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Incomplete Multi-view Spectral Clustering with
Adaptive Graph Learning
Jie Wen, Yong Xu∗, Senior Member, IEEE, Hong Liu

Abstract—In this paper, we propose a general framework for
incomplete multi-view clustering. The proposed method is the
first work that exploits the graph learning and spectral clustering
techniques to learn the common representation for incomplete
multi-view clustering. Firstly, owing to the good performance
of low-rank representation in discovering the intrinsic subspace
structure of data, we adopt it to adaptively construct the graph
of each view. Secondly, a spectral constraint is used to achieve the
low-dimensional representation of each view based on the spectral
clustering. Thirdly, we further introduce a co-regularization term
to learn the common representation of samples for all views, and
then use the k-means to partition the data into their respective
groups. An efficient iterative algorithm is provided to optimize
the model. Experimental results conducted on seven incomplete
multi-view datasets show that the proposed method achieves
the best performance in comparison with some state-of-the-art
methods, which proves the effectiveness of the proposed method
in incomplete multi-view clustering.

Index Terms—Incomplete multi-view clustering, low-rank rep-
resentation, graph learning, co-regularization.

I. INTRODUCTION

IN the real-world, an image can be represented by various
descriptors such as SIFT, LBP, and HOG, etc [1]. A web

page can be described by the images, links, and texts, etc [2].
The values of blood test and magnetic resonance images can be
viewed as two references for disease diagnosing [3]. The above
phenomenons indicate that almost all things can be represented
from different perspectives (views). These features acquired
from different views are regarded as the multi-view features
[4, 5]. Generally, multi-view features can represent data more
comprehensive because features of different views provide
many complementary information. Thus exploiting the multi-
view features has the potential to improve the performance of
different machine learning tasks [6-12].

Multi-view clustering is one of the hottest research direc-
tions in this filed, which focuses on adaptively partitioning
data points into their respective groups without any label
information [13-16]. In the past few years, many multi-view
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clustering methods have been proposed, such as the multi-
view k-means clustering [17], canonical correlation analysis
(CCA) based method [18], co-regularized multi-view spectral
clustering [19], low-rank tensor based method [20], and the
deep matrix factorization based method [4], etc. For multi-
view clustering, ensuring the clustering agreement among all
views is the key to achieving good performance [21]. To this
end, Wang et al. introduced a views-agreement constraint to
guarantee that the data-cluster graphs learned from all views
are consistent to each other [21]. In [14], a structured low-rank
matrix factorization based method is proposed to learn more
consistent low-dimensional data-cluster representations for all
views by exploiting the manifold structures and introducing
the divergence constraint term jointly. Besides, in [22], based
on the multi-view spectral clustering, a novel angular based
regularizer is imposed on the sparse representation vectors of
all views to learn the consensus similarity graph shared by all
views for clustering. In [8], a more robust multi-view spectral
clustering model is proposed, which can learn the optimal
similarity graphs and data-cluster representations with views-
agreement. For these multi-view clustering methods, they com-
monly require that all views of data are complete. However, the
requirement is often impossible to satisfy because it is often
the case that some views of samples are missing in the real-
world applications, especially in the applications of disease
diagnosing [3] and webpage clustering [23]. This incomplete
problem of views leads to the failure of the conventional multi-
view methods [24].

To address this issue, many efforts have been made in recent
years, which can be generally categorized into two groups
in terms of the exploited techniques, i.e., matrix factorization
based incomplete multi-view clustering (MFIMC) and graph
based incomplete multi-view clustering (GIMC). MFIMC fo-
cuses on learning a consensus representation with low dimen-
sionality for all views directly via the matrix factorization
technique. For example, partial multi-view clustering (PMVC)
seeks to learn a common latent subspace for all views, in which
the instances of different views are enforced to have the same
representation [3]. Different from PMVC, multi-incomplete-
view clustering (MIC) first fills in the missing views with the
average of all instances in the corresponding views, and then
uses the weighted nonnegative matrix factorization technique
to jointly learn the latent representations of different views
and the consensus representation for all views [25]. For these
matrix based methods, the common problem is that they only
focus on learning the consensus representation while ignoring
the intrinsic structure of data, which cannot guarantee the
compactness and discriminability of the learned representation.
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GIMC focuses on learning the low-dimensional representa-
tion from different graphs that reveal the relationships of all
samples. Compared with the matrix factorization based meth-
ods, GIMC can effectively exploit the geometric structures of
data. For GIMC, the graph construction is very crucial because
it directly influences the clustering performance. However,
since some views are missing, it is impossible to construct
such graphs to connect all samples completely. To address
the issue, Trivedi et al. proposed to complete the incomplete
graph of the view with missing instances referring to the
Laplacian matrix of the complete view, and then learned the
low-dimensional representations for different views via the
kernel CCA [23]. The biggest shortcoming of this method is
that it requires at least one complete view. Gao et al. proposed
to fill in the missing view with the average of instances in
the corresponding view for graph construction and subspace
learning [26]. However, when the multi-view data has large
number of the missing instances in all views, this approach
will fail because the filled missing views will dominate the
subspace learning [25]. Thus completing the graph by filling
in the missing views is not a good choice for incomplete multi-
view clustering. In [27], Zhao et al. proposed a more novel
graph learning method for incomplete multi-view clustering,
in which a robust consensus graph is adaptively learned from
the low-dimensional consensus representation. Different from
the above graph based methods, the method proposed by Zhao
et al. does not need to complete the graph or fill in the missing
instances of any view.

Although many methods have been proposed to address the
incomplete problem of multi-view clustering, they still have
many problems to address. For example, a limitation of these
methods is that they require few samples to have features of
all views. In other words, for data with more than three views,
these methods fail to deal with the case that no sample contains
all of the three views. The second limitation is that these graph
based methods cannot learn the global optimal consensus
representation for clustering because the subspace learning and
graph construction are treated independently in two separated
steps. To solve the above issues, we in this paper propose a
more general framework for multi-view scenarios, which is
suitable to all kinds of the multi-view data including arbitrary
incomplete cases and the complete case. The proposed method
aims to jointly learn the low-dimensional consensus represen-
tation and similarity graphs for all views, which enables our
method to obtain the global optimal consensus representation
and thus has the potential to perform better. To this end, we
exploit the low-rank representation technique to adaptively
learn the similarity graph of each view owing to its good
performance in discovering the intrinsic relationships of data
[28, 29]. Meanwhile, considering that graphs constructed from
different incomplete views generally have great differences in
magnitude, structures, and dimensions owing to the diversity
of missing views, it is impossible to directly learn a unified
graph or representation for all views [30]. To tackle this
problem, we provide an ingenious approach, which indirectly
learns the consensus representation from the low-dimensional
representations of all views rather than the graphs by introduc-
ing a co-regularization term. Meanwhile, the proposed method

is robust to noise by introducing the sparse error term to
compensate the noise. Overall, this work has the following
contributions:

(1) In this paper, we provide a more general multi-view
clustering framework, which can deal with both complete and
incomplete multi-view cases.

