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Abstract 
 

In this paper, we extend the idea of sparse 

representation into the high dimensional feature space 

induced by the kernel function, and propose a kernel 

based test sample sparse representation and 

classification algorithm (KTSRC) for the first time. The 

KTSRC is based on the assumption that the test sample 

can be linearly represented by a part of the training 

samples in the high dimensional feature space. 

Although the explicit form of the sample in the feature 

space is unknown, we can implement the KTSRC by the 

kernel trick. The experimental results show that the 

KTSRC achieves promising performance in face 

recognition, and outperforms the state-of-the-art 

methods. 

 

1. Introduction 
 

Sparse coding technique is widely used in image 

compressive sensing due to its good performance [1,2].     

Under the assumption that the testing face image can be 

reconstructed by the training face images from the 

same class [3], sparse coding can also be used in face 

recognition. In 2009, Wright et al. first applied the 

sparse coding technique to face recognition and 

proposed the sparse representation based classification 

(SRC) [3], which attracted much attention in the past 

few years [4-8]. In SRC, the testing face image is 

sparsely coded over the training samples. In the other 

words, the test sample is represented as a sparse 

weighted combination of the training samples. Then the 

classification is performed by comparing which class 

yields the least representation error.  

The sparsest representation model of the SRC is 

determined by solving the weights with L0 norm 

optimizer, while the solution with the L1 norm 

optimizer may not achieve the sparest model. But the 

latter is more widely used because of its relatively high 

computation efficiency. Yang et al. provided some 

reasonable supports for L1 norm optimizer based 

classification method [9]. Zhang believes that the 

collaborative representation is also appropriate for face 

recognition, and proposed the collaborative 

representation based classification (CRC) in [10]. Xu et 

al. proposed the two-phase test sample representation 

(TPTSR) that can be viewed as a local or sparse 

version of CRC, and achieved better performance [11]. 

Both CRC and TPTSR are based on the L2 norm 

optimizer. 

In this paper, we propose a test sample sparse 

representation based method. As this method works in 

the feature space induced by the kernel function [12], 

we refer to it as kernel based test sample sparse 

representation and classification algorithm (KTSRC). 

As the kernel method,  KTSRC is able to capture the 

nonlinear relationships of samples [13]. The KTSRC 

includes two stages. In the first stage of the KTSRC, 

we construct a collaborative representation for the test 

sample in the feature space. Basing on this 

representation model, we find some “nearest 

neighbors” of the test sample, which are some training 

samples having the most contributions in representing 

the test sample. In the second stage of the KTSRC, we 

represent the test sample as a new linear combination 

of the determined training samples in the feature space 

and use the representation error of each class for 

classification. Compared to pervious sample sparse 

representation based methods, our method has the 

explicit physical meaning in selecting the training 

sample for representing the test sample, which may be 

important for constructing more robust representation 

model. Besides, although the feature space is usually 

high dimensional, our method is very efficient in 

computation by using the kernel trick. 
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The rest of this paper is organized as follows: In 

section 2, we formally present the KTSRC. In Section 

3, we analyze some characteristics of the KTSRC by 

comparing it with the other sample representation 

based methods. In Section 4, the experiments are 

carried on public face datasets to evaluate the 

performance of our method. Finally, we offer the 

conclusion in Section 5. 

 

2. The kernel based SRC 
  

The KTSRC aims at finding the sparse 

representation of the test sample in feature space, and it 

is implemented by the following two stages. 

2.1 The first stage of the KTSRC  
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By the kernel trick [13], we have 
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where u  is a small positive constant and I  is the 

identity matrix. As we can see from Eq. (1), the 

different training samples have the different 

contributions in representing the test sample in the 

feature space. For the training sample 
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We identify M  training samples that have the first M  

smallest ‘distances’, and denote them by 

)'(),...,'(),'(
21 M

xxx  . We also regard that these  

M  training samples have the most contribution in 

representing the test sample. 

 

2.2  The second stage of the KTSRC  

In the second stage, the KTSRC represents the test 

sample as a linear combination of the training samples 
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Using the kernel trick, we can get  
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where 'u  is a positive constant.  

When we get the weight vector 'w , the residual of 

each class can be derived. For example, the residual of  

class i  is: 

2

2
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By comparing the residuals in feature space, we assign 

y  to the class of the training sample that has the 

minimum residual.  

 

3. The characteristics of the KTSRC 
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The sample representation based methods use 

different training samples to represent the test sample. 

For simplicity, we do not consider the space difference 

between our method and the other sample 

representation based methods, and just focus on the 

sample selection criterions of all the methods. When 

the SRC with L0 or L1 norm optimizer selects the 

training samples, it tries to minimize either L0 or L1 

norm of the weight vector, which consists of the 

weights of the training samples, and the representation 

error, which is the deviation between the test sample 

and its representation result. Besides considering the 

representation error, our method essentially 

simultaneously uses the weight and the training sample 

itself in the selection of the training samples. Such a 

“double checking” may make the classification more 

effective and robust. Using all the training samples for 

representing the test sample, the CRC may obtain more 

precise representation model for each test sample. But 

the CRC considers all the training samples equally in 

the representation model. The fact is that the test 

sample only belongs to one class, so it is probably that 

the test sample is mainly represented by only a part of 

training samples, which is also the basic assumption of 

SRC and our method.  

