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Abstract—This paper addresses two fundamental problems of
1) learning discriminative model parameters and 2) avoiding
over-fitting which often occurs in regression based classification
tasks. We formulate these two problems in terms of relaxing
both the strict binary label matrix and graph regularization term
into more flexible forms so that the margins between different
classes are enlarged as much as possible and the problem of over-
fitting is avoided to some extent. This task is accomplished by the
proposed double relaxed regression (DRR) method. The convex
problem of DRR is solved efficiently with an iterative procedure.
Extensive experiments on synthetic and real world image data
sets demonstrate the effectiveness of the proposed method in
terms of both classification accuracy and running time.

Index Terms—Regression, image classification, convex prob-
lem, optimization, computer vision.

I. INTRODUCTION

LEast squares regression (LSR) is a simple but efficient
tool for data analysis. LSR has been widely applied

in fields of machine learning and computer vision [1], [2],
[3], [4]. Due to the mathematically tractable and computation
efficient of LSR, many variants such as robust regression
(RR) [5], weight LSR [6], partial LSR [7] and nonnegative
least squares (NNLS) [8] have been proposed for classification
and regression. In addition, many popular models usually
have strong connections to conventional LSR. For example,
ridge regression [9], LASSO problem [10], support vector
machine (SVM) [11] and logistic regression (Log R) [12],
and so on. LSR has been also used for feature selection. For
example, Xiang et al. [13] proposed a discriminative least
squares regression (DLSR) framework for feature selection
and multiclass classification. The core idea is to enlarge the
margins by using the ϵ-dragging technique. The least squares
model has been also used for semi-supervised learning [14],
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[15]. Recently, various algorithms have been proposed to
extend LSR to the reproducing kernel Hilbert space [16], [17].

Linear regression (LR) is also a simple regression analysis
method [18]. For a collection of n training samples represented
as a matrix X = [x1, ..., xn] ⊂ ℜm×n, LR can be defined as

min
W

∥WTX − Y ∥2F + λ∥W∥2F (1)

where W ∈ ℜm×c (c denotes the number of classes) is the
transformation matrix which transforms original inputs into
their label space and Y ∈ ℜc×n is the binary label matrix that
is defined as follows: for each training sample xi (i = 1, ..., n),
yi ∈ ℜc is its label vector. If xi is from the kth class
(k = 1, ..., c), then only the kth entry of yi is one and all
the other entries are zero. λ ≥ 0 is a scalar that weights the
second term in (1). As shown in [19], the LS loss between
the regression results and the binary labels cannot closely
reflect the classification ability of the regression model. In
other words, in most of the above regression-based methods
the training samples are exactly transformed into a linear or a
strict binary label matrix, such as Y in (1) which is too rigid
to learn a discriminative transformation in practice [13], [14].

One strategy is to use different loss functions for LSR. For
example, the squared hinge loss and the hinge loss [11] are
selected as the surrogate loss functions of the classification
error [11], [20]. The negative log-exponent loss [12] and
multicategory hinge loss [21] [22] are also used for multiclass
classification. Another strategy is to preserve the least square
loss but adopt other regression targets. For example, An
et al. proposed a kernel ridge regression method for face
recognition in which the regression targets are defined as the
regular simplex vertices in c − 1 space (c is the number of
classes). Xiang et al. [13] proposed a so called ϵ-dragging
technique to enlarge the distances between different classes
during regression. Although these methods show the remark-
able performance in classification, it is inevitable that they
encounter the problem of over-fitting. For example, DLSR [13]
uses the so called ϵ-dragging technique to force the regression
targets of different classes moving along opposite directions
which makes the transformation excessively fit the labels so as
to obtain large margins. To this end, Fang et al. [23] proposed
a regularized label relaxation (RLR) linear regression method
in which the class compactness graph is used to avoid the
problem of over-fitting. Graph embedding technique [24] is
commonly used to address the problem of over-fitting [14],
[23]. In these methods, they only use a single transformation
matrix to transform samples into a subspace in which the
local structure of data is preserved. However, such a single
transformation may be too strict to provide more freedom
for learning better margins. A natural idea is to use more
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transformations for providing more freedom. The goal of our
paper is use more transformation matrices to well address
the problem of over-fitting. Our previous work [23] uses a
single transformation matrix to address the problem of over-
fitting. Although the classification accuracy is improved, the
subsequent experiments in this paper verify that the use of
more transformation matrices can better address the problem
of over-fitting. Since our paper focuses on image classification,
we give a brief review of some recently proposed representa-
tive image classification methods in the following.

Recently, many excellent image classification methods have
been proposed. For example, some methods were proposed to
learn discriminative features for image classification [25], [26],
[27]. Representation-based feature learning methods achieve
outstanding performance in image classification [28]-[34].
The first representation-based method is sparse representation
classification [29] which finds the smallest number of training
samples to represent the test sample and uses the represen-
tation results to perform classification. In addition, dictionary
learning, which is based on the sparse representation, is also
used for image classification. For example, Mairal et al. [35]
proposed a task-driven dictionary learning (TDDL) for recog-
nition. Jiang et al. [36] proposed a label consistence K-SVD
dictionary learning (LC-KSVD) method in which the discrimi-
native dictionary and classifier parameter are jointly optimized
in a framework. The second representation based methods are
low-rank representation based classification [30], [31], [34],
[37]. In these methods, the dimensionality of subspace corre-
sponds to the rank of the corresponding representation matrix
and thus the correction among the representation coefficient
vectors is exploited to perform face and objective recognition
and clustering. Other classification methods have also shown
their power in image classification tasks, such as kernel meth-
ods [38], [40] and regression methods [32], [39], [41]. Deep
learning based methods shown very impressive improvement
on objective recognition and image classification [42][43].
Li et al proposed a deep collaborative embedding learning
framework for image classification and image retrieval [44].
Trigeorgis et al proposed a deep matrix factorization method
for learning image attribute representation [45]. Krizhevsky et
al proposed a imagenet classification with deep conventional
neural networks learning method and achieved better image
classification results [46].