(2) The proposed method is a pioneering work that inte-
grates the graph construction and consensus representation
learning into a joint optimization framework for incomplete
multi-view clustering. Compared with the other methods,
the proposed method is able to learn the optimal similarity
graph of each view and the consensus cluster representation
for all views, and thus has the potential to obtain a better
performance.

(3) The proposed method is robust to noise to some extent.
Specially, by introducing the sparse error term to compensate
the noise, the proposed method can greatly reduce the negative
influence of noise, which is beneficial to discover the intrinsic
structure of the noisy data.

The rest of the paper is organized as follows. Section II
briefly introduces some related works to the proposed method.
In Section III, we present the proposed method and its opti-
mization algorithm in detail. Section IV gives a deep analysis
to the proposed method. In Section V, several experiments are
conducted to prove the effectiveness of the proposed method.
Section VI offers the conclusions of the paper.

II. RELATED WORKS

A. Single-view spectral clustering

For a dataset X = [x1, x2, . . . , xn] ∈ Rm×n with n sam-
ples, spectral clustering tries to solve the following problem
to learn the low-dimensional representation F ∈ Rn×c for
clustering [31, 32]:

min
FTF=I

Tr
(
FTLF

)
(1)

where Tr (·) denotes the trace operation. L ∈ Rn×n is the
Laplacian graph, which is generally calculated as L = D−W
in the ratio cut method [33] and L = I−D−1/2WD−1/2 in the
normalized cut method [31], where D ∈ Rn×n is a diagonal
matrix and its ith diagonal element is calculated as Di,i =∑
j

(Wi,j+Wj,i)
2 , W (W ≥ 0) is the symmetric similarity graph

with non-negative elements constructed from the data, I is the
identity matrix.

(1) is the typical eigenvalue decomposition problem and
its solution is the eigenvector set corresponding to the first
c minimum eigenvalues of L. For F , its each row can be
viewed as the new representation of the corresponding original
sample. Then spectral clustering utilizes the k-means algorithm
to partition the new representation F into several clusters.

B. Multi-view subspace clustering (MVSC)

Generally, due to the different feature distributions of differ-
ent views, graphs constructed from different views will have
large differences. In this case, it is difficult to find the intrinsic
consensus graphs of multiple views for clustering. Fortunately,
it is possible to find the optimal and unique representation for
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all views. Inspired by this motivation, Gao et al. proposed
the multi-view subspace clustering (MVSC), which focuses
on learning a consensus cluster indicator matrix for clustering
[30]. For a dataset with k views whose vth view is represented
as X(v) = [x

(v)
1 , x

(v)
2 , . . . , x

(v)
n ] ∈ Rm×n, the learning model

of MVSC is designed as follows:

min
Z(v),E(v),F

∑
v

∥∥∥X(v) −X(v)Z(v) − E(v)
∥∥∥2
F

+
∑
v

(
λ1Tr

(
FTL(v)F

)
+ λ2

∥∥∥E(v)
∥∥∥
1

)
s.t. Z(v)T 1 = 1, Z(v)

i.i = 0, FTF = I

(2)

where 1 is a column vector with all ones, Z(v)
i.i = 0 means

that all diagonal elements of matrix Z(v) are 0, λ1 and λ2
are penalty parameters. L(v) is the Laplacian graph of the
vth view and is calculated as L(v) = D(v) − W (v), where

W (v) =
|Z(v)|+|Z(v)|T

2 and D
(v)
i,i =

∑
jW

(v)
i,j . E(v) is the

error matrix used to model different noises. In (2), || · ||F and
|| · ||1 are the ‘Frobenius’ norm and ‘l1’ norm, respectively
[34, 35]. Tr(·) denotes the trace operator.

MVSC integrates the graph construction and low-
dimensional representation learning into a joint learning
framework, which enables it to find the global optimal indica-
tor matrix for clustering. By alternatively solving all variables,
MVSC can find the local optimum of the consensus represen-
tation F . Then MVSC performs k-means on the consensus
representation to obtain the final clustering results.

III. THE PROPOSED METHOD

Fig.1 shows two cases of the incomplete multi-view data. In
the first case, only few samples contain features of all views
and the other samples contain only one view. In the second
case, all views are arbitrarily missing. It includes the case
that no samples contain the features of all views. For the first
case, many methods, such as PMVC [3] and incomplete multi-
model grouping (IMG) [27], have been proposed based on
the matrix factorization. However, these methods fail to deal
with the second incomplete case. To address this issue, in this
section, we will propose a more general incomplete multi-view
clustering framework that can handle all kinds of incomplete
cases.

A. Incomplete multi-view spectral clustering with adaptive
graph learning (IMSC AGL)

From the previous presentation, we can find that all conven-
tional graph based multi-view clustering methods including
MVSC, learn the subspace based on the similarity graph of
each view. These methods require that graphs constructed
from all views are complete, which not only can reveal the
similarity relationships of all samples, but also have the same
size of n×n for the multi-view data with n samples. However,
as shown in Fig.1, since all views are incomplete, graphs
constructed from these incomplete views will have different
sizes and also cannot reveal the relationships of all samples,
which leads to the failure of the existing GIMC methods.

Some researchers propose to fill in the missing views with
the average of instances of the corresponding view, and then
construct the similarity graph of each view independently [26].
Although this approach can make the graphs of different views
have the same size, it cannot produce the correct representation
for each view and thus is harmful to the multi-view clustering.
This is mainly because that these missing instances will be
regarded as the same class and be connected with the same
weight (weight of 1 in the binary nearest neighbor graph),
which in turn pulls these missing instances together in the
low-dimensional subspace whether they are from the same
cluster or not. Therefore, this graph completion approach is
unreasonable for incomplete multi-view clustering, especially
for the case with large number of missing views. A more
reasonable way to avoid this issue is to set the connected
weights corresponding to these missing instances as 0 in the
similarity graph of the corresponding view. In this way, the
uncertain similarity information corresponding to the missing
views will not play a negative role in learning the data-
cluster representation. In contrast, only the authentic similarity
information of the available instances are exploited to guide
the representation learning, which is beneficial to achieve
a more reliable data-cluster representation and reduces the
negative influence of the missing views. Based on the above
analysis, we rewrite MVSC as follows for incomplete multi-
view learning:

min
Z(v),E(v),F

∑
v

∥∥∥Y (v) − Y (v)Z(v) − E(v)
∥∥∥2
F

+
∑
v

(
λ1Tr

(
FT L̄(v)F

)
+ λ2

∥∥∥E(v)
∥∥∥
1

)
s.t. Z(v)T 1 = 1, Z(v)

i.i = 0, FTF = I

(3)

where Y (v) =
[
y
(v)
1 , y

(v)
2 , . . . , y

(v)
nv

]
∈ Rmv×nv denotes the

set of the un-missing instances in the vth view, mv and nv
are the number of the features and un-missing instances of
the vth view, respectively. The original instance sets including
the missing and un-missing instances in the vth view are still
represented as X(v) =

