection of principal components and continuous
elimination of dependencies and redundancies in data. In this
way, the proposed ENLR framework is a succinct and stable
linear regression formulation.

Furthermore, given optimal regression D, we will project x
to the target space (e.g. label space) by

DT x =
ŕ∑

i=1

σi (uT
i x)vi , (7)

where ŕ is the number of selected singular values. Herein the
target space can be viewed as a weighted linear combination
of target-component vectors {vi }ŕ

i=1, and the i -th weight is
composed of two terms, i.e. the i -th singular value σi , and
transformed feature value uT

i x, which is determined by the
feature-component vectors {ui }ŕ

i=1. We can see that the opti-
mized selection of singular values can generate the optimal
feature-component and target-component vectors such that the
importance of the feature correlations and target correlations
is simultaneously uncovered.

Moreover, the elastic-net regularization of features has
shown its great superiorities in comparison with the ridge
regularization [18] and LASSO [14] in many applications
such as feature selection [33] and matrix factorization [30].
However, the elastic-net regularization of features can not
effectively capture and mine the subtle information from data,
whereas exploiting the elastic-net regularization of singular
values can attain a more compact and distinctive projection
matrix, which improves the performances of linear regression
models. Based on the elastic-net regularized linear regres-
sion framework in Eq. (5), two robust elastic-net regularized
linear regression methods are proposed, i.e. discriminative

elastic-net regularized linear regression (DENLR) and mar-
ginalized elastic-net regularized linear regression (MENLR).

B. Discriminative Elastic-Net Regularized Linear Regression

To enhance the discriminative capability of regression
results, the ε-dragging technique is introduced to transform
the strict zero-one regression targets into the disjunctive but
discriminative ones such that the regression model is more
robust. Due to the weak separability of the strict binary
regression targets in (1), the ε-dragging technique enforces the
regression targets of different classes moving along mutual
opposite directions such that the margins between different
classes are enlarged and more discriminative regression targets
are achieved.

We take an example to introduce the rationale of the
ε-dragging technique and demonstrate that the reformulated
regression targets are more discriminative than Y . Let x1, x2,
x3 be three training samples, which are respectively from the
third, first and second classes, and then the corresponding

binary-class label matrix is defined as Y =
⎡

⎣
0 0 1
1 0 0
0 1 0

⎤

⎦ ∈

�3×3. However, we expect that the strict binary regres-
sion target matrix can be relaxed into some soft extent to
fit the data. To this end, a slack variable matrix is con-
structed by using the ε-dragging technique, which drags
these binary outputs far way along different directions. More
specifically, if we take the above three samples as an
example, the regression target matrix is defined as Ỹ =
⎡

⎣
−m11 −m12 1 + m13

1 + m21 −m22 −m23
−m31 1 + m32 −m33

⎤

⎦ , s.t . mij ≥ 0. Apparently,

the distance of each sample in matrix Y is
√

2, while
the distance between each sample in Ỹ is bigger than or
equal to

√
2 owing to the nonnegative constraint of para-

meter ms. For example, the first and second sample in Ỹ is
√
(−m11 − 1 − m21)2 + (−m12 + m22)2 + (1 + m13 + m23)

≥ √
2. It is easy to see that the margins of the different classes

are enlarged.
By introducing the ε-dragging technique, a discriminative

elastic-net regularized linear regression (DENLR) model is
developed, and its objective function is formulated as

min
D
ψ(D)+ λ1‖D‖∗ + λ2

2
‖D‖2

F , (8)

where ψ(D) = ‖XT D − Ỹ‖2
F and Ỹ is the relaxed regression

target matrix.
To obtain an optimal Ỹ , an elaborate strategy is devised as

follows. Let E be a constant matrix, and the i -th row and
j -th column entry is defined as

Ei j =
{

+1 i f Yi j = 1

−1 i f Yi j = 0,
(9)

and then, we have Ỹ = Y + E � M , where M ∈ �n×c

is a learned nonnegative matrix. Thus, the proposed DENLR
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model (8) is rewritten as the following optimization problem:

min
D,M

‖XT D − (Y + E � M)‖2
F + λ1‖D‖∗

+ λ2

2
‖D‖2

F s.t . M ≥ 0. (10)

C. Marginalized Elastic-Net Regularized Linear Regression

From problem (10), we can see that the relaxed target space
of DENLR is subject to the bound that the regression results
should be larger than 1 for true classes and smaller than 0 for
false classes. However, this target space is still based on the
zero-one label matrix Y , which greatly confines the flexibility
of the regression model. To this end, we propose to directly
learn the regression targets from data, and a marginalized con-
straint is enforced to make the learned targets distinguishable.
We consider the following marginalized elastic-net regularized
linear regression (MENLR) problem:

min
D,R

‖XT D − R‖2
F + λ1‖D‖∗ + λ2

2
‖D‖2

F

s.t . riyi − max
j 	=yi

ri j ≥ C, i = 1, · · · , n, (11)

where R = [r1, · · · , rn]T ∈ �n×c is the learned regression
targets, and C is a constant. Herein yi denotes the index
of the true class for the i -th sample xi . That is, if the
i -th sample is from the m-th class (i.e. yi =m), the value of
the m-th element of the learned target vector ri , i.e. rim ,
should be bigger than the rest of the elements by a fixed
margin of C . Similar to SVM [43], we simply set the marginal
value between the true and the false classes to 1, i.e. C = 1.
Apparently, the marginalized constraint makes the learned
regression targets between the true and false classes separable
by a fixed distance such that the proposed MENLR is more
flexible and discriminative.

D. Efficient ENLR

For large-scale image classification tasks, the computation
complexity of the designed model should be seriously taken
into consideration. Thus, the following theorem [34] can make
our models appropriate for practical applications.