For all the representation based classification 

methods, the main cost of the computational time is 

spent on computing the weight vector. Obviously, the 

computation time of SRC with L0 norm optimizer is 

the most, because it needs to solve a NP-hard problem. 

SRC with L1 norm optimizer can speed up the process 

of the solution by some iterative algorithms. Our 

method, CRC [10] and TPTSR [11] use L2 norm 

optimizer, and they can easily get the analytic solution 

by solving the linear equations. So our method, CRC 

and TPTSR are faster than both SRC with L0 norm 

optimizer and SRC with L1 norm optimizer. In detail, 

our method obtains the weight vector by solving the 

linear equations with n variables in Eq. (3), whose 

number of equations is equal to that of variables, while 

the CRC and the TPTSR method obtain the weight 

vector by solving the  linear equations with n variables, 

whose number of equations is equal to that of the 

features of the sample in original space.  

 

4. Experiments 
 

The proposed method was applied to face 

recognition. We adopted the Gaussian kernel in the 

form of )/||||exp(),(
2

2
yxyxk  in the 

experiments, where   is set to 1. The first face dataset 

used in experiments is the AR dataset. It contains over 

4000 face images of 126 people. The face portion of 

each image is manually cropped to the size of 50 40. 

We used only the images of 120 subjects and 14 non-

occluded face images of each subject to test different 

methods. We pick 7 images of each subject at random 

for training. Remaining 7 images of each subject are 

employed for testing. 10 randomly possible selections 

of training images per class are chosen in the 

experiments, and the experiments are repeated 10 times 

with these selections. Figure 1 and Figure 2 show the 

average classification error rate and time of our method 

and TPTSR with different “nearest neighbors”. The 

lowest average error rate of our method and TPTSR 

were obtained by using 200 and 120 “nearest 

neighbors”, respectively. Table 1 shows the average 

classification error rates and time of our method using 

200 “nearest neighbors”, TPTSR using 120 “nearest 

neighbors”, CRC and SRC. Our method achieves the 

lowest classification average error rate and the highest 

classification efficiency among all the methods on this 

dataset.  

 

 
Figure 1. The average error classification rate (%) of 

our method and TPTSR on AR. 

 

 
Figure 2. The average classification time (s) of our 

method and TPTSR on AR  

 

Table 1. The performance of the methods on AR 
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Methods KTSRC TPTSR CRC SRC 

Average 

classification error 

rate (%) 

0.64 0.92 1.02 1.07 

Average 

classification time 

per sample (s) 

0.37 0.44 0.40 4.23 

The Carnegie Mellon University Pose, Illumination 

and Expression  (CMU PIE) dataset is also used in our 

experiments. The CMU PIE dataset consists of more 

than 40,000 facial images of 68 people. In the 

construction of this dataset, the images of each 

individual are captured under 43 different illumination 

conditions, across 13 different poses, and with 4 

different expressions. All the images are resized to a 

resolution of 64 64 pixels. The following experiments 

were carried on pose09 subset. This subset includes 24 

images for each individual. 8, 10, 12 training images 

per class are used for training, and the remaining 

samples are used for testing. We set the “nearest 

neighbors” number be 30, 50, and 100 in our method 

and TPTSR. CRC and SRC are also carried on this 

dataset. Table 2 presents the classification results of the 

four methods. Both our method and TPTSR 

outperforms CRC and SRC greatly in classification 

accuracy. Compared to TPTSR, our method achieves 

the lower classification error rate, when they use the 

same “nearest neighbors” number.  

Table 2. The average error classification rate of the 

methods on PIE  

Methods 

(“nearest 

neighbors” 

number) 

Error rate (%) 

8 training 

images 

per class 

10 

training 

images 

per class 

12 

training 

images 

per class 

KTSRC(30) 3.86 4.20 5.15 

TPTSR(30 ) 4.60 5.57 6.74 

KTSRC (50) 3.40 3.99 5.02 

TPTSR(50) 4.41 5.04 6.13 

KTSRC (100) 3.21 3.67 4.90 

TPTSR(100 ) 3.76 5.04 5.75 

CRC 5.15 6.30 7.72 

SRC 5.61 7.46 7.48 

 

5. Conclusion  
 

The previous sample representation based 

classification methods work in the original space, 

whereas the KTSRC proposed in this paper is 

implemented in a high dimensional feature space for 

the first time. As the kernel method, KTSRC is able to 

capture the nonlinear relationships of samples. By the 

kernel trick, we can implement our method using the 

computational time of the linear method. The 

experimental results show that KTSRC has better 

performance than SRC, CRC and TPTSR. In the 

further study, we will explore how to automatically set 

the “nearest neighbors” number for obtaining the best 

classification performance. 
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