Inspired by DLSR [13] and RLR [23], in this paper a dou-
ble relaxed regression (DRR) method is proposed for image
classification. Specifically, DRR has the following remarkable
advantages. Instead of using a single transformation matrix,
DRR uses two transformation matrices to address the problem
of over-fitting by introducing the class compactness graph.
The reason for introducing two transformation matrices is two-
folds: First, they enable DRR to obtain better margins. Second,
it relaxes the constraint of using a single transformation matrix
into two more flexible transformation matrices which enables
one of these two matrices to have more freedom so that the
problem of over-fitting can be addressed well. Furthermore,
inspired by the observation that these two transformation
matrices share similar structure of data, i.e., the local data
structure, a constraint is introduced to ensure the structure-

consistency among these two transformation matrices. To
solve the proposed problem, we propose an effective and
efficient iterative algorithm with fast convergence. Extensive
experiments are conducted on synthetic and real world image
data sets to verify the effectiveness of the proposed method.

The remainder of this paper is arranged as follows. In
Section II, the related work is introduced. The proposed
DRR method is described in Section III. This is followed by
extensive experiments using five standard image data sets in
Section IV. The paper concludes in Section V.

II. RELATED WORK

In this section, we review the work of RLR [23] for the
sake of completeness.

Let us introduce our notations. Let X ∈ ℜm×n be the
training samples, where m and n are the dimensionality and
number of training samples, respectively. The definitions of
binary label matrix Y and transformation A are the same as
those in (1). We consider the Frobenius norm of matrix X:
∥X∥2F =

∑m
i=1

∑n
j=1 X

2
ij = Tr[XTX], where XT denotes

the transposed matrix of X and Tr is the trace operator of
matrix. In our paper, ⊙ presents a Hadamard product operator
of matrices and I denotes an identity matrix with a suitable
size.

To enlarge margins between different classes, DLSR [13]
and RLR relax the strict binary label constraint into a slack
variable matrix by introducing a non-negative label relaxation
matrix (In DLSR, the technique is called ϵ-draggings). RLR
further introduces the class compactness graph to address the
problem of over-fitting. The objective function of RLR is as
follows

min
W,M

∥WTX − (Y +B ⊙M)∥2F + λTr(WTXLXTW ) (2)

s.t. M ≥ 0

where M = [m1, ...,mn] ∈ ℜc×n is the non-negative label
relaxation matrix and B is a luxury binary matrix which is

defined as Bij =

{
+1 if Yij = 1

−1 if Yij = 0
. It can be seen that the

binary label matrix Y in (1) is redefined as Y ◦ = Y +B⊙M .
In (2), L is the graph Laplacian and defined as L = D −
Z, where D is a diagonal matrix and its diagonal entries are
defined as Dij =

∑
j Zij . Here, Z is the weight of the class

compactness graph and defined as

Zij =

{
e−

∥xi−xj∥
2

σ if xi and xj share the same labels
0 otherwise

(3)
where σ is the heat kernel parameter. In practical, σ is away
set to 1 and such setting can ensure a good classification result.

We take three samples for example to show that
Y ◦ is more discriminative than Y . Let x1, x2, x3

be three training samples that are from the second,
first and third class and their corresponding binary

label matrix is defined as Y =

0 1 0
1 0 0
0 0 1

 ∈ ℜ3×3.
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It is easy to see that the distance between any two
samples from different classes is

√
2. For example, the

distance between the first and second samples is set to√
(0− 1)2 + (1− 0)2 + (0− 0)2 =

√
2. Such definition has

a drawback that it cannot closely reflect the classification
ability of the model. If we use Y ◦ to substitute Y , then we have

Y ◦ =

 −m11 1 +m12 −m13

1 +m21 −m22 −m23

−m31 −m32 1 +m33

 , s.t. mij ≥ 0.

The distance between the first and second samples becomes√
(−m11 − 1−m12)2 + (1 +m12 +m22)2 + (−m31 +m32)2

≥
√
2. This means that the margins between different classes

are enlarged by introducing the non-negative label relaxation
matrix M . However, as shown in RLR, such relaxation
may make the transformation matrix W excessively fit the
labels. As a result, the over-fitting may occur in such case.
To solve the problem, Fang et al. [23] proposed the model
of (2). By introducing the class compactness graph, the
samples from the same class can be kept close together
when they are transformed into their label space. In this way,
the problem of over-fitting can be avoided to some extent.
However, is the formulation in (2) really perfect to solve the
over-fitting problem? In the next section, we observe that
if we can give more freedom for the transformation matrix,
then the over-fitting problem can be solved more perfectly.
To this end, a double relaxed regression (DRR) is proposed
in which we use double transformation matrices to solve
the problem of over-fitting. As far as we know, our DRR
is the first-of-its-kind of the idea and method of the graph
embedding with two different transformation matrices to
address the problem of over-fitting.

III. DRR

In this section, we introduce DRR in detail.
In (2), a single matrix W has less freedom to obtain better

margins. In other words, the transformation matrix W faces a
dilemma here: on the one hand, it should have the power to
transform training samples into their label space and enlarge
the margins between different classes as much as possible;
on the other hand, it also should have power to guarantee
that the samples sharing the same class labels should be kept
close together when they are transformed. Facing with such
dilemma, we propose to perform these two tasks by using two
transformation matrices. Thus, we rewrite (2) as

min
W,M,A

∥WTX−(Y+B⊙M)∥2F+λ1

n∑
i

n∑
j

∥WTxi−ATxj∥2Zij

(4)
s.t. M ≥ 0

where A ∈ ℜm×c is another transformation matrix which is
used to share part of the responsibility of W for learning better
margins. It is easy to see that these two transformation matrices
should share similar structure, i.e., the local structure of data.
To capture such similar structure, these two matrices should
resemble mutually. In other words, W and A have some sim-
ilar structure and thus there should be some correspondence
between them, i.e., W = AS, in which S ∈ ℜc×c is a square

matrix. In this paper, we call this resemblance as structure-
consistency, modeled by the following term:

∥W −AS∥2F (5)

