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a b s t r a c t

Deep convolutional neural networks (CNNs) have attracted great attention in the field of image
denoising. However, there are two drawbacks: (1) it is very difficult to train a deeper CNN for denoising
tasks, and (2) most of deeper CNNs suffer from performance saturation. In this paper, we report the
design of a novel network called a batch-renormalization denoising network (BRDNet). Specifically, we
combine two networks to increase the width of the network, and thus obtain more features. Because
batch renormalization is fused into BRDNet, we can address the internal covariate shift and small
mini-batch problems. Residual learning is also adopted in a holistic way to facilitate the network
training. Dilated convolutions are exploited to extract more information for denoising tasks. Extensive
experimental results show that BRDNet outperforms state-of-the-art image-denoising methods. The
code of BRDNet is accessible at http://www.yongxu.org/lunwen.html.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Image denoising aims to recover a clean image from a noisy
image, which is a classical-inverse problem in computer vision.
Since image-denoising techniques can recover original images
well, and restore the details, they are widely applied in many
fields, such as remote-sensing image (Du, Wei, & Liu, 2019) and
medical image (Li, Yin, & Fang, 2012). For a noisy image y, the
problem of image denoising can be represented by y = x + υ ,
where x is the original image (also referred to as the clean image)
and υ represents additive Gaussian noise (AWGN) with standard
deviation σ . In the view of Bayesian rule, image-prior-based
methods are good choices for image denoising. For example,
block-matching and three-dimensional (3D) filtering (BM3D) ex-
ploited collaborative alteration to enhance the sparsity for image
denoising (Dabov, Foi, Katkovnik, & Egiazarian, 2007). The si-
multaneous use of sparse representation based on dictionary
learning and non-local means based on self-similarities can re-
move the noise from noisy images (Mairal, Bach, Ponce, Sapiro, &
Zisserman, 2009). Non-locally centralized sparse representation
(NCSR) centralized the sparse coding to suppress the sparse-
coding noise (Dong, Zhang, Shi, & Li, 2013). Weighted nuclear
norm minimization (WNNM) (Gu, Zhang, Zuo, & Feng, 2014),
Markov random field (MRF) (Barbu, 2009a, 2009b; Malfait &
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Roose, 1997), gradient methods (Beck & Teboulle, 2009; Zuo,
Zhang, Song, Zhang, & Gao, 2014) and total-variation (TV) meth-
ods (Chambolle, 2004; Rudin, Osher, & Fatemi, 1992) are also very
popular image-denoising methods.

Although the above methods have shown excellent perfor-
mance in image denoising, most of these methods are faced
with two major challenges (Zhang, Zuo, Chen, Meng & Zhang,
2017): (1) manual tuning of the penalty parameters, and (2) com-
plex optimized algorithms. Owing to the adaptive strong learning
ability, deep-learning techniques, especially convolutional neural
networks (CNNs) (Lin, Milan, Shen, & Reid, 2017), have become
the most favored methods of addressing these issues (Dong, Loy,
He, & Tang, 2016; Kim, Kwon Lee, & Mu Lee, 2016a; Tai, Yang,
& Liu, 2017). Specifically, the recently proposed deep CNNs have
been widely applied in image restoration (Lai, Huang, Ahuja, &
Yang, 2017). For example, low-resolution images were directly
mapped into high-resolution images by a CNN (Dong et al., 2016).
Residual and iterative ideas were embedded into the CNN to
improve the performance for image super-resolution (Tai et al.,
2017). The combination of an optimization method and a CNN
was a good tool for image super-resolution (Ren, He, & Pu, 2018;
Wang, Liu, Yang, Han, & Huang, 2015). Increasing the diversity of
the network was also very effective for image restoration (Zhang,
Tian, Kong, Zhong, & Fu, 2018). CNNs with prior knowledge can
better deal with real-noisy images (Zhang, Zuo, Gu & Zhang,
2017). Optimizing the network architecture was popular for im-
age restoration (Jiao, Tu, He, & Lau, 2017). Although the above
deep-network methods can improve the denoising performance,
most of these methods suffer from the problems of performance
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saturation (i.e., vanishing or exploding gradients), He, Zhang, Ren,
and Sun (2016) and the difficulty of training deep networks (Ioffe
& Szegedy, 2015; Pascanu, Mikolov, & Bengio, 2013). Additionally,
their partial networks with batch normalization (BN) (Ioffe &
Szegedy, 2015) can generate errors in small mini-batches. Some
of the above methods have a very high computational cost for
image restoration.