[
x
(v)
1 , x

(v)
2 , . . . , x

(v)
n

]
∈ Rmv×n (nv <

n). L̄(v) = D̄(v) − W̄ (v), W̄ (v) =

(
|Z̄(v)|+|Z̄(v)|T

)
2 , D̄(v)

i.i =∑
j W̄

(v)
i,j . Z̄(v) ∈ Rn×n is the complete graph that connects

all instances including the missing and un-missing instances
of the vth view. In our method, we can exploit the following
formula to obtain the completed graph Z̄(v) based on the graph
Z(v) ∈ Rnv×nv learned from the un-missing instances:

Z̄(v) = G(v)TZ(v)G(v) (4)

where G(v) ∈ Rnv×n is an index matrix used to complete
the graph, whose elements related to the missing instances are
enforced to zero. Specially, matrix G(v) is defined as follows:

G
(v)
i.j =

{
1, if y

(v)
i is the original instance x

(v)
j

0, otherwise
(5)

It is simple to prove that the following equation is satisfied:

L̄(v)=G(v)TL(v)G(v) (6)
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(a) (b)

Fig. 1. Two types of the incomplete multi-view data. (a) Some samples contain the features of all views and the remaining samples contain only one view,
(b) views are arbitrarily missing, including the case that none of samples contain the features of all views.

Fig. 2. The framework of the proposed incomplete multi-view clustering method. The proposed method focuses on learning a consensus representation U
from multiple views for clustering.

where L(v) is the Laplacian matrix of graph Z(v).
Considering that the data is generally drawn from several

low-rank subspaces, thus the learned graph should better
discover the low-rank structure of data [28]. Moreover, in-
spired by the motivation that learning a non-negative graph is
beneficial to improve the clustering performance and make the
learned graph more interpretable [36], we rewrite model (3) as
follows to learn multiple non-negative graphs for multi-view
subspace learning:

min
Z(v),E(v),F

∑
v

(∥∥∥Z(v)
∥∥∥
∗
+ λ2

∥∥∥E(v)
∥∥∥
1

)
+λ1

∑
v

Tr
(
FTG(v)TL(v)G(v)F

)
s.t. Y (v) = Y (v)Z(v) + E(v), Z(v)1 = 1,

0 ≤ Z(v) ≤ 1, Z
(v)
i.i = 0, FTF = I

(7)

where ||Z(v)||∗ is the nuclear norm of matrix Z(v), which is
calculated as the summation of all singular values of matrix
Z(v) [37-39]. Constraint Z(v)1 = 1 is used to avoid that any
sample has no contribution in the joint representation, 1 is a

column vector with all elements as 1 [40]. In model (7), F is
an n× c matrix whose each row denotes the representation of
the corresponding sample.

In model (7), the third term is equivalent to
1
2

n∑
j=1

n∑
i=1

(
∥Fi,: − Fj,:∥22

∑
v
W̄

(v)
i,j

)
. This demonstrates

that the regularization weights to the target cluster indicator
matrix F are the summation of all similarity weights of
multiple graphs. For complete data, this approach may be
effective to learn the optimal cluster indicator for each
sample. However, for incomplete multi-view data, this
approach will fail because the regularization weights to the
missing instances and un-missing instances are too unfair.
It may occur the case that through the summation of the
weights of multiple graphs, the regularization weights of
samples from different classes may larger than those of the
samples from the same class, which will lead to the incorrect
cluster indicators of samples. To solve this problem, we
propose to learn the consensus representation from those
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cluster indicator matrices of all views as follows:

min
Z(v),E(v),F

∑
v

(∥∥∥Z(v)
∥∥∥
∗
+ λ1Tr

(
F (v)TG(v)TL(v)G(v)F (v)

))
+
∑
v

(
λ2

∥∥∥E(v)
∥∥∥
1
+
λ3

2
Γ
(
F (v), U

))
s.t. Y (v) = Y (v)Z(v) + E(v), Z(v)1 = 1,

0 ≤ Z(v) ≤ 1, Z
(v)
i.i = 0, F (v)TF (v) = I, UTU = I

(8)

where λ3 is also a penalty parameter, matrix U ∈ Rn×c is the
target cluster indicator matrix (or consensus representation)
to learn. Function Γ

(
F (v), U

)
measures the disagreement

of the consensus representation U and representation F (v).
Γ
(
F (v), U

)
is defined as follows [19]:

Γ
(
F (v), U

)
=

∥∥∥∥∥ KU

∥KU∥2F
− KF (v)

∥KF (v)∥2F

∥∥∥∥∥
2

F

(9)

where KU and KF (v) are the similarity matrixes of U and
F (v), respectively. For simplicity, we also choose the linear
kernel, i.e., KU=UU

T as the similarity measure metric [19].
Based on the facts that ∥KU∥2F = c and ∥KF (v)∥2F = c, (9)
can be rewritten as follows:

Γ
(
F (v), U

)
=
2
(
c− Tr

(
F (v)F (v)TUUT

))
c2

(10)

As a result, our final model is expressed as follows:

min
Z(v),E(v),F (v),U

∑
v

(∥∥∥Z(v)
∥∥∥
∗
+ λ3

(
c− Tr

(
F (v)F (v)TUUT

)))
+
∑
v

λ1Tr
(
F (v)TG(v)TL(v)G(v)F (v)

)
+
∑
v

λ2

∥∥∥E(v)
∥∥∥
1

s.t. Y (v) = Y (v)Z(v) + E(v), Z(v)1 = 1,

0 ≤ Z(v) ≤ 1, Z
(v)
i.i = 0, F (v)TF (v) = I, UTU = I

(11)

Since the proposed IMC framework is based on the adaptive
graph learning and spectral clustering, we refer to the proposed
method as incomplete multi-view spectral clustering with
adaptive graph learning (IMSC AGL). The framework of our
method is briefly outlined in Fig.2.