We then minimize this term by adding it to the formulation
of (4) and reach the following objective function for DRR:

min
W,M,A,S

∥WTX − (Y +B ⊙M)∥2F+

λ1

n∑
i

n∑
j

∥WTxi −ATxj∥2Zij + λ2∥W −AS∥2F
(6)

s.t. M ≥ 0

where λ1 ≥ 0 and λ2 ≥ 0 are two trade-off parameters. The
definition of Z is the same as that in (3). From the above
objective function, we can see that two strict constraints of
rigid binary label matrix and the use of a single transformation
matrix are relaxed into more flexible forms. Therefore, DRR
is much more flexible and accurate than DLSR and RLR.
In this way, we can obtain the optimal margins. By using
the structure-consistency term, we can effectively capture the
resemblance among these two transformation matrices. As a
result, transformation matrix A shares part of responsibility of
W to address the problem of over-fitting and guarantees that
transformation matrix W classifies the data more accurately.
From (6), it can be see that differences between RLR and DRR
are aspects: (1) the graph embedding with a single transforma-
tion matrix is used in RLR, whereas the graph embedding with
two different transformation matrix is used in DRR, which is
an entirely new way to perform graph embedding and better
experimental results are achieved in image classification. Thus,
the idea can be extended to more widespread applications as
long as they involve the graph embedding. (2) DRR adds the
extra term of “structure consistency” to capture the similar
data structure embedded in the two transformation matrices.
The subsequent analysis indicate that this term is very useful
to guarantee the “structure consistency” (see Fig. 6).

In (6), we do not force that S not be a identity matrix.
When S is equal to a identity matrix, (6) degrades into (2).
Thus, the performance of our DRR is, in theory, equal to that
of RLR at least. However, in practical we find that the value
of S is very large. The reason may be as follows: in real world
applications, the problem of over-fitting is very serious owing
to the uncontrolled environment of samples collection. Thus,
we should give more freedom for transformation matrix W
so that it can fit Y 0 and address the problem of over-fitting
well as much as possible. In this case, the value of S should
be large (or it should not be identity at least) since it should
burden part of the responsibility of W so that the samples
from the same classes can be kept close together. Under the
circumstances, only the value of S is very large, the objective
function can achieve the minimum. The results in Fig. 6 also
verify that S is not a identity matrix.

A. Solving the optimization problem

In order to solve problem (6), we adopt an iterative opti-
mization algorithm by iteratively updating W , A, S and M .
Next, we will prove that problem (6) is convex.
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Proposition 1. Problem (6) is convex with respect to W ,
A, S and M .

Proof. Based on the convex optimization theory [13], [47],
it can be easily justified that the first and third terms in problem
(6) are convex respect to W , S, A and M (M ≥ 0).

For the second term: (1) the jth dimension in ∥WTxi −
ATxk∥22 is (WTxij − ATxkj)

2, whose convexity can be
proved by verifying its Hessian to be positive semi-definite. (2)
since Zik is nonnegative, thus the second term is also convex
as a nonnegative weighted sum of convex functions is convex.

Therefore, problem (6) is convex as it is the sum of three
convex terms. 2

To facilitate the optimization, we rewrite problem (6) as

Φ =∥WTX − (Y +B ⊙M)∥2F
+ λ1{Tr(WTXDXTW ) + Tr(ATXDXTA)

− 2Tr(WTXZXTA)}+ λ2∥W −AS∥2F

(7)

s.t. M ≥ 0

where Dij =
∑

j Zij . In the following, we introduce the
proposed update rules in brief.

Update S as given W , A and M .
By setting the derivative ∂Φ/∂S = 0, we obtain

λ2(A
TAS −ATW ) = 0 ⇒ S = (ATA+ τI)−1(ATW ) (8)

where τ is a very small positive constant which is used to
obtain numerically more stable solution.

Update A as given W , S and M .
By setting the derivative ∂Φ/∂A = 0, we obtain

λ1XDXTA+λ2ASST −λ1XZTXTW −λ2WST = 0 (9)

A is essentially updated by solving a Sylvester equation.
Update W as given A, S and M .
By setting the derivative ∂Φ/∂W = 0, we obtain

XXTW −XKT + λ1XDXTW − λ1XZXTA+

λ2W − λ2AS = 0

⇒ W = (XXT + λ1XDXT + λ2I)
−1(XKT

+λ1XZXTA+ λ2AS)

(10)

where K = Y +B ⊙M .
Update M as given A, S and W .
M can be solved from the following optimization problem

[13], [23]:

min
M

∥P −B ⊙M∥2F , s.t. M ≥ 0 (11)

where P = WTX − Y .
It is known to all that the squared Frobenius norm of a

matrix can be decoupled element by element. Thus, (11) can
be decoupled equivalently into c×n subproblems. For the ith
row and jth column element Mij , we have

min
Mij

(Pij −BijMij)
2, s.t. Mij ≥ 0 (12)

where Pij and Bij are the ijth elements of P and B,
respectively. Considering the face of B2

ij = 1, we have

(Pij − BijMij)
2 = (BijPij − Mij)

2. Thus, M can be
calculated as follows

M = max(B ⊙ P, 0) (13)

In summary, the process of solving problem (6) is summa-
rized in Algorithm 1.

Algorithm 1 : DRR
Input: Training samples matrix X; Label matrix Y ;
The luxury matrix B; Class compactness graph weight
matrix Z;
Parameters λ1 and λ2;
Output: The transformation matrix W .
Initialization: M = 1n×c; A = W = (XXT )−1(XY T )
Set t = 0;
repeat

1. Update S by (8).
2. Update A by (9).
3. Update W by (10).
4. Update M by (13).
3. Update t = t+ 1.

until Convergence

Next, we discuss the computation complexity of Algorithm
1.

The main time-consuming component of Algorithm 1 are:
a) Matrix multiplication and inverse in solving problems

(8), (9) and (10).
b) Sylvester equation in solving problem (9).
The general matrix multiplication takes O(n3), and since

there are k multiplications, the total time complexity of these
operations is O(kn3). The inverse of a n×n matrix is O(n3).
For problem (10), the inverse operation of matrix XXT +
λ1XDXT +λ2I can be pre-calculated before before going to
the loop. The complexity of classical solution for the Sylvester
equation is O(m3). The final time cost for Algorithm 1 is
about O(n3 + T ((k + 1)n3 +m3)), where T is the number
of iterations.