In this paper, we propose a novel network for image denois-
ing named a batch-renormalization denoising network (BRDNet).
First, BRDNet combines two networks to increase the width of
BRDNet and obtain more features for image denoising. Next,
BRDNet uses batch renormalization (BRN) (Ioffe, 2017) to address
the small mini-batch problem, and applies residual learning (RL)
with skip connection (He et al., 2016) to obtain clean images.
Finally, to reduce the computational cost, dilation convolutions
(Dilated Conv) (Yu & Koltun, 2015) are used to capture more fea-
tures. Also, extensive experiments demonstrate that the proposed
BRDNet outperforms state-of-the-art methods, e.g., a denoising
convolutional neural network (DnCNN) (Zhang, Zuo, Chen et al.,
2017), a fast and flexible denoising network (FFDNet) (Zhang, Zuo,
& Zhang, 2018a), and an image-restoration CNN (IRCNN) (Zhang,
Zuo, Gu & Zhang, 2017). Additionally, the extension of BRDNet
also has good effects on both synthetic and real noisy images.

The proposed method comprising BRDNet has the following
contributions:

(1) A novel deep CNN is proposed for image denoising in
this paper, which can directly obtain a clean image from a noisy
image. Unlike the existing CNN denoising methods, the proposed
network increases the width rather than depth to enhance the
learning ability of the denoising networks.

(2) Batch renormalization is used for image denoising, which
can address small mini-batch problems. Moreover, BRN can also
accelerate the convergence of training the network, and does not
have any requirement for a specific hardware platform. As a con-
sequence, the combination of BRN and CNN for image denoising
is a good choice for low-configuration hardware devices, such as
GTX 960 and GTX 970.

(3) BRDNet uses dilated convolutions to enlarge the receptive
field, which enables the network to extract more context infor-
mation and reduce the computational cost. Moreover, it can also
prevent vanishing or exploding gradients. In addition, residual
learning can further promote the image-denoising performance.

(4) Experimental results prove that BRDNet is robust to both
synthetic and real noisy images.

The rest of this paper is organized as follows. In Section 2, we
provide related techniques of the proposed method. In Section 3,
we offer the proposed method. In Section 4, we present experi-
mental results of the proposed method. In Section 5, we present
conclusions.

2. Related work

2.1. Deep CNNs for image denoising

Deep CNNs are very popular for image denoising. For example,
a 17-layer DnCNN (Zhang, Zuo, Chen et al., 2017) has been pro-
posed as a CNN-based method of predicting noise. This baseline
improves the denoising performance by stacking multiple convo-
lutional layers, a skip connection, and batch normalization (Ioffe
& Szegedy, 2015). The combination of a CNN and a prior was
effective for blind denoising (Zhang et al., 2018a). A discrimi-
native learning method with an optimization method was used
to deal with real noisy images (Zhang, Zuo, Gu & Zhang, 2017).
Improving a spatial activation function was exploited to reduce
the computational cost in image denoising (Kligvasser, Shaham,
& Michaeli, 2017). The recently proposed generative adversarial

network (GAN) is very popular for image denoising (Chen, Chen,
Chao, & Yang, 2018). A CNN with a prior was also very effective
for noise of certain type (Cruz, Foi, Katkovnik, & Egiazarian, 2018;
Dong et al., 2018; Zhang & Zuo, 2017). The CNN is very robust
for other applications, such as medical images (Latif, Iskandar,
Alghazo, Butt, & Khan, 2018). The aforementioned deep-network-
based-CNN methods (Si-Yao et al., 2018) have achieved better
performance than BM3D. Motivated by that, we use a deep CNN
for image denoising.