Theorem 1: For any matrix D, we have the following
equation:

‖D‖∗ = min
D=AB

‖A‖F‖B‖F = min
D=AB

1

2
(‖A‖2

F + ‖B‖2
F ).

(12)
Proof: For better flow of the paper, we move the proof

of Theorem 1 to Appendix A. �
Based on the Theorem 1, we make an equivalent represen-

tation of DENLR as

min
D,M,A,B

‖XT D − (Y + E � M)‖2
F + λ1

2
(‖A‖2

F + ‖B‖2
F )

+ λ2

2
‖D‖2

F

s.t . D = AB, M ≥ 0, (13)

and MENLR is rewritten as

min
D,R

‖XT D − R‖2
F + λ1

2
(‖A‖2

F + ‖B‖2
F )+

λ2

2
‖D‖2

F

s.t . D = AB, riyi − max
j 	=yi

ri j ≥ C. (14)

IV. OPTIMIZATION AND ALGORITHM ANALYSIS

In this section, we present two efficient and effective
optimization algorithms to solve (13) and (14). In general,
the two optimization problems with the low-rank constraint
D = AB are both non-convex and non-smooth problems.
Fortunately, ALM provides a preferable way to find minimum
points of such optimization problems with equality constraints
as (13) and (14). To obtain efficient solutions, we utilize
the ALM strategy to optimize the resulting problems in an
alternative minimization manner, i.e. minimizing the loss with
respect to one variable when fixing the rest variables [35].

A. Optimization of DENLR

The ALM strategy solves the problems by alternatively
minimizing the augmented Lagrangian of the original prob-
lems and maximizing the dual problems. Here the augmented
Lagrangian function of problem (13) is

L(D,M, A, B,C1) = ‖XT D − (Y + E � M)‖2
F + λ2

2
‖D‖2

F

+ λ1

2
(‖A‖2

F + ‖B‖2
F )

+ 〈C1, D − AB〉+μ
2

‖D − AB‖2
F ,

(15)

where 〈P, Q〉 = tr(PT Q), C1 is a Lagrange multiplier
and μ > 0 is a penalty parameter. The minimum points
of L with respect to primal variables can be found via the
block coordinate descend (BCD) method. The augmented
Lagrangian is minimized along one coordinate direction at
each iteration. We expand this procedure in more details.

Updating A: Fix the other variables and update A by solving
the following problem.

A+ = arg min
A

λ1

2
‖A‖2

F+ < C1, D− AB >+μ
2

‖D − AB‖2
F

= arg min
A

λ1

2
‖A‖2

F + μ

2
‖D − AB+ C1

μ
‖2

F , (16)

where the rest terms irrelevant to A in L are viewed as con-
stants and ignored in the loss since they make no differences
in this particular procedure. The resulting problem (16) is a
typical regularized least square problem, hence its solution is
easily obtained as

A+ = (C1 + μD)BT (λ1 I + μB BT )−1. (17)

Updating B: The variable B plays a symmetric role to
that of A in L, hence the updating of B is performed in a
symmetric way:

B+ = arg min
B

λ1

2
‖B‖2

F + 〈C1, D − AB〉 + μ

2
‖D − AB‖2

F

= arg min
B

λ1

2
‖B‖2

F + μ

2
‖D − AB + C1

μ
‖2

F . (18)
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Similarly,

B+ = (λ1 I + μAT A)−1 AT (C1 + μD). (19)

Updating D: Fix the other variables and update D by solving
the following problem.

D+ = arg min
D

‖XT D − S‖2
F + λ2

2
‖D‖2

F

+ 〈C1, D − AB〉 + μ

2
‖D − AB‖2

F

= arg min
D

‖XT D − S‖2
F + λ2

2
‖D‖2

F

+ μ

2
‖D − AB + C1

μ
‖2

F , (20)

where S = Y + E � M . By setting the derivative ∂L
∂D = 0,

we can infer the optimal solution of D as

D+ = (2X XT + λ2 I + μI)−1(2X S + μAB − C1). (21)

Updating M : Fix the other variables and update M by
solving the following problem.

M+ = arg min
M

‖T − E � M‖2
F s.t M ≥ 0, (22)

where T = XT D−Y . Considering that the squared Frobenius
norm of matrix can be optimized element by element, and
problem (22) can be divided into n × c subproblems. For the
i -th row and j -th column entry of M , i.e. Mi j , we have the
following subproblem:

(Ti j − Ei j Mi j )
2 s.t Mi j ≥ 0. (23)

Based on the result from [7], the optimal solution of Mi j is

Mi j = max(Ei j Ti j , 0). (24)

Therefore, the compact form of the optimal solution of prob-
lem (22) is formulated as

M+ = max(E � T , 0). (25)

With the block coordinate descend procedures (17), (19),
(21) and (25) recursively repeated, the asymptotic
point (A, B, D, M) converges to a minimum point of
L with respect to those variables, which is guaranteed by the
theorem as follows.

Theorem 2: Given X , C1, and E defined as (9), suppose
{(Ak, Bk, Dk,Mk)} is a sequence generated recursively via
the process (17), (19), (21) and (25), and then every limit point
of {(Ak, Bk, Dk,Mk)} is a minimum point of the augmented
Lagrangian L(A, B, D, M, C1).

Proof: It can be easily verified that the loss func-
tion L(A, B, D, M, C1) is continuously differentiable with
respect to A, B, D,M respectively, and in every subproblems
of (16), (18), (20), and (22), the minimum point is uniquely
obtained, according to the [36, Proposition 2.7.1], every limit
point of the sequence is a minimum point of L. �

We iteratively optimize all the variables until the conver-
gence condition is satisfied. To more clearly show the main
procedures, the detailed algorithm of our optimization process
of DENLR is outlined in Algorithm 1.

