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Abstract. In this paper, we proposed a feature extraction method to solve a 
challenge problem of face recognition, i.e., recognition of faces with eyeglasses. 
By fusing the local and global facial features, the proposed method can extract 
robust facial features that can greatly reduce the negative influence of eyeglass-
es on face recognition. Firstly, we use the Ununiformed Local Gabor Binary 
Pattern Histogram Sequence (ULGBPHS) method to extract local facial fea-
tures. Secondly, we apply 2D-Discrete Fourier Transform (2D-DFT) method to 
obtain global facial features. Finally, we use a weighted fusion strategy to com-
bine the two kinds of facial features for face recognition. Extensive experi-
mental results on the well-known public GT and CMU_PIE face datasets, and 
real scene dataset which is built by our group show that the proposed feature 
extraction method obtains the best performance among some state-of-the-art 
methods. The relevant code and data will be available at 
http://www.yongxu.org/lunwen.html.  
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1 Introduction 

Computer vision (CV) has become a hot research direction in recent years because of 
the advance of both related theories and computer hardware. There are many research 
areas in CV, such as the biometrics technology including fingerprint recognition, 
palm print recognition, face recognition etc. [1-3]. Among them, face recognition has 
received much attention in both academia and industry [4-5]. As we know, many 
external factors affect the actual recognition rate [6-7]. The eyeglass is a common 
problem in face recognition [8]. Suppose the user wears a pair of eyeglasses when he 
registers in a face recognition system, he may fail to pass the system when he doesn’t 
wear eyeglasses in the recognition stage. In order to reduce the negative impact 
caused by eyeglasses, some algorithms have been proposed in the past. 
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Extracting more robust facial features is one of the most effective approaches to 
reduce the negative influence of eyeglasses. Martinez [9] proposed to extract the local 
facial features to solve the occlusion problem of face recognition. He divided a face 
into k blocks and calculated the feature for each block. After comparing the training 
set and testing set, he obtained the probability of occlusion for each block. These 
probability values were used to adjust the weight of each block when they use 
Mahalanobis distances in the recognition stage. Zhang et al. [10] proposed a Local 
Gabor Binary Pattern Histogram Sequence (LGBPHS) method to address the occlu-
sion problems of face recognition. They applied Gabor filters and local binary pattern 
(LBP) operators [11-13] to a face image to extract the local facial features for face 
recognition. Yi et al. [14] performed the sparse representation based classification 
method on the extracted local features for face recognition. Liu et.al [15] proposed a 
novel ununiformed division strategy based on the LGBPHS method [10]. Experi-
mental results in those papers all prove the effectiveness of the local features for eye-
glass-face recognition. 

In this paper, we try to solve the eyeglass-face recognition problem by extracting 
robust facial features [16-17]. The new feature extraction method can show outstand-
ing performance in resisting the trouble caused by eyeglasses in a face. Firstly, we 
normalize the face image and extract its local facial features. We use non-uniform 
division strategy proposed in [15] to segment a face into several non-overlapping 
blocks with different sizes. For each block, Gabor filters with different scales and 
orientations are utilized to obtain multiple Gabor Magnitude Pictures (GMPs) [10, 18]. 
Then we compute the histogram for each GMP and concatenate these histograms as 
the local facial features for each facial block. In this way, we can obtain the local 
facial features of each face image by integrating all histograms of these blocks. Sec-
ondly, we use the 2D-DFT method to extract the global facial features. After trans-
forming the face image into the frequency domain via the 2D-DFT transformation, we 
can obtain the real component and imaginary component of a face image. In this work, 
we only exploit the low frequency coefficients as the global facial features since they 
are the intrinsic global image information [19]. Finally, the extracted local and global 
facial features are combined via an adaptive weighted fusion approach for face recog-
nition. 

The remainder of this paper is organized as follows: Section 2 introduce a brief re-
view of the local facial feature extraction method. The details of our proposed method 
are described in section 3. Section 4 presents the experimental evaluations. The con-
clusion and discussion of this paper are offered in section 5. 