2.2. Batch renormalization

To the best of our knowledge, the manner of end-to-end
connection is an important factor for the success of a CNN. A
CNN generally consists of an activation function (Krizhevsky,
Sutskever, & Hinton, 2012), pooling operation (He, Zhang, Ren,
& Sun, 2014), initial parameter setting (He, Zhang, Ren, & Sun,
2015), and gradient-based optimization methods (Kingma & Ba,
2014) and convolutional kernels. Although these plug-in compo-
nents can improve the performance in image applications com-
pared with traditional methods, such as multi-layer perception
(MLP), the distribution of training data is clearly changed by a
convolutional operation. The amount of training data is larger, the
predicted results will be more inaccurate. To solve this problem,
BN was developed (Ioffe & Szegedy, 2015). The BN method used a
normalization operation, and scale and shift operations to resolve
the internal covariate shift problem. The proposed BN method can
not only prevent exploding or vanishing gradients, and accelerate
the convergence of training the network, but can also improve
performance. However, BN was invalid for small mini-batches,
which seriously limited the applications of BN, such as for image
detection and video tracking (Ioffe, 2017). Inspired by the fact
that BRN can effectively address the dilemma of BN, because
BRN used individual samples instead of the entire mini-batch to
approximate the distribution of training data. BRN can effectively
solve the small mini-batch size and non-independent identically
distributed mini-batch (non-i.i.d. mini-batch) problems. The non-
i.i.d. mini-batch problem is that samples in same mini batch
are non-independent identically and distributed, which can make
machine learning or deep learning methods have poor perfor-
mance. For more information about BRN, please refer to Ioffe
(2017). As a consequence, a CNN with BRN is a good choice for
image denoising.

2.3. Residual learning and dilated convolution

Residual learning was proposed by He et al. (2016) to achieve
the tradeoff between increasing depth and addressing network
performance degradation. It fused extracted features and the
input of several stack layers as the input of the current layer,
which can solve the vanishing or exploding gradients problem.
To this end, many variants of residual neural network (ResNet)
were proposed for low-level-vision tasks (Kim, Kwon Lee, &
Mu Lee, 2016b; Kokkinos & Lefkimmiatis, 2018). For example,
very deep super-resolution (VDSR) (Kim et al., 2016b) exploited
global residual learning (GRL) for image restoration. GRL and
gradient clipping operations can make VDSR accelerate the con-
vergence. A deeply recursive convolutional network (DRCN) (Kim
et al., 2016a) combined a recursive mechanism and GRL to ad-
dress the overfitting problem for image restoration. A deep re-
cursive residual network (DRRN) integrated GRL, local RL, and
recursive learning to improve image-restoration performance (Tai
et al., 2017).

Extracting more suitable features is important for image recog-
nition (Fei, Lu, Jia, Teng, & Zhang, 2018; Guo, Wu, & Xu, 2017; Lu,
Yuan, Zhu, & Li, 2018; Wen, Fang, Xu, Tian, & Fei, 2018; Wen,
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Xu, Li, Ma, & Xu, 2018), image segmentation (Long, Shelhamer, &
Darrell, 2015), object detection (Chu, Wu, Gu, & Xu, 2017), image
denoising (Du et al., 2017), and image super-resolution (Zhang,
Zuo, Chen et al., 2017; Zhang et al., 2018a). Traditional CNNs used
pooling operations to reduce the dimensionality from original
images. However, the results suffered from information loss.
Enlarging the receptive field was one of the effective approaches
used to address this issue. Increasing depth and filter size are
very popular ways to enlarge the receptive field. However, in-
creasing depth may lead to network performance degradation.
Enlarging filter size will increase the number of parameters and
computational cost. The recently proposed dilated convolution
used 3 × 3 filters and large depth to address the above receptive
field problems (Yu & Koltun, 2015). The receptive field size of a
dilated convolution can use the dilation factor f and number of
dilated convolution layers, n, as (4n+ 1)×(4n+ 1). For example,
the designed network has five dilated convolution layers with
3 × 3 filters when f = 2 and n = 10, and the receptive field size
of the network is 41 × 41, which is equivalent to a common CNN
with 20 layers. Thus, the dilated convolution technique has great
prospects. Existing studies show that dilated convolutions also
have good effects on image denoising (Wang, Sun, & Hu, 2017).
However, some scholars ignore the combination of BRN, RL, and
dilated convolutions in low-level-vision tasks.

3. Proposed CNN-based denoising method

In this section, we propose BRDNet based on a CNN for image
denoising. Generally, training of a deep CNN model includes two
stages for specific task: network design and model learning on
training samples. For the design of network architecture, we
concatenated two CNNs to design a novel network. For the model
learning, we integrated BRN, RL, and dilated convolutions into the
designed network for training a denoising model.