B. Classification

When (6) is solved, we obtain regression parameter W . We
can directly use the obtained classification parameter W for
classification. Suppose Xt is the test sample set, their final
output results are WTXt. Then, we use the nearest-neighbor
(NN) to classify them. For other classifiers, the results may be
improved but is more involved. We leave it as a future work.

IV. EXPERIMENTS AND ANALYSIS

In this section, we first evaluate our DRR on three widely
used face data sets: 1) Extended YaleB [48], 2) CMU PIE
[49] and 3) AR [29], [36]. The difficulties of these three face
data sets are not the same. As shown in Figure 1, the Extended
YaleB is relatively simple. For each individual, it has about 64
near frontal images under different illuminations. The CMU
PIE data set is taken under different poses, expressions, and
illumination conditions. Compared with the Extended YaleB
data set, CMU PIE data set is more difficult to identify. The
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challenge of AR is that it contains different facial expressions,
illumination conditions, and occlusions (sun glass and scarf).
We also test our method on two more different types of
databases: 1) Fifteen Scene categories data set [36] for scene
classification; 2) Caltech 101 and Imagenet data sets for
classification with deep learning feature; 3) COIL100 objective
data set [50] for objective classification. The descriptions of
these five data sets are summarized in Table I.

TABLE I
DESCRIPTIONS OF 5 BENCHMARK DATA SETS

Data set Number of samples Dimensionality Classes
Extended Yale B 2414 1024 38

CMU PIE 11554 1024 68
AR 2600 540 100

Fifteen Scene categories 4485 3000 15
Caltech 101 9144 4096 102

Imagenet 71990 4096 52
COIL100 7200 1024 100

(a) Extended YaleB

(b) AR

(c) CMU PIE

Fig. 1. Some face images from (a) Extended YaleB, (b) AR and (c) CMU
PIE data sets.

We compare our method with SRC [29], CRC [32], the
locality constrained linear coding (LLC) method [33], LRC
[41], low-rank matrix recovery with structural incoherence
based classification (LRSIC) [30], low-rank representation for
classification (LRRC) [31], structured LRRC (SLRRC) [31],
TDDL [35], SVM [40], RLR [23], Robust PCA [37], DLSR
[13], latent low-rank representation (LatLRR) [34], traditional
low-rank linear regression (LRLR)[57], low-rank ridge re-
gression (LRRR) [57], sparse low-rank regression (SLRR)
[57], low-rank matrix recovery method by embedding the
structure incoherence (LRSI) [58], class-wise block-diagonal
structure (CBDS) dictionary learning method [59], extreme
learning machine (ELM) [60], random forest (RF) [60]. For
fairness, Robust PCA and LatLRR first extract features by
corresponding methods. Then, they use model (1) to learn
the transformation matrix. Finally, they use the NN classifier
to classify them. For RLR and DLSR, we also use the NN
classifier for the sake of fairness. For the other methods, we
use the classification methods mentioned in their papers to
perform the final classification. The platform is MATLAB
2010b under Windows 7 on PC equipped with a 3.30-GHZ

TABLE II
CLASSIFICATION ACCURACIES (%) OF DIFFERENT METHODS ON THE

EXTENDED YALE B DATA SET

Alg. 10 15 20 25
SRC [29] 87.8±0.3 92.6±0.6 94.4±0.6 96.7±0.5
CRC [32] 86.1±0.5 90.7±0.3 93.0±0.2 94.1±0.3
LLC [33] 79.8±0.4 88.6±0.3 91.5±0.4 94.3±0.5
LRC [41] 83.3±0.4 89.4±0.5 92.4±0.2 93.6±0.3

LRSIC [30] 87.0±0.6 92.7±0.5 94.2±0.3 96.1±0.5
LRRC [31] 84.3±0.6 91.5±0.4 93.3±0.5 95.8±0.7

SLRRC [31] 85.5±0.4 91.4±0.6 94.0±0.5 95.6±0.7
TDDL [35] 84.3±0.6 88.9±0.3 92.5±0.4 95.0±0.6

Robust PCA [37] 86.1±0.2 90.5±0.4 93.5±0.6 95.4±0.3
LatLRR [34] 84.0±0.5 88.8±0.3 92.1±0.5 93.8±0.6

SVM [40] 81.5±1.4 89.2±0.9 92.6±0.7 94.5±0.6
ELM [60] 85.5±0.2 91.2±0.6 93.7±0.4 95.2±0.5
RF [60] 83.4±0.4 88.5±0.3 91.1±0.5 94.6±0.4

RLR [23] 88.4±0.3 92.8±0.4 96.1±0.3 97.5±0.2
DLSR [13] 86.2±0.9 92.3±0.7 94.7±0.7 95.8±0.4
LRLR [57] 78.2±1.7 82.0±0.9 83.8±1.5 85.0±1.0
LRRR [57] 78.6±1.7 82.3±1.2 83.6±0.7 85.4±0.9
SLRR [57] 78.0±1.7 82.3±1.0 84.2±0.7 85.1±1.1
LRSI [58] 87.1±0.6 92.7±0.5 94.2±0.3 96.1±0.5
CBDS [59] 85.8±1.8 93.1±1.3 95.8±1.0 96.3±0.8

DRR 90.4±0.2 94.9±0.7 97.1±0.5 98.2±0.4

CPU and 8-GB memory. The MATLAB code of DRR is
publicly available at http://www.yongxu.org/lunwen.html.

A. Face Recognition

1) Extended YaleB: The Extended YaleB data set consists
of 2414 cropped frontal face images of 38 peoples. There are
between 59 and 64 images for each person. Every image has
32×32 pixels. We randomly select 10, 15, 20 and 25 training
samples from each person for training and the remaining
images for testing. Every experiment runs 30 times.