2 A Brief Review of Local Facial Feature Extraction Method 

2.1 Facial Feature Extraction Using the LGBPHS Method 

The eyeglasses can be viewed as occlusion of the face. Many excellent algorithms 
have been proposed and achieved a good performance in solving occlusion problems 
of face recognition. LGBPHS is one of the representative methods. It simultaneously 
combines the advantages of Gabor filters and LBP operators [20]. Gabor filters have 
powerful ability in obtaining robust and discriminative local features. LBP is a typical 



visual descriptor and has been widely used in computer vision owing to its effective-
ness in extracting the texture information of an image. The LGBPHS method uses 
Gabor filters to perform convolution operation on a normalized face image and gets 
plenty of GMPs in the first step. Then it uses the LBP operator to extract the LBP 
feature maps base on the obtained GMPs. In the second step, it divides these LBP 
feature maps uniformly and obtains the statistical histogram information of all blocks. 
Finally, it concatenates these feature histograms of all blocks into a feature histogram 
sequence as the final extracted local features. Experimental results show that this 
method is efficient for general occlusion problems. 

2.2 Facial Feature Extraction Using the Ununiformed Division Strategy 

Although the LGBPHS method shows good performance in general occlusion face 
recognition problems, it was proved to be inefficient in eyeglass-face recognition. As 
we know, the eyeglass-face problem is different from other general occlusion prob-
lems since eyeglasses always exists around our eyes. Human eyes are very important 
features in face recognition. The LGBPHS method uses a uniform way to divide a 
face into several blocks of the same size. This may break the integrity of eyes when 
we extract the facial features. In order to maintain the integrity of these facial 
keypoints, an improved non-uniform partition strategy called Ununiformed Local 
Gabor Binary Pattern Histogram Sequence (ULGBPHS) was proposed in [15]. This 
method can be viewed as extension of the LGBPHS method which uses a non-
uniform partition strategy to extract more robust local features. The main idea of this 
method comes from the reality that the facial keypoints in the face should keep their 
own completeness when we divide the face feature map. Therefore, this method pro-
poses to partition a normalized face image into different blocks non-uniformly. Then 
Gabor filters are applied to each block with different sizes to obtain their GMPs. Fi-
nally, it performs LBP on each group of GMPs to obtain the LBP feature maps. It gets 
the histograms of the local LBP feature maps for each group and concatenated them 
into a final feature histogram sequence by using a weighted strategy as the final fea-
tures for face recognition [21-22]. Experimental results prove that the ULGBPHS 
method is effective to improve the accuracy in this problem. Although the non-
uniform strategy is effective in handling eyeglass-face problems in comparison with 
the LGBPHS method, it doesn’t always work well since it still focuses on extraction 
of facial local features.  

3 The Proposed Feature Fusion Method 

3.1 Method Analysis 

Actually each face has its own overall appearance. Rather than focusing on local fea-
ture, we care about both local and global facial features in the eyeglass-face problems. 
In other words, we should take overall appearance into our consideration when ex-
tracting facial features. Usually humans can recognize a person correctly no matter 
whether he/she wears eyeglasses or not. This is because humans can recognize a face 
image as a whole at first glance and confirm their appearance by recognizing the local 



facial keypoints. In this paper, we use the combination of local and global facial fea-
tures instead of the local parts only. Specially we apply 2D-DFT method to extract the 
global facial feature of face image with and without eyeglasses. As a matter of fact, 
we can get two similar face fuzzy contours by using low frequency coefficients to 
reconstruct face images with and without eyeglasses. This proved the correctness of 
our idea. 

3.2 The Procedure of the Proposed method 

Firstly, we use the ULGBPHS method to extract local facial features. We use Gabor 
filters of different scales and orientations to perform convolution with the facial 
blocks. The convolution can be expressed by the following formulation: 

 , ,( , ) ( , ) *    G x y f x y  (1) 

where ( , )f x y represents the pixel value of segmented face image block f  and opera-

tor * denotes the convolution operation. We call the , ( , ) G x y GMP after the convo-

lution operation of face image block and Gabor filters.   and   represent the scales 

and orientations respectively. We use these GMPs in the next step to calculate their 
LBP feature maps by: 
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where , ( , ) LGBP x y  denotes each feature map after using LBP operator in each ob-

tained GMP. ( , )x y , ( , )p px y  represent each pixel in a GMP and its neighbor pixels 

in this GMP respectively. S represents the binary pattern operation and it can be rep-
resented by the following equation: 
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The histogram of a feature map block for a face image f can be represented by histo-

gram ranging in [0... 1]L  in the following format: 
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where h  denotes the histogram for a feature map of each GMP. i refers to the gray 

level in this feature map and ( , )splitLGBP x y refers to the Local Gabor Binary Pattern 