3.1. Network architecture

In general, different network architectures can extract dif-
ferent features (Zhang et al., 2018). These extracted features
are complementary in image denoising. Increasing the width
of the network to enhance performance is a good choice for
image denoising. Thus, we propose a novel network based on
two networks as shown in Fig. 1. This network is called BRD-
Net and consists of two different networks: upper and lower
networks. The upper network only consists of RL and BRN. The
lower network includes BRN, RL, and dilated convolutions. It is
known that the receptive field is larger, the designed network
will have higher computational cost. Therefore, we choose one
network (the lower network) to use dilated convolutions. Taking
into account the balance of performance and efficiency, the 2–8
and 10–15 layers of the lower network use dilated convolutions
to capture more context information. The first, ninth sixteenth
layers use BRN to normalize data, which makes the outputs of the
two sub-networks keep the same distribution. Also, BRN is very
useful for small-batch-size tasks, which is very beneficial for low-
configuration hardware platforms, such as GTX960 and GTX970.
Next, an RL technique is fused into two-channel networks to
improve performance. The effectiveness of each technique was
tested (see Section 4.3), and the performance of this network
is shown in Section 4. The detailed information of BRDNet is
introduced in the latter section.

The depth of the upper network (also called the first network)
is 17. It consists of two different types of layers: Conv+BRN+ReLU
and Conv. Conv, BRN, and ReLU are referred to as convolution,
batch renormalization, and rectified linear units, respectively.

Conv+BRN+ReLU means that convolution, batch renormaliza-
tion, and rectified linear units are implemented in sequence.
Layers 1−16 are Conv+BRN+ReLU and the 17th layer is Conv.
Except for the first and last layers, the size of each layer is
64×3×3×64. The sizes of the first and last layers are c×3×3×64
and 64× 3× 3× c , respectively, where c denotes the number of
channels. Here c = 1 and c = 3 represent the numbers of the
pixel channels of gray and color images, respectively.

The receptive field can capture more information from the
context with the help of the dilation factor. For example, the
receptive field size is (2l+1)× (2l+1) when the dilation factor in
the first network is 1, where l is the number of layers. In addition,
⊕ denotes the implementation of the RL idea in this paper, that
is, the subtraction operation in BRDNet in practice. The ‘Concat’
operation is used to concatenate two sub-networks in BRDNet
by their channels. For example, if the output sizes of the above
two sub-networks are 64 × 3 × 3 × c , the output size of their
combinations by concatenation operation is 64× 3× 3× 2c.

We refer to the lower network with a depth of 17 as the
second network. The first, ninth, and sixteenth layers in the
second network are Conv+BRN+ReLU. Layers 2–8 and 10–15 are
dilated convolutions. The final layer is Conv. The filter size of each
layer is the same as that for the first network. However, layers
2–8 and 10–15 receive more information from a broader field,
because the dilation factor is 2. Specifically, for layers 2–8 and 10–
15, their receptive field size can be computed by (4n+1))(4n+1),
respectively. As a result, the receptive fields of all 17 layers are
3, (7, 11, 15, 19, 23, 27, 31), 33, (35, 39, 43, 47, 51, 55, 59), and
61, which achieves a performance comparable to that with 30
layers under the same filter-size settings. In other words, dilated
convolutions can reduce computational cost for image denoising.
Also, the dilated convolutions and two sub-networks can reduce
depth. That is, BRDNet has only 18 layers, which is relatively
shallow, and does not result in vanishing or exploding gradients.

The merits of BRDNet as described above are four-fold: (1) it
increases width by using two sub-networks rather than depth to
improve the denoising performance, (2) it uses BRN to address
small-batch and internal covariate-shift problems, (3) it applies
RL to prevent vanishing or exploding gradients, and (4) it utilizes
dilated convolutions to save computational cost. Further, exper-
imental results show that BRDNet is more effective than other
state-of-the-art denoising methods, such as DNCNN, FFDNet, and
IRCNN, which proves the effectiveness of the proposed network.
In Section 4.3, we present results of testing the contributions of
RL, BRN, and dilated convolutions for BRDNet, respectively.