When we evaluate SRC, CRC, LRC, and LRSIC, all training
samples are used as the dictionary. The number of neighbors
of LLC is set to 5, which is the same as that in [33].
Following [31], the dictionary size for LRRC, SLRRC, and
TDDL is all set to 140 (each person has five atoms). The
experimental results are shown in Table II. Note that we
report the mean classification accuracy and corresponding
standard deviation (mean±std) of different methods, and the
bold numbers suggest the best classification accuracies. We
can see that with different numbers of training sample, DRR
always achieves the best classification results.

To further prove that our method can address the problem of
over-fitting by enlarging the margins between different classes,
we visualize the experimental results of RLR and DRR and the
original samples of the Extended Yale B data set by suing the
t-SNE algorithm [56] in Figure 2 in which 5 samples per class
are randomly selected as the training samples. From Figure
2, it is obvious that the transformed samples of DRR have
much better separability than the original samples. Moreover,
margins between different classes achieved by our method are
obviously larger than those achieved by RLR, which proves
that our method can compactly pull samples of the same
class to their own subspace. This also proves that the use of
two different transformation matrices is helpful to enlarge the
margins and thus the over-fitting problem can be addressed to
some extent.
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Fig. 2. t-SNE visualization of (a) original samples (b) Transformed samples by RLR [23] and (c) Transformed samples by DRR (our method). In this
experiments, 5 samples per class are randomly selected as the training samples and the rest are used as testing samples. Please note that all samples (include
training and testing samples) are simultaneously visualized in these figures.

TABLE III
CLASSIFICATION ACCURACIES (%) OF DIFFERENT METHODS ON THE

CMU PIE DATA SET

Alg. 10 15 20 25
SRC [29] 77.3±0.7 87.2±0.6 90.5±0.4 93.3±0.7
CRC [32] 83.3±0.9 88.1±0.6 90.4±0.7 93.1±0.8
LLC [33] 77.1±0.4 85.5±0.5 89.9±0.3 93.0±0.4
LRC [41] 79.1±0.5 84.7±0.6 88.3±0.4 93.4±0.6

LRSIC [30] 82.4±0.8 87.7±0.8 90.6±0.6 93.5±0.5
LRRC [31] 79.8±0.6 85.2±0.7 89.1±0.7 91.3±0.8

SLRRC [31] 80.9±0.5 86.0±0.5 89.9±0.4 91.8±0.3
TDDL [35] 78.4±0.6 84.4±0.7 87.9±0.6 91.0±0.8

Robust PCA [37] 80.3±0.3 84.1±0.5 87.8±0.4 90.7±0.3
LatLRR [34] 79.4±0.3 85.8±0.6 89.6±0.3 91.6±0.4

SVM [40] 77.9±1.1 86.8±0.7 90.7±0.4 93.6±0.7
ELM [60] 77.6±0.6 88.1±0.4 91.2±0.5 94.3±0.4
RF [60] 76.8±0.4 87.8±0.3 91.1±0.5 93.5±0.5

RLR [23] 89.0±0.4 92.1±0.3 93.2±0.6 94.9±0.4
DLSR [13] 86.4±0.5 90.7±0.5 92.5±0.4 94.5±0.2
LRLR [57] 79.8±1.2 83.8±0.5 86.8±0.4 87.0±0.4
LRRR [57] 79.9±1.1 83.9±0.6 87.6±0.5 88.9±0.6
SLRR [57] 78.1±0.8 84.7±0.6 87.8±0.6 89.4±0.7
LRSI [58] 83.1±0.5 87.9±0.7 90.8±0.6 93.8±0.6
CBDS [59] 82.9±1.2 89.5±0.7 91.6±0.4 93.6±0.6

DRR 90.6±0.5 93.8±0.3 95.4±0.3 96.1±0.2

2) CMU PIE: The CMU PIE data set contains 41368
images of 68 people, each with 13 different poses, 43 different
illumination conditions, and 4 different expressions. In this
experiment, we select a subset of PIE, which contains five
near frontal poses (C05, C07, C09, C27, C29) and all the
images are taken under different illuminations and expressions,
to test different methods. Thus, there are 170 images for
each persons. Since LLC encodes the Scale-Invariant Feature
Transform (SIFT) features and we should keep a certain
amount of SIFT features. Thus, in this experiment, the face
images is normalized to a size of 64×64 pixels for LLC [33].
In all the other methods, the size of each image is only of
32 × 32. All the training samples are used as the dictionary
for SRC, CRC, LRC, and LRSIC. The size of dictionary for
LRRC, SLRRC and TDDL is 340. We also select different
training samples per person for training and remaining for
testing. The classification results are summarized in Table III
in which the best results are denoted by bold numbers. Again,
our method obtains the best classification results on all cases.

3) AR: The AR data set contains over 4000 color images
with 126 persons (70 men and 56 women) and each provides
26 face images taken during two sessions. In each session,
each person provides 13 images, in which three images with
sunglasses, another three with scarfs, and the remaining seven
with different facial expressions and illumination conditions.
Following the standard evaluation procedure [29], we, in this
experiment, use a subset consisting 2600 images from 50 male
and 50 female. For each person, we randomly select 20 images
for training and the other 6 for testing. Each image is projected
onto a 540-dimension vector with a randomly generated matrix
[36]. The experimental results are shown in Table IV. Note that
some experimental results are directly cited from [36]. We set
the parameters λ1 = 10−5 and λ2 = 0.2 in our method. Our
methods achieves the best experiment result.

B. Scene Classification

The Fifteen Scene Categories data set contains 15 natural
scene categories that expands on the 13-category database
related in [53]. This data set contains 4485 images falling into
15 categories such as bedrooms, kitchens, streets, and country
scenes. Each category has 200 to 400 images. Figure 3 shows
some images from this data set.

Fig. 3. Some images from the Fifteen Scene Categories data set.