Algorithm 1 Optimization of DENLR by Exact ALM

B. Optimization of MENLR

It is easy to find that optimization of MENLR is very similar
to the optimization procedures of DENLR, except for deducing
the regression targets matrix R. By ignoring the constant terms
independent of R, minimizing (14) becomes the following
optimization problem:

min
R

‖H − R ‖2
F s.t . riyi − max

j 	=yi
ri j ≥ 1, i = 1, · · · , n,

(26)

where H=XT D ∈ �n×c. Because problem (26) is a con-
strained quadratic programming problem, it can be decom-
posed into n independent subproblems. Suppose that the
i -th sample xi is from the mth-class, and then the
i -th subproblem of (26) is

min
ri

‖hi − ri‖2 s.t . rim − max
j 	=m

ri j ≥ 1, (27)

where ri ∈ �c and hi ∈ �c are the i -th row of R and H ,
respectively. It should be noted that ‖hi − ri‖2 = ∑c

j=1(hi j −
ri j )

2. To optimize problem (27), we introduce an auxiliary
variable ϕ ∈ �c, and for the j -th entry, ϕ j = ri j + 1 − rim ,
where ϕ j ≤ 0 indicates the optimal target, otherwise a
unsatisfactory target. Assume that the optimal target for the
true class rim can be obtained by a modification of the
regression result him , i.e. rim = him +ζ , where ζ is a learning
parameter. For the false class ∀ j 	= m, we need rim − ri j ≥ 1,
and then the j -th subproblem of (27) is

min
ri j

(hi j − ri j )
2
2 s.t . him + ζ − ri j ≥ 1, ∀ j 	= m, (28)

which is a very simple quadratic programming problem. In this
way, the optimal solution is ri j = hi j + min(ζ − ϕ j , 0), and
the optimal solution of problem (28) is achieved by

ri j =
{

hi j + ζ, i f j = m,

hi j + min(ζ − ϕ j ), otherwi se.
(29)

By substituting (29) into problem (27), we can obtain the
following optimization problem:

arg min
ζ
φ(ζ ) = ζ 2 +

∑

j 	=m

(min(ζ − ϕ j ))
2, (30)



1472 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 26, NO. 3, MARCH 2017

Algorithm 2 Solving Problem (27)

Algorithm 3 Optimization of MENLR by Exact ALM

and its first-order derivation φ′(ζ ) = 2(ζ+∑
j 	=m min(ζ−s j )).

By setting φ′(ζ ) = 0, we can achieve the optimal value of
learning factor ζ as

ζ =
∑

j 	=m ϕ j	(φ
′(ϕ j ) > 0)

1 + ∑
j 	=m ϕ j	(φ′(ϕ j ) > 0)

, (31)

where 	(·) is the indicator operator. The detailed process of
learning the optimal solution of the i -th row of R is given in
Algorithm 2. The optimal solution of D is computed as

D+ = (2X XT + λ2 I + μI)−1(2X R + μAB − C1). (32)

In addition, the optimal solutions of A and B are the same
as the optimization of DENLR. The detailed procedures of
learning the optimal solutions of MENLR are summarized in
Algorithm 3. Similarly, because optimization of R is a convex
constrained quadratic programming problem, the following
theorem is doubtlessly guaranteed.

Theorem 3: Suppose {(Dk, Rk, Ak, Bk)} is a sequence
generated recursively via (32), iterative Algorithm 2, (17),
and (19), and then every limit point of {(Dk, Rk, Ak, Bk)}
is a minimum point of the augmented Lagrangian
L(D, R, A, B, C1) of MENLR.

Proof: The proof of Theorem 3 is similar to that of
Theorem 2. �

C. Classification

When the resulting problems of DENLR and MENLR are
solved, the compact and discriminant projection matrix D is
obtained. Then, we exploit projection matrix D to make linear
transformations of both training and test samples. Finally, we
employ a simple nearest neighbor (1-NN) classifier to perform
multi-category image classificaton. The complete procedures
of our classification model are summarized in Algorithm 4.

Algorithm 4 Classification

D. Algorithm Analysis and Computation Complexity
It is worth noting that our ENLR framework is a generalized

but robust extension of the conventional LSR and low-rank
linear regression models. The following proposition shows the
close relationship between our proposed DENLR and MENLR
methods and the LSR and LRLR methods.

Proposition 3: The proposed ENLR framework is a gener-
alized but robust linear regression model, and both of LSR
and LRLR are the special cases of the proposed DENLR and
MENLR methods.

Proof: For model (13), when λ1 = 0, λ2 = 0 and M =
0n×c, it will degenerate to the conventional LSR model (1).
Moreover, if we set λ1 = 0 and M = 0n×c, it will become
the regularized LSR model (2), where the enbT term can be
absorbed into the XT D term. Furthermore, if we set λ2 = 0
and M = 0n×c, our DENLR model will degenerate to the
LRLR model (4). So both of the LSR and LRLR models are
the special cases of the proposed DENLR model, which is a
general framework of linear regression. Similarly, we can find
that the proposed MENLR method (14) is also a generalized
version of the LSR and LRLR models.

More importantly, our DENLR and MENLR methods
enlarge the margins of different classes by introducing the
ε-dragging technique and enforcing the marginalized con-
straint, respectively. In this way, the regression targets are
more reliable to fit the regression tasks such that the proposed
methods are more discriminative and robust in comparison
with existing linear regression models. Therefore, our methods
can be viewed as a generalized discriminative framework of
linear regression, and it can also be simply extended to other
regression models.