B. Solution to IMSC AGL

For the optimization problem (11), we choose the alternating
direction method of multipliers (ADMM) to calculate its local
optimal solution [41]. At the beginning, we introduce several
variables to make problem (11) separable as follows:

min
Z(v),E(v),F (v),U,S(v),W (v)

∑
v

(∥∥∥S(v)
∥∥∥
∗
− λ3Tr

(
F (v)F (v)TUUT

))
+
∑
v

λ1Tr
(
F (v)TG(v)TL(v)

w G(v)F (v)
)
+
∑
v

λ2

∥∥∥E(v)
∥∥∥
1

s.t. Y (v) = Y (v)Z(v) + E(v), Z(v) = S(v), Z(v) =W (v),

W (v)1 = 1, 0 ≤W (v) ≤ 1,W
(v)
i.i = 0, F (v)TF (v) = I, UTU = I

(12)

where L(v)
w denotes the Laplacian graph of matrix W (v). Note:

since c is a constant, we can ignore it in (11). The augmented

Lagrangian function of (12) is formulated as follows:

L =
∑
v

(∥∥∥S(v)
∥∥∥
∗
+ λ1Tr

(
F (v)TG(v)TL(v)

w G(v)F (v)
))

−
∑
v

λ3Tr
(
F (v)F (v)TUUT

)
+
∑
v

λ2

∥∥∥E(v)
∥∥∥
1

+
µ

2

∑
v

(∥∥∥∥∥Z(v) − S(v) +
C

(v)
2

µ

∥∥∥∥∥
2

F

+

∥∥∥∥∥Z(v) −W (v) +
C

(v)
3

µ

∥∥∥∥∥
2

F

)

+
µ

2

∑
v

∥∥∥∥∥Y (v) − Y (v)Z(v) − E(v) +
C

(v)
1

µ

∥∥∥∥∥
2

F

−
∑
v

ψ(v)T
(
W (v)1 − 1

)
(13)

where matrixes C(v)
1 , C(v)

2 , C(v)
3 , and vector ψ(v) are Lagrange

multipliers, µ is a penalty parameter.
Then we can iteratively solve all unknown variables one by

one as follows:
Step 1. Update variable Z(v). Fixing all of the other

variables, the problem to solve variable Z(v) is degraded to
minimize the following problem:

L
(
Z(v)

)
=

∥∥∥∥∥Z(v) − S(v) +
C

(v)
2

µ

∥∥∥∥∥
2

F

+

∥∥∥∥∥Z(v) −W (v) +
C

(v)
3

µ

∥∥∥∥∥
2

F

+

∥∥∥∥∥Y (v) − Y (v)Z(v) − E(v) +
C

(v)
1

µ

∥∥∥∥∥
2

F
(14)

Then we can obtain variable Z(v) by setting the derivative
of L

(
Z(v)

)
with respect to Z(v) to zero as follows:

∂L
(
Z(v)

)
∂Z(v)

= 2Z(v) − 2M
(v)
1 + 2Z(v) − 2M

(v)
2

+2Y (v)T
(
Y (v)Z(v) −M

(v)
3

)
= 0

⇔ Z(v)=
(
Y (v)TY (v)+2I

)−1 (
Y (v)TM

(v)
3 +M

(v)
1 +M

(v)
2

)
(15)

where M (v)
1 = S(v)− C

(v)
2

µ , M (v)
2 =W (v)− C

(v)
3

µ , and M (v)
3 =

Y (v) − E(v) +
C

(v)
1

µ .
Step 2. Update variable S(v). Fixing the other variables,

the sub-problem to calculate variable S(v) is degraded to the
following formula:

min
S(v)

∥∥∥S(v)
∥∥∥
∗
+
µ

2

∥∥∥∥∥Z(v) − S(v) +
C

(v)
2

µ

∥∥∥∥∥
2

F

(16)

(16) can be computed by the singular value thresholding
(SVT) shrinkage operator as follows [42-44]:

S(v) = Θ1/µ

(
Z(v) +

C
(v)
2

µ

)
(17)

where Θ denotes the SVT shrinkage operator.
Step 3. Update variables W (v) and ψ(v). Fixing the other

variables, the optimization problem to calculate variable W (v)
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is formulated as follows:

min
W (v)≥0,W

(v)
i.i =0

λ1Tr
(
F (v)TG(v)TL(v)

w G(v)F (v)
)

+
µ

2

∥∥∥∥∥Z(v) −W (v) +
C

(v)
3

µ

∥∥∥∥∥
2

F

− ψ(v)T
(
W (v)1 − 1

) (18)

Define P (v) = G(v)F (v), R(v) = Z(v) +
C

(v)
3

µ , (18) is
equivalent to the following optimization problem:

min
W (v)≥0,W

(v)
i.i =0

λ1
2

nv∑
i,j

∥∥∥P (v)
i,: − P

(v)
j,:

∥∥∥2
2
W

(v)
i,j

+
µ

2

∥∥∥W (v) −R(v)
∥∥∥2
F
− ψ(v)T

(
W (v)1 − 1

) (19)

where P (v)
i,: and P (v)

j,: represent the ith and jth row vectors of
matrix P (v), respectively. It is obvious to see that problem (19)

is independent to each row. Define H(v)
i,j =

∥∥∥P (v)
i,: − P

(v)
j,:

∥∥∥2
2
,

then we can simplify problem (19) into the following problem:

min
W

(v)
i,: ≥0,W

(v)
i.i =0

λ1
2
W

(v)
i,: H

(v)T
i,: +

µ

2

∥∥∥W (v)
i,: −R

(v)
i,:

∥∥∥2
2

−ψ(v)
i

(
W

(v)
i,: 1 − 1

)
⇔ min

W
(v)
i,: ≥0,W

(v)
i.i =0

µ

2

∥∥∥∥W (v)
i,: −

(
R

(v)
i,: − λ1

2µ
H

(v)
i,:

)∥∥∥∥2
2

−ψ(v)
i

(
W

(v)
i,: 1 − 1

)
(20)

where ψ
(v)
i is the ith element of vector ψ(v). The optimal

solution to problem (20) is as follows [45]:

W
(v)
i,j =

{
0, j = i

R
(v)
i,j − λ1

2µH
(v)
i,j +

ψ
(v)
i

µ , otherwise
(21)

Then we further enforce all elements of matrix W (v) to
be not less than 0 by W (v)=max

(
W (v), 0

)
, in which all

elements less than 0 in W (v) are enforced to 0, and the
remaining elements are preserved. According to constraint
W

(v)
i,: 1 = 1, we can obtain that the Lagrange multiplier ψ(v)

i

is updated as follows:

ψ
(v)
i = µ

1−
nv∑

j=1,j ̸=i

(
R

(v)
i,j − λ1

2µ
H

(v)
i,j

)/(nv − 1) (22)

Step 4: Update variable E(v). Fixing the other variables,
the sub-problem to solve variable E(v) is as follows:

min
E(v)

λ2

∥∥∥E(v)
∥∥∥
1
+
µ

2

∥∥∥∥∥Y (v) − Y (v)Z(v) − E(v) +
C

(v)
1

µ

∥∥∥∥∥
2

F

(23)

Problem (23) is a typical sparsity constraint optimization
problem and has the following closed form solution [46-48]:

E(v) = ϑλ2/µ

(
Y (v) − Y (v)Z(v) +

C
(v)
1

µ

)
(24)

where ϑ denotes the shrinkage operator.