We use the features of this data set provided by Jiang et al.
in [36]. The features are obtained by the following steps: First,
computing a spatial pyramid feature with a four-level spatial
pyramid and a SIFT-descriptor codebook with size of 200.
Then, PCA is applied to reduce the feature dimension to 3000
dimensions. Following the common experimental settings, we
randomly select 100 images per category as training set and
use remaining as testing set. The comparison results are shown
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TABLE IV
CLASSIFICATION ACCURACIES (%) OF DIFFERENT METHODS ON THE AR DATA SET

Alg. Accuracy Alg. Accuracy
LLC (30 local bases)[33] 69.5 SRC (all train. samp.)[29] 97.5
LLC* (70 local bases)[33] 88.7 SRC* (5 per person)[29] 66.5
K-SVD (5 per person)[51] 86.5 CRC [32] 97.3
D-SVD (5 per person)[52] 88.8 LRC [41] 94.5

LC-KSVD1 (5 per person)[36] 92.5 SVM [40] 96.7
LC-KSVD2 (5 per person)[36] 93.7 RLR [23] 98.1
LC-KSVD2 (all train.samp)[36] 97.8 LatLRR [34] 97.6

ELM [60] 96.4 DLSR [13] 97.6
DRR 98.85±0.44

in Table V in which SRC, CRC, LRC, DLSR, RLR, SVM,
LRSIC, SLR, LRRC, SLRRC, LatLRR, Robust PCA and our
method all use the spatial pyramid feature provided by in
[36]. The dictionary size of SRC, CRC, LRC, LRSIC, LRRC
SLRRC, and TDDL are all set to 450. The neighborhoods
of LLC and LLC* are set to 30. We set the parameters
λ1 = 0.001 and λ2 = 0.005 in our method. Our method also
achieves the best result. Figure 4 shows the confusion matrix
of our method obtained from the Fifteen Scene Categories
database, where the classification accuracy for each class is
along the diagonal. All classes are classified well and the worst
classification accuracy is as high as 95%.

TABLE V
CLASSIFICATION ACCURACIES (%) OF DIFFERENT METHODS ON THE

FIFTEEN SCENE DATA SET

Alg. Accuracy Alg. Accuracy
SRC[29] 91.8 TDDL [35] 92.1
CRC [32] 92.3 LatLRR [34] 91.5
LLC [33] 79.4 Robust PCA [37] 92.1
LLC* [33] 89.2 Lazebnik [27] 81.4
LRC [41] 91.9 SVM [40] 93.6

LRSIC [30] 92.4 RLR [23] 96.8
LRRC [31] 90.1 Yang [54] 80.3

SLRRC [31] 91.3 Lian [55] 86.4
Boureau [56] 84.3 LC-KSVD1 [36] 90.4

LC-KSVD2 [36] 92.9 DLSR [13] 95.9
ELM [60] 94.5 CBDS [59] 95.7

Gemert [38] 76.7 LRLR [57] 94.5
LRRR [57] 88.1 SLRR [57] 89.6

DRR 97.88±0.23

C. Object Classification

The COIL100 data set contains various views of 100 objects
with different lighting conditions. In our experiment, the
images are converted to gray scale and resized to 32 32 pixels,
and then, the robustness is evaluated on alternative viewpoints.
Some image samples from this database are shown in Figure
5.

We randomly select 10, 15, 20, and 25 images per object
to construct the training set, and the test set contains the
rest of the images. This random selection process is repeated
30 times. We also report the mean classification accuracy
and corresponding standard deviation (mean±std) of different
methods, and the bold numbers suggest the best classification
accuracies. The experiment results are shown in Table VI.
We can see that our method outperforms the other methods.
Especially, about three percentages of classification accuracy
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Fig. 4. Confusion matrix of our method on the Fifteen Scene Categories data
set.

Fig. 5. Some images from the COIL100 data set.

rates are improved in comparison with the rest of methods on
the all cases.

D. Classification using deep learning feature

In order to test our method better, we conduct the clas-
sification experiments on the deep learning feature. We use
Caltech 101 and Imagenet databases to test the classifica-
tion performance of our method with deep learning feature.
The deep learning features of Caltech 101(DeCAF-6) and
Imagenet (DeCAF-7) are available at https://sites.google.com/
site/crossdataset/home/files. Since the dimension of original
feature is very high, we use PCA as a preprocessing step to
preserve 98% energy of those two databases. For Caltech101
database, we randomly select 10, 15, 20, 25 and 30 samples
per class for training and remaining samples for testing and
we report the mean classification results over 10 random splits.
Fig. 6 plots the mean classification accuracies (%) of different
methods in which our method achieves the best classification
results. For Imagenet database, we randomly select 71990
samples of 52 classes in our method. We randomly select
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TABLE VI
CLASSIFICATION ACCURACIES (%) OF DIFFERENT METHODS ON THE

COIL100 DATA SET

Alg. 10 15 20 25
SRC [29] 80.4±0.6 86.1±0.8 89.4±0.4 91.9±0.4
CRC [32] 76.2±0.6 81.3±0.4 84.2±0.5 86.3±0.5
LLC [33] 81.6±0.8 86.9±0.4 90.2±0.4 92.5±0.5
LRC [41] 79.9±0.7 85.3±0.6 88.7±0.7 91.0±0.5

LRSIC [30] 82.3±0.3 87.7±0.4 90.1±0.6 91.2±0.3
LRRC [31] 82.7±0.5 87.0±0.6 90.2±0.4 91.8±0.5

SLRRC [31] 83.2±0.2 86.8±0.3 90.5±0.6 91.2±0.6
TDDL [35] 83.3±0.6 87.9±0.3 90.8±0.4 90.0±0.7

Robust PCA [37] 82.5±0.6 88.3±0.8 91.7±0.3 93.5±0.3
LatLRR [34] 79.6±0.5 85.3±0.4 88.4±0.4 90.7±0.4

SVM [40] 79.2±0.5 84.8±0.6 88.1±0.4 90.8±0.6
ELM [60] 81.2±0.4 85.6±0.7 89.7±0.4 92.1±0.6
RF [60] 84.3±0.5 88.3±0.5 91.1±0.5 93.3±0.5

RLR [23] 80.1±0.6 83.4±0.7 85.9±0.8 87.2±0.6
DLSR [13] 84.8±0.5 88.0±0.5 90.1±0.3 92.0±0.4
LRLR [57] 66.2±0.8 71.2±0.6 73.7±0.8 75.7±0.7
LRRR [57] 67.7±0.5 71.4±0.6 73.6±0.8 75.5±0.8
SLRR [57] 69.1±0.8 73.0±0.6 74.5±0.6 75.9±0.7
LRSI [58] 79.7±0.5 87.8±0.3 91.4±0.4 93.6±0.6
CBDS [59] 73.7±0.5 78.6±0.8 80.9±0.7 81.3±0.5

DRR 86.2±1.1 90.1±0.4 94.0±0.4 95.2±0.6

5, 10, 15, 20, 25 and 30 samples per class for training and
remaining samples for testing. The mean classification results
over 10 random splits is plotted in Fig. 7 in which our method
also achieves the best performance. Therefore, our method has
good applicability to all kinds of features.