Therefore, our ENLR framework not only intrinsically
generalizes the previous LSR and LRLR models, but also
extends the existing linear regression model to more robust
and discriminative cases by seamlessly incorporating the slack
and feasible regression targets. �

The overall computation complexity of our DENLR
method mainly depends on the complexity of Algorithm 1.
In Algorithm 1, the main computation load is mainly con-
sumed on steps 1-4. The computational complexity of steps 1
and 2 is O(dcr) where d is the dimensionality of the samples,
c is the number of classes, and r is the rank of matrix D.
Note that calculating D will scale in about O(2d2nc + d)
due to the matrix inverse calculation, and computing M costs
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O(nc). So the total computational complexity of DENLR is
O(2d2nc + 2dcr + d). Similarly, the only difference between
DENLR and MENLR is the calculation of R, of which the
complexity is O(nc). Therefore, the runtime complexity of
MENLR is also O(2d2nc + 2dcr + d) in each iteration.

E. Convergence Analysis
We present a convergence results of the proposed

Algorithm 1 and 3. First, it is worth noting that both of
algorithms DENLR and MENLR have optimal solutions, and
values of the objective functions are bounded. Although it
is difficult to obtain a strong convergence property of the
proposed algorithms, the empirical results suggest their strong
convergence properties. Nevertheless we present a week con-
vergence property of the proposed algorithm.

Theorem 4: For DENLR, denote (Dk,Mk, Ak, Bk,Ck
1 )

as �k , and suppose {�k} is a sequence generated via the
Algorithm 1. Given X , and E defined as (9), if the sequence
is bounded, and

lim
k→+∞{�k+1 − �k} = 0, (33)

then every limit point of {�k} is a Karush-Kuhn-Tucker point
of the problem (13).

Proof: The detailed proof of the Theorem 4 is moved to
Appendix B for better flow of the paper. �

Similarly, the convergence nature of MENLR is also easily
demonstrated by the following theorem.

Theorem 5: For MENLR, denote (Dk, Rk, Ak, Bk,Ck
1 )

as �k , and suppose {�k} is a sequence generated via the
Algorithm 3. Given X , if the sequence is bounded, and

lim
k→+∞{�k+1 − �k} = 0, (34)

then every limit point of {�k} is a Karush-Kuhn-Tucker point
of the problem (14).

Proof: The proof of Theorem 5 is similar to Theorem 4.
�

Although each exact minimum of the augmented
Lagrangian of the Algorithms 1 and 3 guarantees a
sound convergence property, it is impractical to obtain an
exact solution in each iteration. The inner loop of BCD
embedded in the main loop of ALM is time consuming. It is
very common to boost up the computation time of ALM
via inexact solution of the subproblems. Precision in each
iteration is favored but not indispensable. In many cases the
convergence of a recessive method could be preserved within
a mild loss of precision in subproblems. Hence in this paper
we speed up the Algorithm 1 and 3 by quitting the inner loop
of BCD after one iteration. As a result the convergence issue
may be questioned, but we empirically show in Section V-E
that the convergence of the resulting inexact ALM is well
preserved.

V. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of our proposed
methods on publicly available databases, and compare them
with currently popular linear regression methods for different
classification tasks, i.e. face recognition, objection recognition

and scene categories recognition. All the experiments are run
10 times with random data splits of training and test samples,
and then the average classification results are reported on
different datasets. We test our proposed methods on six public
databases for three main tasks. Specifically, the performance
of face recognition task is evaluated on four face databases:
Extended YaleB [37], CMU PIE [38], AR [39], LFW [40].
Object recognition and scene recognition are performed on
COIL-100 [41] and fifteen scene categories databases [42],
respectively. It is worth pointing out that these databases
are commonly used in multi-category image recognition and
the existing methods have achieved decent results. Thus,
challenging recognition results are convincing enough to verify
the superiority of our methods, and a number of related state-
of-the-art classification methods are enumerated as follows.

1) SRC [15]: It is to learn sparse representation based
regression model with the l1-norm regularization. Both
reconstruction error and sparse codes are employed for
classification.

2) LLC [19]: It is to learn a locality constrained regression
model for large scale image classification. Locality-
constrained codes are used for classification.

3) CRC [18]: It is to learn a linear regression model by
using all the training samples with the l2-norm regu-
larization. Both reconstruction error and collaborative
representation codes are used for classification.

4) LRC [17]: It is to learn a linear regression model
by using each class of training samples with the
l2-norm regularization. Similar to CRC, the reconstruc-
tion error and learned representation codes are used for
classification.

5) LRLR [23]: It is to learn a low-rank regression model by
introducing the low-rank (nuclear norm) regularization.
The learned projection matrix is used for classification.

6) LRRR [23]: It is to learn a low-rank ridge regression
model by adding a Frobenius norm regularization on
linear regression loss. Similar to LRLR, the learned
projection matrix is used for classification.

7) SLRR [23]: It is to learn a sparse low-rank regression
for feature section by imposing sparsity constraint on
the low-rank regression loss. The low-rank projection
matrix and selected features are used for classification.

8) RPCA [22], [27]: It is to learn clean images by decom-
posing a data matrix into low-rank term and sparse
noise term, and then SRC on the clean data is used for
classification.

9) LatLRR [26]: It is to learn salient features from the
original dataset, and then linear regression model (2)
is used to learn projection matrix. Subsequently, the
linear transformation of the salient features obtained
by using the learned projection matrix is employed for
classification.

10) LRSI [27]: It is to learn a low-rank structured inco-
herence dictionary with shared features, and then the
SRC method on the learned dictionary is used for
classification.

11) CBDS [28]: It is to learn the data representation
of training samples, test samples and dictionary with
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classwise block-diagonal structure by imposing the low-
rank regularization, and then the learned representation
is used for classification.

12) DLSR [7]: It is to learn a discriminative LSR model
by enlarging the distance between different classes in
regression targets. The learned projection matrix are
used for classification.