Step 5: Update variable F (v). Fixing the other variables, the
cluster indicator matrix F (v) of each view can be calculated
by minimizing the following formula:

min
F (v)TF (v)=I

λ1Tr
(
F (v)TG(v)TL(v)

w G(v)F (v)
)

−λ3Tr
(
F (v)F (v)TUUT

)
⇔ max

F (v)TF (v)=I
Tr
(
F (v)T

(
λ3UU

T − λ1G
(v)TL(v)

w G(v)
)
F (v)

)
(25)

Problem (25) can be solved by the eigenvalue decomposi-
tion, where the first c eigenvectors corresponding to the first c
largest eigenvalues of matrix

(
λ3UU

T − λ1G
(v)TL

(v)
w G(v)

)
are chosen as the optimal solution to variable F (v).

Step 6: Update variable U . Fixing the other variables, the
problem to obtain the consensus cluster representation U is
degraded to the following problem:

min
UTU=I

−
∑
v

λ3Tr
(
F (v)F (v)TUUT

)
⇔ max

UTU=I
Tr

(
UT

(∑
v

F (v)F (v)T

)
U

) (26)

Problem (26) can also be simply computed by the eigenval-
ue decomposition. The optimal solution to variable U is the
eigenvector set corresponding to the first c largest eigenvalues

of matrix
(∑
v
F (v)F (v)T

)
.

Step 7: Update variables C(v)
1 , C(v)

2 , C(v)
3 , and µ. These

four variables are updated as follows, respectively:

C
(v)
1 = C

(v)
1 + µ

(
Y (v) − Y (v)Z(v) − E(v)

)
(27)

C
(v)
2 = C

(v)
2 + µ

(
Z(v) − S(v)

)
(28)

C
(v)
3 = C

(v)
3 + µ

(
Z(v) −W (v)

)
(29)

µ = min (ρµ, µ0) (30)

where ρ and µ0 are constants.
Algorithm 1 summarizes the computation procedures pre-

sented above. After obtaining the consensus representation U ,
we perform the k-means algorithm on it to obtain the final
clustering results.

IV. ANALYSIS OF THE PROPOSED METHOD

A. Computational complexity

For simplicity, we do not take into account the computa-
tional costs of matrix multiplication, elements based matrix
division, matrix addition and subtraction, etc., since these
operations are very simple in comparison with the other matrix
operations. For the proposed algorithm listed in Algorithm 1,
the major computational costs are the operations like matrix
inverse, singular value decomposition (SVD), and eigenvalue
decomposition. Generally, the computational complexities of
the above three operations are O(n3) for an n × n matrix,
O(mn2) for an m×n matrix, and O(n3) for an n×n matrix,
respectively. Therefore, the computational complexities of
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Algorithm 1 : IMSC AGL (solving (12))

Input: Incomplete multi-view data Y (v), index matrix G(v),
v ∈ [1, k], parameters λ1,λ2, and λ3.
Initialization: Initialize Z(v) with the k-nearest neighbor
graph of each view; initialize F (v) via the eigenvalue
decomposition on the Laplacian graph of each view; using
(26) to initialize the cluster matrix U , µ0 = 108, ρ = 1.1,
µ = 0.01.
while not converged do

for v from 1 to k
1. Update variable Z(v) via (15);
2. Update variable S(v) via (17);
3. Update variables ψ(v) and W (v) via (22) and (21),

respectively, and then implement W (v)=max
(
W (v), 0

)
;

4. Update variable E(v) via (24);
5. Update variable F (v) by solving (25);
6. Update variables C(v)

1 , C(v)
2 , and C

(v)
3 via (27),

(28), and (29), respectively.
end
7. Update U by solving (26);
8. Update µ via (30).

end while
Output: U

Steps 2, 5, and 6 are about O(n3v), O(n3), and O(n3), respec-
tively. For Step 1, although it needs to calculate the inverse
operation, we can still ignore its computational complexity
because the inverse operation about (Y (v)TY (v)+2I)−1 can
be pre-computed before the iteration. For the remaining steps,
their computational complexities can also be ignored since
they only contain the basic matrix operations. Therefore, the
whole computational complexity of the proposed method is
about O(τ(kn3 + n3 +

∑
v
n3v)), where τ denotes the iteration

number, k denotes the number of views, nv denotes the
number of un-missing instances in the vth view.

B. Convergence analysis

For the ADMM-style optimization approach, it is difficult
to prove its strong convergence property with more than
two unknown variables. Fortunately, we can prove a weak
convergence property of the proposed method based on the
following theorem [42, 49].

Theorem 1. Let the solution of the optimization
problem (12) at the tth iteration step be Υt =

(Z
(v)
t , S

(v)
t ,W

(v)
t , E

(v)
t , F

(v)
t , Ut, (C

(v)
1 )t, (C

(v)
2 )t, (C

(v)
3 )t, ψ

(v)
t ),

v = [1, k]. If the sequence solutions {Υt}∞t=1 of problem (12)
are bounded and satisfy condition limt→∞ (Υt+1 −Υt) = 0,
then we can conclude that the accumulated point of sequence
{Υt}∞t=1 is a Karush-Kuhn-Tucker (KKT) point of problem
(12). Whenever {Υt}∞t=1 converges, it converges to the KKT
point.

Proof : The detailed proof to Theorem 1 is moved to the
supplementary file.

Theorem 1 provides some assurances to the convergence
property of the proposed algorithm. In the subsequent section,
we will conduct several experiments to further prove it.

V. EXPERIMENTS AND ANALYSES

In this section, we conduct experiments to prove the ef-
fectiveness of the proposed method. The Matlab code of
our IMSC AGL is released at: https://sites.google.com/view/
jerry-wen-hit/publications.