Fig. 6. Classification accuracies (%) on the deep learning features of the
Caltech 101 database, in which X-axis represents the different number of
training samples and Y -axis denotes the classification accuracy (%).

Fig. 7. Classification accuracies (%) on the deep learning features of the
Imagenet database, in which X-axis represents the different number of training
samples and Y -axis denotes the classification accuracy (%).

(a) Extended YaleB
(sum(sum(K,2))=4.2791e+03)

(b) CMU PIE
(sum(sum(K,2))=2.0345e+04)

(c) Fifteen Scene Categories
(sum(sum(K,2))=113.4173)

(d) COIL100
(sum(sum(K,2))=2.1356e+04)

Fig. 8. Visualization of matrix S learned from the (a) Extended YaleB, (b)
CMU PIE, (c) Fifteen Scene Categories and (d) COIL100 data sets. In each
figure, the definition of K is |W − A|, where | · | represents the absolute
value operation.

E. Structure analysis of S

To capture the similar structure of data shared by these
two transformation matrices W and A, we introduce matrix
S to model some correspondences between W and A by
using ∥W −AS∥2F (or called structure-consistency). To show
such similar structure between these two matrices, we give the
visualization of S on the Extended YaleB, CMU PIE, Fifteen
Scene Categories and COIL100 data sets in Figure 8. From
these results in Figure 8, we can see that S has block diagonal
structure. In other words, elements in matrices W and A
have some correspondences between classes sharing the same
labels. Such correspondence is the so-called similar structure
of data shared by W and A, which is very useful to guarantee
that the samples sharing the same labels can be close together
as much as possible. However, such similar structure does not
mean W and A are completely equal. In Figure 8, we also
give the distinction between them by defining K = |W −A|,
where | · | represents the absolute value operation. The values
of sum of elements of K are also given in Figure 8 from
which we can see that W and A are completely different
matrices. This indicates that matrix A indeed can share part
of the responsibility of W for learning better margins.

F. Experiments on Synthetic Data

The data set for DRR is a randomly generated two-Gaussian
data. In this data set, there are two classes of data which
obeys the Gaussian distribution. Our goal is to find a good
projection direction, i.e., W which helps to classify the two
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Fig. 9. Results on the two-Gaussian synthetic data.

classes apart. The comparison results are displayed in Figure
9. Seen from Figure 9, we can find out that when these two
classes are far from each other, matrices W and A are good
projection directions. In this case, these matrices are nearly
the same because these two classes are too far from each
other. However, as the distance between these two classes
lower down, A and W are still discriminative and W is still
work better in classifying them. However, we also observe that
A is less discriminative than W . Please note that the more
parallel the transformation matrix is, the more discriminative
the transformation matrix is. As the two classes become more
close (fairly close), W still behaves well. The main reason
is that W is closely related to the labels of training samples.
In other words, W pays more attention to well classify these
two classes. However, A is less discriminative. The reason
may be that A sacrifices part of its discriminant ability to
make W fits Y ◦ = Y + B ⊙ M well as much as possible,
i.e., the margins between different classes are enlarged as
much as possible. This also means that samples sharing the
same labels are close together when they are transformed
into their label space. From these results in Figure 9, we can
find that W keeps its high quality of projection direction all
the time. There results in Figure 9 also indicates that when
the classification task is difficult, matrices W and A are two
completely different matrices but have similar structures from
another respect, which is consistent with the results in Figure
8.

G. Experiment Analysis

From the experimental results listed in Table II, Table III,
Table IV, Table V and Table VI, we have the following
observations and corresponding analyses.

1) Our method performs better than all the other methods on
all cases. Especially, compared with RLR, our method show its
power in improving classification accuracy. For example, on
the COIL100 database, when we randomly select 10 samples
per class as training set, the classification accuracy of our
method is about 6% higher than RLR. This indicates that the
use of double transformation matrices indeed provides more
freedom for solving the problem of over-fitting and achieves
better margins and thus the performance is enhanced.

2) Our method and RLR usually perform better than the
classical DLSR in image classification. Thus, the elimination
of over-fitting problem is very important for enhancing the

classification accuracy and makes algorithm has more gener-
alization ability.

3) Although some representation based image classification
methods such as sparse and low-rank representation based
methods obtain good classification results, their performance
is still inferior to our method. The reason may be that these
methods are only to find the sparse or low-rank representation
for data reconstruction. However, the best data reconstruction
does not represent the best discriminate power.

4) The results in Figure 8 and Figure 9 confirm that the
use of two different matrices can indeed address the problem
of over-fitting more better than RLR. Thus, our method is
competitive and can obtain better classification results.

H. Parameter Sensitiveness
DRR requires two parameters λ1 and λ2 to be set in

advance. In this subsection, their sensitivity is discussed. The
classification accuracies variation with different parameters are
plotted in Figure 10. It can be seen that the performance
changes are different with respect to different data sets. How-
ever, the best classification results are always achieved with
large λ2 and small λ1. Through tuning the parameters λ1 and
λ2, it can be observed that the best results were achieved on the
given data sets when λ1 ∈ [10−4, 10−1] and λ2 ∈ [10−2, 102].
When the value of λ2 is too small such as λ2 ≤ 10−3, the
performance of DRR is very bad. This demonstrates that the
term in (6) corresponding to λ2 is more significant to learn
the ideal transformation matrix W . Specifically, structure-
consistency in our method plays a significant role in effectively
address the problem of over-fitting. The value of λ1 is small,
which means that the effect of the class compactness graph
is relatively less than the structure-consistency in our method.
How to identify the optimal values of these parameters is data
set dependent and still an open problem, which will be studied
in our future work. In our experiments, λ1 is firstly fixed in
advance and an attempt is made to find a candidate interval
where the optimal parameter λ2 may exist. Then, by fixing the
value of λ2 in the candidate interval, the candidate interval of
λ1 is determined. Finally, the optimal parameters in the 2D
candidate space of (λ1 and λ2) with a fixed step length are
searched.