13) SVM [43]: It is to utilize support vector machine with
Gaussian kernel on raw image features for classification.
We use the LibSVM software [43]. Note that there
exists an important regularization parameter C in SVM.
A cross validation approach is utilized to select it from
the range of [0.001, 0.01, 1.0, 10.0, 100.0]. Actually,
SVM is also a popular derivation of LSR model.

14) DENLR: The proposed model is to learn a compact
and discriminative regression model by imposing the
elastic-net regularization and enlarging the margin of the
regression targets. The objective function is Eqn. (13).
To justify the effectiveness of the ε-dragging technique,
we remove the ε-dragging term, i.e. E � M , from
Eqn.(13), and denote it as ENLR* in the experiments.

15) MENLR: The proposed model is to learn a marginal-
ized regression model by embedding the marginalized
constraint of the regression targets into the elastic-net
regularized framework, which is presented in Eqn. (14).

For fair comparison, we directly use the Matlab codes from the
corresponding authors with the optimal parameter settings, or
directly cite the experimental results from their original papers.
Specifically, to guarantee the same experimental settings
between all the compared methods and our methods on each
benchmark, we re-implemented all the methods using opti-
mal parameters via tenfold cross validation, and the training
and test samples were randomly selected from each dataset.
Moreover, the experimental settings on scene recognition is the
same as that of the LC-KSVD [42] method, and we directly
cite some experimental results from the original paper. For the
compared methods that are not included in [42], we rerun them
following the same experimental settings in [42]. Therefore,
all the methods presented in our paper are performed for each
dataset on the same testbed such that our experimental results
are convincing and reliable.

A. Face Recognition Evaluation
In this section, we evaluate the performances of our method

for face recognition on four face databases.
1) The Extended YaleB Database: The extended YaleB

database contains 2414 front face images of 38 individuals and
each subject has around 64 near frontal images under different
illuminations. We randomly select 15, 20, 25, 30 images
per subject for training, and the rest for testing. For all the
compared methods, we exploit the suggested parameters in
their papers for classification. The number of neighbors of
LLC algorithm is set to fifteen, which is suggested as the best
parameter for this dataset. Each image in this database for our
experiments has been simply resized to 32×32 pixels. The
classification accuracies of different methods on this database
are summarized in Table I. Note that the mean classification
accuracy and corresponding standard deviation (acc±std) are

TABLE I

CLASSIFICATION ACCURACIES (MEAN ± STD %) OF DIFFERENT
METHODS WITH DIFFERENT NUMBERS OF TRAINING SAMPLES

ON THE EXTENDED YALEB DATABASE. THE BOLD NUMBERS

ARE THE BEST CLASSIFICATION ACCURACY

reported, and the bold numbers suggest the best classification
accuracies. From Table I, it is clear to see that our method
can consistently achieve the best classification accuracies with
varying number of training samples. Moreover, we can see that
if we remove the relax term of the regression target matrix,
the performance of ENLR* is obviously better than other LSR
methods, such as LRC, SRC, LRLR, LRRR and SLRR. This
also reflects the fact that the elastic-net regularization term
can lead to a more compact projection matrix such that higher
classification accuracies can be achieved. Moreover, DENLR
and MENLR can achieve the best classification accuracies in
comparison with all the compared algorithms.

In addition, we conducted a statistical significance test for
the results summarized in Table I to judge the significant
improvements of the developed models in comparison with
the state-of-the-art regression methods. The significance level,
i.e. p-value, is typically set to 0.05, which means that if the
significance evaluation is lower than this level, the perfor-
mance difference between the evaluated methods is statistically
significant. The p-values between the proposed DENLR and
MENLR methods and the compared methods are shown in
Table II, when the number of training samples for each subject
is set to 15 and 25. We can see that the performance differences
between our methods and all the compared methods are
statistically significant, which also improves the effectiveness
of our methods.

2) The CMU PIE Database: The CMU PIE face database
contains 41,368 face images from 68 subjects as a whole. The
images under five near frontal poses (C05, C07, C09, C27
and C29) are used in our experiment. We randomly select 15,
20, 25, 30 images from each subject as training samples and
the remaining images as test samples. The classification rates
using different methods are summarized in Table III. We can
see that our methods DENLR and MENLR always outperform
the compared methods in different cases, and the performance
of ENLR* in most cases is better than or competitive with all
the compared methods.

3) The AR Database: The AR face database contains about
4,000 color face images of 126 subject, which consist of the
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TABLE II

p-VALUES BETWEEN THE PROPOSED DENLR AND MENLR METHODS
AND OTHER METHODS ON THE EXTENDED YALEB DATABASE

TABLE III

CLASSIFICATION ACCURACIES (MEAN±STD %) OF DIFFERENT METHODS

WITH DIFFERENT NUMBERS OF TRAINING SAMPLES

ON THE CMU PIE DATABASE

frontal faces with different facial expressions, illuminations
and disguises. In this experiment, we select a subset including
2600 images from 50 female and 50 male subjects. We ran-
domly select 8, 11, 14, 17 images for each subject as training
samples and the rest of images as test samples. Following
the implementation in [44], each image is projected onto a
540-dimensional feature vector with a randomly generated
matrix from a zero-mean normal distribution. The experimen-
tal results obtained by using different classification methods
are shown in Table IV. Apparently, our methods in most cases
achieve the best classification results, which also verify that the
proposed regression models outperform all the other regression
models under different training conditions.