A. Experimental settings

1) Baseline algorithms and evaluation metrics: The follow-
ing six methods are selected to compare with the proposed
method:

(1) Best single view (BSV) [27]: For BSV, the missing
instances in every view are first filled in the average of
instances in the corresponding view. Then it performs k-means
on all views independently and reports their best clustering
results.

(2) Concat [27]: Concat adopts the same approach as BSV
to fill in the missing instances. Their difference is that it
concatenates all views into a single view with long dimensions,
and then performs k-means to obtain the clustering results.

(3) Partial multi-view clustering (PMVC) [3]: Based on the
non-negative matrix factorization, PMVC learns a common
latent representation for all views, then performs k-means on
the learned representation to obtain the clustering results.

(4) Incomplete multi-modality grouping (IMG) [27]: IMG
also uses the matrix factorization technique to learn a common
latent representation for all views. Different with PMVC, IMG
simultaneously learns a graph from the common representation
and finally exploits the spectral clustering algorithm to obtain
the clustering results.

(5) Double constrained non-negative matrix factorization
(DCNMF) [50]: DCNMF uses local geometric structure of
each view to guide the representation learning.

(6) Graph regularized partial multi-view clustering (GP-
MVC) [51]: GPMVC can be viewed as a variant of DCNMF,
which learns the common representation from the normalized
individual representations of all views.

IMG, DCNMF, and GPMVC have many tunable parameters
(more than two parameters). In our experiments, we implement
these methods with a wide candidate parameter set, such as
{10−4, 10−3, 10−2, 10−1, 100, 101, 102, 103, 104} and report
their best clustering results for fair comparison.

There are many criterions to evaluate the clustering per-
formances of different methods [52]. In our experiments, we
choose three most well-known evaluation criterions, i.e., clus-
tering accuracy (ACC), normalized mutual information (NMI),
and purity to compare the above methods [17]. Generally,
we expect the values of these evaluation criterions as big as
possible.

2) Databases: Seven real-world databases listed in Table I
are adopted for evaluation. Their detailed information are as
follows:

(1) Handwritten digit database [53]: Following the ex-
perimental settings in [53], we conduct the experiments on
the multi-view handwritten database1 with 2000 samples in
total. There are 10 digits, i.e., 0-9, in the used handwritten

1https://www.dropbox.com/s/b00cdxc2s96o1to/handwritten.mat.
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digit database. In our experiments, we only use two views,
i.e., pixel average features and Fourier coefficient features, to
conduct experiments, in which the pixel average view has 240
features per sample and the Fourier coefficient view contains
76 features for one sample.

(2) BUAA-visnir face database (BUAA) [54]: Following
the experimental settings in [27], we implement the exper-
iments on the subset of the BUAA face database, which
contains 90 visual images and 90 near infrared images of the
first 10 classes. The used BUAA face database is available at
https://github.com/hdzhao/IMG/tree/master/data. For the used
BUAA face database, two types of images, i.e., visual images
and near infrared images are regarded as the two views of
persons. All images were resized into an 10× 10 matrix and
vectorized in advance.

(3) Cornell database [2, 55]: Cornell database is one of
the popular WebKB databases2, which is composed of 195
documents over the 5 labels, i.e., student, project, course, staff,
and faculty. Each document is described by two views, i.e.,
1703 content features and 195 citation features.

(4) Caltech101 database [56]: The Caltech101 database
is one of the popular object databases which contains 101
objects in total. Each object provides 40-800 images. In our
experiments, a multi-view subset which contains 7 classes and
1474 images is adopted [53]. For convenience, we refer to the
subset as Caltech73. The original multi-view Caltech7 database
contains 5 types of features. In our experiments, we only select
two views to implement the experiments, in which the one is
GIST features [57] with 512 dimensions per sample and the
other one is the Local Binary Patterns (LBP) features [57]
with 928 dimensions per sample.

(5) ORL database4: The ORL face database is composed
of 400 faces taken from 40 individuals. In the experiments, we
first pre-resized all images into the size of 32× 32, and then
extract the features of LBP, GIST, and Pyramid of Histogram
of Oriented Gradients (PHOG) [58]. Combining the original
pixel features of each image, we form the multi-view ORL
dataset with four views, in which their feature dimensions are
1024, 512, 1024, and 1024, respectively.

(6) 3 Sources database5: This database contains 948
news articles collected from three online news sources: BBC,
Reuters, and The Guardian. In our experiments, we select a
subset which contains 169 stories reported in all of the three
sources to compare different methods. The 169 stories were
categorized into six topical labels: business, entertainment,
health, politics, sport, and technology.

(7) BBCSport database [59]: The original BBCSport
database contains 737 documents about the sport news articles
collected from the BBC Sport website. These documents are
described by 2-4 views and categorized into five classes. In our
experiments, we choose a subset6 with 116 samples described

2http://lig-membres.imag.fr/grimal/data.html.
3https://www.dropbox.com/s/ulvatoo8gepcdfk/Caltech101-7.mat.
4The original ORL face database is available at: http://www.cl.cam.ac.uk/

research/dtg/attarchive/facedatabase.html.
5http://erdos.ucd.ie/datasets/3sources.html.
6https://github.com/GPMVCDummy/GPMVC/tree/master/partialMV/PVC/

recreateResults/data.

TABLE I
DESCRIPTION OF THE USED BENCHMARK DATASETS.

Database # Class # View # Samples # Features
handwritten 10 2 2000 240/76

BUAA 10 2 90 100/100
Cornell 5 2 195 195/1703

Caltech7 7 2 1474 512/928
ORL 40 4 400 1024/512/1024/1024

3 Sources 6 3 169 3560/3631/3068
BBCSport 5 4 116 1991/2063/2113/2158

by all of the four views to validate the effectiveness of our
method.

3) Incomplete multi-view data construction: In our experi-
ments, we construct two types of incomplete multi-view data.
(i) Incomplete case that few samples have complete views:
Following the experimental settings in [27], for handwritten,
BUAA, Cornell, and Caltech7 databases, we randomly select
10%, 30%, 50%, 70%, and 90% samples from the database
as the paired samples. For the half of corresponding remain-
ing samples, we remove their first view, and for the other
half of samples, we remove their second view to form the
incomplete multi-view scenarios. Similarly, for the ORL multi-
view database, we also randomly select 10%, 30%, and 50%
samples as the paired samples, and then we follow the previous
strategy to randomly select 25%, 25%, 25%, and 25% samples
of the corresponding remaining samples as the single view
samples. (ii) Incomplete case that all samples have missing
views: In our experiments, we exploit the ORL, 3 Sources,
and BBCsport databases to construct the incomplete multi-
view data with no paired samples, where about 53%, 55%,
and 55% instances are randomly removed from each view of
the three databases, respectively. For fairness, we repeatedly
perform all compared methods 5 times on these databases and
report their average clustering results.