I. Convergence Study
We run our method on four data sets and plot the conver-

gence curves of objective function values and classification
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Fig. 10. Classification accuracies (%) variation different values of parameters λ1 and λ2 on the (a) Extended YaleB, (b) CMU PIE, (c) Fifteen Scene
Categories and (d) COIL100 data sets. For the Extended YaleB and CMU PIE databases, we randomly select 20 samples per class as training set and the
remaining are used as test set. For the Fifteen Scene Categories database, we randomly select 100 samples as training samples and remaining are used as test
set. For the COIL100 database, we randomly select 15 samples per class as training set and the remaining are used as test set.

accuracies with respect to the number of iterations in Figure
11. It is easy to see that the objective function value decreases
as the number of iterations increases on the given data sets
which indicates that our method has a good convergence
property. We also can see that the proposed optimization
algorithm converges fast, say 20 iterations. The curves of
classification accuracies of our method on four data sets show
that the classification accuracies finally reach a summit, which
also confirms that the convergence property of our method is
good from another respect.

J. Comparison of training and test time

In this section, we compare the running time of DRR with
those of SRC, LRRC, LRC, LLC, ELM and DLSR. Most of
methods need complete training and test phases except many
representation based methods such as SRC, LRC and LLC.
For example, DLSR, RLR and our method need to learn a
transformation matrix in the training phase and then use a
linear classifier to classify test samples in the test phase.
However, SRC, LRC and LLC have no training time and
only have test time, since they only need to represent input
test samples as a linear combination of dictionary items, then
use the representation coefficients for classification. So, we
respectively give the training time and test time of different
methods. Table VII shows the training and test time of
different methods on five data sets. We can see that the running
speed of DRR is significantly faster than the representation

based methods in training phase since representation based
methods require a lot of time to solve an optimization problem.
Especially, LRRC spends too much time to solve the rankness
minimization problem and thus the training speed is too slow.
Please note that LRRC is also a representation based method.
As for the test time, we also find that SRC, LRC and LLC
spend much time in classifying a test sample because they all
need to solve the reconstruction and classification problems
in test phase. DRR only needs to solve a group of linear
equations in each iteration which has linear time complexity.
Therefore, DRR is faster than other methods. In test phase,
the running speeds of DLSR, RLR and DRR are similar since
these methods use a linear classifier to classify test samples.
Please note that the average test time is time cost to classify a
test sample. However, classification accuracies of DLSR and
RLR on these five data sets are lower than that of our method.

V. CONCLUSIONS

This paper proposes a new method called double relaxed
regression (DRR) for image classification. The proposed DRR
uses two different transformation matrices to address the
problem of over-fitting and transform samples, which leads
to two advantages 1) It provides more freedom to transform
the samples into the relaxed label matrix well such that the
margins between different classes are be enlarged as much
as possible. 2) It well solves the problem of over-fitting.
Moreover, to capture the similar structure between these two
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(d) COIL100

Fig. 11. Convergence curves of classification accuracy (%) and objective function versus iterations on the (a) Extended YaleB, (b) CMU PIE and (c) Fifteen
Scene Categories and (d) COIL100 data sets. The selection of training and test samples is as the same as that in Figure 10.

TABLE VII
TRAINING TIME (S) + TEST TIME (S) ON FIVE DATA BASES (TR# AND TE# RESPECTIVELY REPRESENT TRAINING (ALL TRAINING SAMPLES) TIME AND

TEST TIME (EACH TEST SAMPLE))

Alg. CMU PIE (20) Extended YaleB (20) COIL100 (20) Scene15 (100) AR (20)
Tr# Te# Tr# Te# Tr# Te# Tr# Te# Tr# Te#

SRC none 6.3099 none 4.6932 none 6.4026 none 7.9040 none 5.5608
LRRC 89.6705 1.2004 58.8583 1.4309 70.4606 1.2056 430.0346 1.3350 33.5033 1.1128
LRC none 0.1820 none 0.1950 none 1.2040 none 1.5030 none 0.7963
LLC none 0.0195 none 0.0188 none 0.183 none 0.1137 none 0.1092
ELM 66.8789 0.0188 27.8910 0.0165 48.2645 0.0110 356.0056 0.0184 19.8743 0.0142
DLSR 62.6086 0.0062 23.2256 0.0073 42.7940 0.0089 348.0753 0.0055 12.5624 0.0099
RLR 58.6836 0.0038 21.6950 0.0017 38.2213 0.0072 355.2573 0.0045 10.3137 0.0050
DRR 61.5268 0.0065 22.1053 0.0033 41.1999 0.0096 351.6887 0.0060 11.3569 0.0097

transformation matrices, we propose to use the structure-
consistency term which makes these two transformation ma-
trices capture the resemblance between classes sharing the
same labels. In this way, the samples from the same class
are close together when they are transformed into the relaxed
label space and thus better margins can be obtained. Promising
results on seven data sets demonstrate the effectiveness of the
proposed method. In our experiments, we show the comparison
of running time of different methods. However, we note that
the number of training samples is relatively small and thus
the running speed is fast. The computation complexity O
of DRR is relatively high (O ∝ n3) if the size of training
samples is large. Therefore, the limitation of DRR is the
problem of scalability which imposes a challenging on DRR

when handing large-scale samples. How to make DRR easily
scale to large data is our future work. In addition, we plan to
extend our method to other applications of data fitting and
feature extraction (e.g., feature selection by imposing ℓ2,1-
norm constraint on transformation matrix W ), and so on.
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