4) The LFW Database: The Labeled Faces in the
Wild (LFW) face database is designed for the study of uncon-
strained identity verification and face recognition. It contains
more than 13,000 face images from 1680 subject pictured
under the unconstrained conditions. In this experiment, we
use a subset including 1251 images from 86 peoples and
each subject has only 10-20 images [45]. Each image was
manually cropped and resized to 32 × 32 pixels. We ran-
domly choose 5, 6, 7, 8 images of each subject as training

TABLE IV

CLASSIFICATION ACCURACIES (MEAN±STD %) OF DIFFERENT
METHODS WITH DIFFERENT NUMBERS OF TRAINING SAMPLES

ON THE AR DATABASE

TABLE V

CLASSIFICATION ACCURACIES (MEAN±STD %) OF DIFFERENT
METHODS WITH DIFFERENT NUMBERS OF TRAINING SAMPLES

ON THE LFW DATABASE

samples, and the remaining face images are exploited as test
samples. The classification accuracies of different methods
on the LFW database are summarized in Table V. Because
the LFW database is a very difficult database for image
classification, the accuracies obtained by utilizing different
classification methods are comparatively not high, but the
highest classification accuracies are still established by using
our methods, which again certify the effectiveness of the
proposed methods.

Overall, the proposed ENLR methods outperform all the
compared regression methods on the four face image data-
bases, which demonstrates that our methods can effectively
solve the face recognition problem.

B. Object Recognition Evaluation
To verify the assumption that our methods are feasible to

solve object recognition task, we evaluate the performances of
our methods on Columbia Object Image Library (COIL-100)
database [41], which contains various views of 100 objects
with different lighting conditions. In our experiments, the
images are converted to gray-scale images with the 32 ×
32 pixels, and then the robustness is evaluated on alternative
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TABLE VI

CLASSIFICATION ACCURACIES (MEAN±STD %) OF DIFFERENT METHODS
WITH DIFFERENT NUMBERS OF TRAINING SAMPLES

ON THE COIL-100 DATABASE

Fig. 1. Confusion matrices on the Fifteen Scene Categories database.

viewpoints. We randomly select 15, 20, 25, 30 images per
object to construct the training set, and the test set contains
the rest of the images. The experimental results of different
methods are summarized in Table VI. We can see that our
methods always outperform all the other methods. Specifically,
when the number of the training samples is 15, more than three
percentages of classification rates are improved in comparison
with the rest of methods. Accordingly, our methods have great
potential in solving objective recognition task, which also
reflects their effectiveness for multi-category recognition.

C. Scene Recognition Evaluation
We evaluate the performance of our methods for scene

recognition task by utilizing the Fifteen Scene Cate-
gories database [42]. It contains 4485 pictures falling into
15 categories, such as living rooms and kitchens. The
data features of this database are provided in [44], which
can be publicly available at http://www.umiacs.umd.edu/
zhuolin/projectlcksvd.html. The following steps are processed
to obtain the features. First, we compute a spatial pyramid
feature with a four-level spatial pyramid [42] on the SIFT-
descriptor codebook with size of 200, and then the final
spatial pyramid features are reduced to 3,000 by PCA based
feature dimension reduction. Following the common exper-
imental settings [42], [44], we randomly select 100 images
per category as training data, and use the remaining samples

TABLE VII

CLASSIFICATION ACCURACIES (MEAN±STD %) OF DIFFERENT METHODS
ON THE FIFTEEN SCENE DATABASE

for testing. The number of neighborhoods of LLC∗ and LLC
are respectively set to 30 and 70. The comparison results are
summarized in Table VII. Our methods again establish the
highest classification results and consistently outperform the
performances of all the compared methods. Specifically,
the classification accuracy of our method is better than the
second best competitor about three percent. Furthermore, the
confusion matrix of our DENLR method on the this data-
base has been shown in Fig. 1. From confusion matrix of
Fig. 1, we can see that each category classification accuracy
is presented along the diagonal elements. It is notable that
the classification accuracies for all the categories are close
to 100%, and the worst performance is still very impressive
with 95%, which also reflect the effectiveness of our DENLR
method.

D. Experiment Analysis
The average classification rates on six databases demon-

strate the robustness and effectiveness of the proposed regres-
sion framework. Based on the experimental results on these
databases, the following observations are achieved.

(1) DENLR and MENLR simultaneously consider the
elastic-net property of the projection matrix and discriminative
structure of the regression targets. As a result, it outperforms
other regression methods, which only hold part properties.
Our experimental results verify our previous key point that
the proposed ENLR framework is better than the compared
regression methods including representation based methods,
linear regression and low-rank regression models.

(2) The proposed DENLR and MENLR methods are greatly
superior to other regression models such as DLSR, LRLR,
LRRR, LRC and SLRR, because it takes the elastic-net
property into consideration. The elastic-net property not only
can better estimate the underlying distribution and structure of
samples but also can enhance the generalization capabilities of
DENLR and MENLR such that the learned projection matrix
is more robust and discriminative. Specifically, low-rank reg-
ularization can capture the underlying subspace structure and
correlation information of classes, while the Frobenius norm
regularization avoids over-fitting of the proposed models. Inte-
grating both terms as an elastic-net regularization of singular
values is reasonable, and this also indicates that a compact
and discriminant projection matrix is significant and beneficial.
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Fig. 2. Convergence curves of the relative error and classification accuracies versus the number of iterations for DENLR on (a) Extended YaleB, (b) AR,
(c) CMU PIE and (d) Fifteen scene categories databases.

Fig. 3. Convergence curves of the relative error and classification accuracies versus the number of iterations for MENLR on (a) Extended YaleB, (b) AR,
(c) CMU PIE and (d) Fifteen scene categories databases.

The experimental results of ENLR* also demonstrate the
above standpoint that in most cases ENLR* can achieve better
classification results in comparison with the conventional LSR
methods, such as LRC, CRC, LRLR, LRRR, SLRRR, and even
recently proposed DLSR method.