B. Experimental results and analysis
Experimental results of different methods on the above two

types of incomplete multi-view databases are enumerated in
Table II-Table VII and shown in Fig.3, respectively. From the
experimental results, we can obtain the following points:

(1) In most cases, Concat and BSV perform the 1st worst
and 2nd worst in comparison with the other methods. This
demonstrates that concatenating all views into one long view is
not a good approach in dealing with the multi-view clustering
tasks. This is mainly because that Concat not only ignores
the differences of different views in the feature scales and
distributions, but also cannot exploit the complementary in-
formation across different views. While for BSV, the missing
instances in each view will obviously be clustered into the
same group since they are filled in the same average instance,
which makes BSV achieve very bad performance especially
for the case with large number of missing instances in every
view. The experimental results of Concat and BSV in the tables
and figures also prove that filling in the missing instances with
the corresponding average instances is not a good choice to
address the incomplete problem of multi-view clustering.

(2) From Table II-Table V and Fig.3, we can find that
PMVC, IMG, DCNMF, GPMVC, and the proposed method
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can achieve much better performance than BSV and Concat
in most cases, which proves that exploiting the complemen-
tary information of multi-view features to learn a common
representation is an effective approach in dealing with the
incomplete problem.

(3) From Table II-Table V and Fig.3, we can find that
DCNMF and GPMVC perform better than PMVC on the
handwritten digit database and BUAA database, while perform
worse than PMVC in some cases especially on the Caltech7
and ORL databases. Compared with PMVC, DCNMF and
GPMVC all try to exploit the geometric structure of each
view to guide the common representation learning. Thus
these experimental results indicate that exploiting the intrinsic
geometric structure of data has the potential to learn a more
discriminative and compact common representation for clus-
tering. However, if the constructed geometric structure is not
the intrinsic structure, it will lead to the opposite effect. Thus
capture the intrinsic structure of each view is crucial for these
methods.

(4) The proposed method significantly outperforms the other
methods on the above multi-view databases with all kinds
of incomplete cases. For instance, on the handwritten digit
database (Table II), the proposed method achieves 3 percent
and 6 percent improvement of ACC and NMI in comparison
with the second best method, i.e., DCNMF, respectively. In
Table VII, the NMI, ACC, and purity of the proposed method
are about 33%, 26%, and 31% higher than those of BSV and
Concat on the BBCSport database. These good experimental
results strongly prove the effectiveness the proposed method in
dealing with all kinds of the incomplete multi-view clustering
tasks.

TABLE VI
MEAN NMIS (%), ACCS (%), AND PURITIES (%) OF DIFFERENT

METHODS ON THE FIRST INCOMPLETE CASE OF THE ORL DATABASE.
BOLD NUMBERS DENOTE THE BEST RESULT.

NMI ACC Purity
Method \ PER 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5

BSV 30.55 43.73 55.55 28.50 39.20 47.74 30.55 41.70 51.44
Concat 35.44 35.03 46.93 27.72 28.97 41.67 23.58 30.83 44.27
PMVC 64.50 75.50 82.36 47.12 59.38 67.97 49.09 62.14 71.11
IMG 65.75 76.78 83.41 48.17 63.88 72.65 50.13 66.03 73.62

DCNMF 60.63 70.76 75.25 41.86 54.11 60.93 48.38 59.83 65.08
GPMVC 61.63 71.26 77.21 42.13 57.30 63.61 49.56 61.75 70.39

IMSC AGL 70.87 82.83 86.65 53.93 72.50 76.31 56.73 74.52 78.72

TABLE VII
MEAN NMIS (%), ACCS (%), AND PURITIES (%) OF DIFFERENT

METHODS ON THE SECOND INCOMPLETE MULTI-VIEW DATABASES. BOLD
NUMBERS DENOTE THE BEST RESULT.

ORL 3 Sources BBCSport
Method NMI ACC Purity NMI ACC Purity NMI ACC Purity

BSV 43.04 37.95 40.73 19.97 37.37 47.03 18.60 43.21 47.00
Concat 55.78 40.56 43.40 26.98 41.89 53.37 19.48 42.90 46.34

IMSC AGL 85.41 74.23 76.53 49.03 59.93 69.16 53.76 69.14 78.10

C. Analysis of the parameter sensitivity

In this section, we mainly focus on analyzing the sen-
sitivity of the three tunable parameters, i.e., λ1, λ2, λ3,
in model (11). We first define a candidate set, i.e.,{
10−5, 10−4, 10−3, 10−1, 1, 10, 102, 103, 104, 105

}
, for the

three parameters, and then perform the proposed method with
different combinations of the three parameters [60]. In Fig.4

and Fig.5, we show the relationships of NMI (%) and the
three parameters on the ORL and BUAA face datasets with
50% and 70% paired samples, respectively. From these figures,
it is obvious that the proposed method can obtain the stable
and satisfied NMIs when the three parameters are located in
some feasible areas. For example, on the ORL dataset, when
parameters λ1, λ2, λ3 locates in the range of

[
10−5, 10−2

]
,[

101, 105
]
, and

[
10−1, 102

]
, respectively, a satisfactory clus-

tering performance can be obtained. This demonstrates that
the proposed method is insensitive to the three parameters to
some extent.

For different databases, it is still an open problem to
adaptively select the optimal values for these parameters to our
best knowledge. In this section we provide a simple strategy
to find the optimal combination of the three parameters for
experiments. From Fig.4 and Fig.5, we can find that the
proposed method is relatively insensitive to the selection of
parameter λ1 in the small parameter range

[
10−5, 10−2

]
to

some extent, thus we can set λ1 with a fixed value like
10−3 at first, and then focus on finding the best combination
of parameters λ2 and λ3. According to the experimental
results shown in Fig.4 and Fig.5, we define two candidate sets{
101, 102, 103, 104, 105

}
and

{
10−2, 10−1, 100, 101, 102

}
for

parameters λ2 and λ3, respectively. Then perform the proposed
method with different values of the two parameters. In this
way, we can find the best combination of parameters λ2 and
λ3 in the 2D space formed by their candidate parameters. To
obtain the optimal value of parameter λ1, we can fix λ2 and
λ3 with the obtained optimal combination and then perform
the proposed method with different values of λ1. As a result,
the optimal combination of these three values can be achieved.
Then we use the selected parameters to conduct experiments
and report the results for comparison.
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Fig. 4. NMI (%) versus (a) parameters λ1 and λ2 by fixing parameter λ3,
(b) parameter λ3 by fixing parameters λ1 and λ2, on the ORL face dataset
with 50% paired samples.