(LGBP) feature map for each corresponding segmented face image block. The calcu-
lating procedure can be expressed by: 
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We assume that we divide a face into m  blocks, therefore the r th block histogram 
is: 

 , , , , ,0 , , , 1( , ..., )      r r r LH h h  (6) 

In this paper, we set   equals to 5 and   equals to 8 respectively. Therefore, we can 

obtain the local facial features by the following equation: 

 0,0,0 0,0, 1 0,1,1 0,1, 1 7,4, 1( , ..., , , ..., , ..., )  local m m mH H H H H H  (7) 

Secondly, we use 2D-DFT to extract global facial features. We can clearly find that 
the current algorithms only focus on extraction of the local facial feature. Usually we 
can recognize a person approximately in the first sight whether he wears eyeglasses or 
not. We just know the faces from the overall prospective. Therefore, we proposed our 
method by combining global and local facial features to recognize a person. For local 
facial features, we use ULGBP method. For global facial features, we use DFT meth-
od. This process of extracting global facial features can be shown in the following 
equation: 
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where g  represents a M N  size face image, '  and '  refers to frequency variables. 

The output of the above formulation can be shown in the next equation: 

 ( ', ') ( ', ') ( ', ') F u v R u v jI u v  (9) 

( ', ') R  and ( ', ') I  refers to the real part and imaginary part of ( ', ')F u v . Via the 

DFT operation, each face can be converted into a real component and imaginary 
component in frequency domain. And we extract the low frequency part for global 
information of a face (including real part and imaginary part.). 

We use ( , )global R IH H H  to extract global facial information. RH  and IH  are fea-

ture vectors which can be calculated by: 
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( , )Rg x y  and ( , )Ig x y  represent the real and imaginary magnitude pictures of a face 

image calculated by  ( ', ') R  and ( ', ') I  respectively. 



Finally, we use a weighted fusion approach to combine the two different kinds of 

facial features. We use k
local cD  and  k

global cD  represent the Euclidean distance between 

the testing sample and training samples for local and global facial features respective-
ly, where c  refers to face classes and k  refers to the training number of the face 
images in each class. We assume 1,2, ...c C  , 1,2, ... ,k K  and the final 

distance between the testing sample and the training samples can be calculated by the 
following equation: 

     k k k
c local local c global globalcD D D  (12) 

where local and global refer to the distance weight coefficients and 

1
local global

   . k
cD  refers to score level fusion of the distances calculated by 

two different feature vectors. The final classification result can be represented by: 

 arg min k
c

c

t D  (13) 

And then the testing sample is assigned to the t th class,  1, 2, ...,t C . The Fig.1 

shows the whole procedure of feature extraction. 
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Fig. 1. Procedure of feature extraction
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Fig. 2.

Procedure of feature extraction using our proposed method 
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cal face datasets and pick out the eyeglasses faces and non-eyeglasses faces from 
these original datasets. We choose the GT [23] and CMU_PIE [24] datasets for our 

In order to reduce the negative influence caused by some irrelevant
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changed in the face images of each individual since they might affect the final reco

discard these unqualified face images of the original datasets before 
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images with eyeglasses in the beginning half part while these without eyeglasses 
set in the ending half part. Since the individuals in GT dataset do not always wear 
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illumination, facial pose and facial expressions. Besides, we prepare several pairs of 
eyeglasses and each of them has different size and color. For a volunteer, if he wears 
eyeglasses, we collect the first group of face images and register another group of 
face images by randomly selecting a pair of eyeglasses from our given eyeglasses. We 
also collect the other two groups of face images without eyeglasses which are co
trolled in the same outside scene. Fig. 2, Fig.3 and Fig.4 are some samples from our 
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Fig.3. One face sample from GT selected dataset 
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Fig. 4. One face sample from BCC_Lab_Face. 
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Fig. 5. Experimental results in Case I                     Fig. 6. Experimental results in Case II. 

5  Conclusion and Discussion 

This paper proposed a novel method to solve the challenge problem of recognition of 
eyeglass-faces. Compared with other methods, the proposed method simultaneously 
takes into account the local and global facial features. In other words, the proposed 
method can extract more discriminant features from the face, which enable it to obtain 
the best performance. Experimental results on the GT, CMU_PIE, and our collected 
BCC_Lab_Face datasets powerfully prove the effectives of the proposed method. 

In the future, we will try to employ better classification strategies in recognition 
stage to improve the overall performance of the proposed method in eyeglass-face 
recognition problem. 
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