(3) Instead of employing the binary regression targets in
conventional LSR methods, enlarging the margins of different
classes in regression targets makes the regression task be
further favorable such that accuracies of the proposed method
are greatly improved. This is the another main reason that
DENLR and MENLR outperform conventional LSR models.
In addition, SVM is difficult to find the best decision function
when the margins of different classes are close, while our
method can obtain the optimal margins under the slack but
discriminative target matrix. Thus, the performances of our
methods are better than the compared low-rank and linear
regression models. Due to slackening the strict binary matrix
to the relaxed regression targets, there is no doubt that the per-
formances of our robust ENLR methods are greatly improved,
and DENLR and MENLR achieve the highest classification
results in comparison with state-of-the-art linear regression
methods.

(4) In addition, the experimental results of DENLR and
MENLR are better than ENLR*, which further demonstrates
that discriminative regression targets are beneficial to regres-
sion tasks. Moreover, we can see that MENLR in the most
cases is better or comparable to DENLR, which indicates that
providing more flexibility of regression targets is helpful to
enhance the performances of linear regression models.

E. Convergence Condition and Parameters Sensitivity

In this subsection, the convergence condition of the pro-
posed method is analyzed and the influences of parameters
λ1, λ2 are studied.

The overall convergence properties of our methods have
been generally proved in theorems 4 and 5, which show
that under mild conditions the iteration sequence of objective
formulations of DENLR and MENLR can converge to the
stationary point satisfying the KKT conditions, respectively.
However, too much iterations can not fully meet the needs
of practical applications. To this end, in our experiments we
consider that the main concern of our regression model is
to learn a compact and discriminative projection matrix D
to make multi-category image classification. So, we directly
take ‖Dk+1 − Dk‖2

F ≤ 10−5 as the convergence condi-
tion of algorithms, where Dk is the value of D for the
k-th iteration. To confirm the efficient convergence of our
methods, we implement the proposed DENLR and MENLR
methods on four different datasets, i.e. the extended YaleB,
AR, CMU PIE and fifteen scene categories databases.
Figs. 2 and 3 show the convergence curves of DENLR
and MENLR from the perspective of the relative error and
classification accuracies versus the number of iterations on
different databases, in which #T r denotes the number of
training samples selected from each subject. The results shown
in figs. 2 and 3 demonstrate that the proposed optimization
algorithms are effective and converge efficiently. Furthermore,
empirical evidences show algorithms 1 and 3 converge within
a small number of iterations and usually no more than
50 iterations, and the classification results become stable after
35 iterations.

In order to further investigate the properties of the proposed
method, the classification performances versus the different
values of regularization parameters, λ1 and λ2, are explicitly
explored. To clearly show the results, we perform experiments
on four databases, i.e. the extended YaleB, AR, CMU PIE
and fifteen scene categories databases, to verify the parameters
sensitivity. Specifically, we tune the value of both parameters



1478 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 26, NO. 3, MARCH 2017

Fig. 4. Variations of DENLR classification (%) versus the parameters λ1 and λ2 on the (a) Extended YaleB, (b) AR, (c) CUM PIE and (d) fifteen scene
categories databases.

Fig. 5. Variations of MENLR classification (%) versus the parameters λ1 and λ2 on the (a) Extended YaleB, (b) AR, (c) CUM PIE and (d) fifteen scene
categories databases.

from {0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1}.
Figs. 4 and 5 respectively show the classification results of
DENLR and MENLR over variations of parameters. From
figs. 4 and 5, we can observe that the performances of our
DENLR and MENLR models are not very sensitive to the
settings of λ1 and λ2. Apparently, when the parameters are
not very large, the classification accuracies of our methods
are not severely influenced. This also demonstrates that both
regularization terms are indispensable for superior perfor-
mances, and the best classification accuracies are achieved
when both parameters are nonzero. Overall, the proposed
regression models are not sensitive to the parameters provided
they’re in a reasonable range.

F. Efficiency Comparison
To manifest the efficiency of the proposed methods, the

runtime comparisons of our DENLR and MENLR methods
with other compared methods are presented in this section.
All algorithms were reimplemented using Matlab 2013a under
Window 7 on a PC with a 3.3-GHZ CPU and 8-GB memory.
We conduct experiments on the extended YaleB dataset to
evaluate the computational time of different methods. For
simplicity, we randomly choose 25 images from each subject
as training samples, and the remaining images are utilized
as the test samples. The computational time comparisons of
different methods are summarized in Table VIII. We can see
that most of methods have the training and test time, but the
representation based methods, such as LLC, LRC, CRC and
SRC, have only test time because they are designed to learn
specific representations of test samples, and then directly use
the representations to make classification. From Table VIII,
we can see that our DENLR method is the fastest algorithm

TABLE VIII

RUN TIME COMPARISONS OF DIFFERENT METHODS (S)

in comparison with all the other methods. Therefore, the
efficiency of the proposed methods is demonstrated.

VI. CONCLUSION

In this paper, we developed a novel regression frame-
work (ENLR) based on the elastic-net regularization of
singular values for multi-category image classification.
By introducing the elastic-net regularization scheme to capture
the underlying structures of different classes, a more compact
and discriminative projection matrix can be learned. Moreover,
two robust elastic-net regularized linear regression methods
were also introduced to demonstrate the effectiveness of
the ENLR framework. Unlike conventional linear regression
models which use the binary regression targets, our discrim-
inative ENLR model relaxes the regression targets into a
slack formulation, and the margins between different classes
are enlarged to construct a more feasible regression scheme.
Experimental results on public databases for different tasks
demonstrated the superior performance of our DENSR and
MENLR methods against the state-of-the-art image classifi-
cation methods. We believe that the proposed method is not
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limited to classification tasks, and can be used for other general
problems. For future work, we also plan to extend the proposed
method to large-scale image analysis and understanding tasks.