D. Convergence analysis based on experiments

In this section, two experiments are conduct to prove the
convergence property of the proposed optimization approach
listed in Algorithm 1. In Fig. 6, we show the objective function
value versus the iteration steps, in which the objective function

value is calculated as obj =
∑
v

(
γ
(v)
1 + γ

(v)
2

)/∑
v

∥∥X(v)
∥∥2
F

according to the original model (11), where
γ
(v)
1 =

∥∥Z(v)
∥∥
∗ + λ1Tr

(
F (v)TG(v)TL

(v)
w G(v)F (v)

)
+

λ2
∥∥E(v)

∥∥
1

+ λ3
(
c− Tr

(
F (v)F (v)TUUT

))
and
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TABLE II
MEAN NMIS (%) AND ACCS (%) OF DIFFERENT METHODS ON THE HANDWRITTEN DIGIT DATABASE. BOLD NUMBERS DENOTE THE BEST RESULT.

NMI ACC
Method \ PER 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

BSV 37.04 44.48 51.50 58.61 66.26 43.08 50.46 57.39 64.44 69.29
Concat 47.71 54.43 61.12 70.30 79.34 46.01 57.46 66.45 78.64 86.63
PMVC 55.13 60.85 64.88 68.54 72.83 63.81 70.90 73.44 75.20 77.82
IMG 58.04 62.38 64.91 68.21 73.57 69.22 75.41 76.36 77.54 81.78

DCNMF 54.23 65.56 74.41 78.14 80.90 51.21 76.63 80.61 86.16 89.16
GPMVC 60.99 63.99 72.23 73.68 75.24 65.60 74.04 76.94 79.06 81.08

IMSC AGL 76.60 79.05 82.46 83.05 86.27 80.76 84.81 87.41 89.77 92.57

TABLE III
MEAN NMIS (%) AND ACCS (%) OF DIFFERENT METHODS ON THE BUAA DATABASE. BOLD NUMBERS DENOTE THE BEST RESULT.

NMI ACC
Method \ PER 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

BSV 43.10 53.03 61.78 69.91 82.56 48.33 56.96 64.26 70.81 80.16
Concat 51.22 51.95 52.43 56.51 62.66 45.62 46.61 47.46 52.34 57.58
PMVC 61.35 67.07 71.97 78.70 84.22 57.41 66.46 70.01 75.92 80.73
IMG 54.72 67.53 76.74 82.83 85.90 53.95 67.39 76.14 79.36 80.78

DCNMF 61.78 68.75 72.05 79.66 86.42 58.36 67.58 72.15 76.58 82.42
GPMVC 62.12 70.25 74.33 81.63 86.78 58.98 68.75 74.28 78.28 84.24

IMSC AGL 63.52 75.16 80.29 84.52 89.84 65.72 78.16 80.76 82.77 89.54

TABLE IV
MEAN NMIS (%) AND ACCS (%) OF DIFFERENT METHODS ON THE CORNELL DATABASE. BOLD NUMBERS DENOTE THE BEST RESULT.

NMI ACC
Method \ PER 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

BSV 8.66 8.19 8.89 12.69 19.34 42.41 43.93 44.84 46.32 47.66
Concat 8.07 7.56 8.30 10.21 13.47 38.80 38.06 36.96 36.79 38.48
PMVC 15.76 16.00 18.21 19.76 21.03 42.56 42.56 43.79 42.56 43.03
IMG 12.56 16.62 19.24 20.89 22.98 45.13 45.79 47.08 45.51 44.76

DCNMF 13.59 17.72 19.17 21.69 23.98 39.94 43.29 43.18 45.74 45.52
GPMVC 13.90 16.07 18.99 15.03 17.07 40.39 43.86 46.53 44.56 44.35

IMSC AGL 18.52 20.28 21.46 22.84 24.35 43.25 46.02 47.35 46.37 48.56

TABLE V
MEAN NMIS (%) AND ACCS (%) OF DIFFERENT METHODS ON THE CALTECH7 DATABASE. BOLD NUMBERS DENOTE THE BEST RESULT.

NMI ACC
Method \ PER 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

BSV 29.04 32.11 35.13 38.83 44.16 42.66 40.97 39.83 42.92 46.99
Concat 33.82 34.44 34.56 38.15 45.44 36.83 31.74 36.36 43.38 47.08
PMVC 38.99 40.26 40.17 41.60 41.94 43.46 43.96 44.46 44.76 44.34
IMG 32.38 33.29 35.05 35.96 37.64 42.05 42.36 42.23 41.17 43.23

DCNMF 33.86 38.19 41.40 41.24 44.04 40.63 44.53 45.62 48.50 50.74
GPMVC 40.05 40.96 41.83 42.61 46.02 45.57 47.19 46.99 46.99 49.10

IMSC AGL 40.71 42.02 43.35 45.15 47.28 50.89 51.20 52.14 53.05 56.30
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Fig. 3. Purities (%) of different methods on the (a) handwritten digit database, (b) BUAA database, (c) Cornell database, and (d) Caltech7 database with
different rates of paired samples.

γ
(v)
2 =

∥∥Y (v) − Y (v)Z(v) − E(v)
∥∥2
F

+
∥∥Z(v) − S(v)

∥∥2
F

+∥∥Z(v) −W (v)
∥∥2
F

. From Fig. 6, it is obvious that the objective
function curve is monotonically decreasing till to the stable
level, which demonstrates that our provided optimization

approach monotonically decreases the objective problem.
This also proves that the proposed method will converge to
the local optimal point after a few iterations. Moreover, from
the objective function value, we can find that the proposed
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Fig. 5. NMI (%) versus (a) parameters λ1 and λ2 by fixing parameter λ3,
(b) parameter λ3 by fixing parameters λ1 and λ2, on the BUAA face dataset
with 70% paired samples.

method has very promising convergence efficiency.
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Fig. 6. Objective function value versus the iteration step of the proposed
method on the BUAA face and ORL face databases, in which 70% and 50%
samples are randomly selected as the paired samples.

VI. CONCLUSION

In this paper, a novel incomplete multi-view clustering
framework is proposed. Different from the conventional meth-
ods that exploit the matrix factorization technique for incom-
plete multi-view clustering, the proposed method is the first
one that integrates the spectral clustering and adaptive graph
learning technique to tackle this problem. Compared with the
conventional methods, the proposed method is more flexible
since it is able to handle all kinds of incomplete cases. We have
conducted several experiments on the two types of incomplete
multi-view data. Experimental results commonly show that
the proposed method can achieve a better performance than
some state-of-the-art methods, which proves its effectiveness
in dealing with the incomplete multi-view clustering tasks.
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