APPENDIX A
PROOF OF THEOREM 1

Here we give a simple proof the Theorem 1. Suppose that
D = AB, A ∈ �d×r and B ∈ �r×c where r is the rank of D.
Denote the singular value decomposition of D = U�V T ,
where U and V are unitary, and � is diagonal with non-
negative entries. Then, � = UT DV = UT ABV , and then
we have

‖D‖∗ = tr(�) = tr(UT ABV) ≤ ‖UT A‖F‖BV‖F

= ‖A‖F‖B‖F . (35)

Thus, the first equality is obtained. For the second inequality
‘≤’ holds just according to the well-known inequality of
arithmetic and geometric means (AM-GM inequality).

Notably, let A = U
√

� and B = √
�V T , and then D =

AB. It is easy to know that ‖D‖∗ = ‖AB‖∗ = ‖U�V T ‖∗ =
tr(�). Furthermore,

‖D‖∗ = tr(�) =
√

tr(U
√

�
√

�UT )

√

tr(
√

�V T V
√

�)

=
√

‖U
√

�‖2
F

√

‖√�V T ‖2
F = ‖A‖F‖B‖F . (36)

and then, the first ‘=’ in Eqn. (11) holds such that the
minimization of ‖A‖F‖B‖F is ‖D‖∗. On the other hand,

‖D‖∗ = tr(�) = 1

2
(tr(U

√
�

√
�UT )+ tr(

√
�V T V

√
�))

= 1

2
(‖U

√
�‖2

F + ‖√�V T ‖2
F ) = 1

2
(‖A‖2

F + ‖B‖2
F ).

(37)

and then, the second ‘=’ in Eqn. (35) holds. Therefore, under
the constraint D = AB, the minimization of 1

2 (‖A‖2
F +‖B‖2

F
is ‖D‖∗. In this way, the above conclusion is proved.

APPENDIX B
PROOF OF THEOREM 4

Denote the loss function of the problem (13) as
�(A, B, D,M). Karush-Kuhn-Tucker points of the
problem (13) are those points which satisfy the conditions as
follows:

D − AB = 0,
∂�

∂ A
= A(λ1 I + μB BT )− (C1 + μD)BT = 0,

∂�

∂B
= (λ1 I + μAT A)B − AT (C1 + μD) = 0,

∂�

∂D
= (2X XT + λ2 I + μI)D − 2X S

−μAB + C1 = 0,
∂�

∂M
= R � E − M = 0. (38)

where S = Y + E � M and T = XT D − Y . We can obtain
the Lagrange multipliers C1 from Algorithm 1 as

Ck
1 = Ck−1

1 + μ(D − AB), (39)

where Ck
1 is the k-th iteration of C1 in a sequence {Ck

1 }∞k=1.
If the sequences of multipliers {Ck

1}∞k=1 can converge to

a stationary point, i.e. (Ck
1 − Ck−1

1 ) → 0, the following
approximation results are obtained: (D − AB) → 0. So the
first condition in Eqn. (38) is obtained.

For the second condition of the KKT conditions, the follow-
ing equation can be obtained by using the optimization result
of A in Algorithm 1 such that

Ak − Ak−1 = (C1 + μD)BT (λ1 I + μB BT )−1 − A, (40)

which is equivalent to

(Ak − Ak−1)(λ1 I + μB BT ) = C1 BT + μD BT

− λ1 A − μAB BT , (41)

where Ak−1 = A here. Based on the first condition D −
AB = 0, we can infer that (C1 BT − λ1 A) → 0, if (Ak −
Ak−1) → 0. So the second condition is obtained.

Similar to the procedure of verifying the second condition,
the third condition also can be obtained by utilizing the
optimization result of B in Algorithm 1 such that

(λ1 I + μAT A)(Bk − Bk−1) = (AT C1 − λ1 B)

+μAT (D − AB), (42)

where Bk−1 = B here. Similarly, we can infer that (AT C1 −
λ1 B) → 0, when (Bk − Bk−1) → 0. So we get the third
condition.

Based on the optimization result of D in Algorithm 1,
We also can get the following equation

(2X XT + λ2 I + μI)(Dk − Dk−1)

= (μAB − μD)

+ (2X S + −C1 − 2X XT D − λ2 D). (43)

Based on the previous conditions, AB − D is approximate
to zero such that the forth condition is satisfied based on the
condition, i.e. (2X S − C1 − 2X XT D − λ2 I) → 0, when
(Dk − Dk−1) → 0. Thus, the forth condition is achieved.

For the last condition, if we do not consider the constraint
M ≥ 0, the optimization problem (22) can be rewritten as

f = ‖T − E � M‖2
F , (44)

where T = XT D − Y . Similarly, the problem (44) can be
divided into n × c subproblems. If we take the derivative of
each subproblem and set it to zero, the final optimal solution
is

M = T � E, (45)

where E � E = 1d×c based on the definition of Eqn. (9). Like
before operations, the following equation is satisfied

Mk − Mk−1 = T � E − M, (46)

where Mk−1 = M here. So, if (Mk − Mk−1) → 0, then (T �
E − M) → 0. Furthermore, with the nonnegative constraint
of M ≥ 0, we directly threshold the values of M , which does
not influence the convergence process.

It is easy to see that the value of our objective function
has the minimum bound. Thus, the value sequence {�k}∞k=1
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of the objective function (13) is bounded, and {(Ak)T Ak}∞k=1
and {Bk(Bk)T }∞k=1 in Eqn. (42) and (41) are bounded. As a

result, lim
k→∞{�k+1 − �k} = 0 can deduce that both sides of

equations (39), (41), (42), (43) and (46) are approximate to
zero when k → ∞. Therefore, the value sequence {�k}∞k=1
of the objective function (13) can gradually satisfies the KKT
conditions and the optimization algorithm, Algorithm 1, can
converge to a local optimal solution. This is the end of proof.
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