3.2. Loss function

In our work, motivated by GooLeNet and DnCNN, we choose
the mean-square error (MSE) to obtain the optimal parameters
of the network. Let x be a clean image and y be a noisy image.
When training dataset {xj, yj}Nj=1 is given, BRDNet uses RL to
obtain a model and predict a residual image f (y), where f (y)
denotes the noise mapping. Then, we transform a noisy image
into a clean image via x = y − f (y). In other words, we have
f (y) = y− x, and the training samples approximately obtain this
equality. Specifically, the optimal parameters can be obtained by
minimizing the following loss function with Adam (Kingma & Ba,
2014):

l(θ ) =
1
2N

N∑
j=1

∥f (yi, θ )− (yi − xi)∥2 , (1)

where N is the number of noisy-image patches and θ denotes the
parameters of the proposed model. In general, different regions of
an image have different structural information. To this end, the
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Fig. 1. Architecture of proposed BRDNet network.

noisy-image patches are easier to use to learn position-specific
features than the entire noisy image (Zoran &Weiss, 2011). More-
over, using noisy-image patches can significantly save memory
and reduce computational cost compared with the entire noisy
image (Zoran & Weiss, 2011). As seen in Eq. (1), it can be known
that the objective function is relevant to the noisy image y, clean
image x, and residual image f (y).

3.3. Integration of BRN, dilated convolution, and RL

One advantage of BRDNet is the combination of two different
and complementary networks for image denoising. As shown
in Fig. 1, the first network mainly includes BRN and residual
learning. The second network integrates BRN, dilated convolution,
and RL. From Fig. 1, we can see that BRDNet can obtain a latent
clean image by predicting additive white Gaussian noise with
standard deviation σ (σ = 75). That is, at first, BRDNet can be
used to predict the noise υ . Then, it uses the obtained noise υ
to produce clean image x. The designed network adheres to the
following rules.

First, it is known that deeper networks can result in vanish-
ing or exploding gradients. Thus, we design a novel denoising
network called BRDNet, that uses two different sub-networks to
reduce the depth of the network and obtain more features. The
depth is reduced and it does not generate vanishing or exploding
gradients.

Second, the distribution of training data is changed through
a convolutional kernel. BN is considered to be a good choice
for addressing the problem. However, it is not very effective
when the batch size is small, which limits its applications. In
real applications, many hardware devices limited memory, and
can run programs with high computational complexity. Thus, we
use BRN instead of BN to normalize the data, and improve the
convergence speed of the denoising network. The principle of
BRN is as follows (Ioffe, 2017).

Third, it is known that the deep network can extract more
accurate features. However, a deep network will lose some con-
text information. As a consequence, we use dilated convolutions
in BRDNet to enlarge the receptive field and capture more con-
text information. Specifically, dilated convolutions can use fewer
layers to play the same role as more layers. It is known from
previous research that increasing the width can extract more
features (Szegedy et al., 2015), and BRDNet has the network
architecture, that increases the width of the network rather than
its depth to extract more robust features (referred to as a two-
channel network). Therefore, the combination of two-channel
networks and dilated convolution is very effective in improving
image-denoising performance. Moreover, reduction of the net-
work depth can also prevent vanishing or exploding gradients.
In this way, BRDNet can reduce the computational cost. How-
ever, the lower network has only dilated convolutions, which
can make the two sub-networks generate complementary fea-
tures and improve the network’s generalization ability. It seems

Algorithm 1 The implementations of Batch Renormalization
Input: Values of x over a training mini-batch B = {x1...m};
parameters γ , β; current moving mean µ and standard de-
viation σ ; moving average update rate α; maximum allowed
corrections τmax, dmax.
Output: yi = BatchRenorm(xi); updated µ ,σ .

µB ←
1
m

m∑
i=1

xi.

σB ←

√
ε + 1

m

m∑
i=1

(xi − µB)2.

r ← stop_grdient(clip
[
1/rmax, rmax

]

(
σB
σ

)
).

d← stop_grdient(clip[−dmax,dmax]

(
µB−µ

σ

)
).

x̂i ←
xi−µB

σB
× γ + d.

yi ← γ x̂i + β .
µ := µ+ α(µB − µ) //Update moving averages.
σ := σ + α(σB − σ ).
Inference: y← γ ×

x−µ

σ
+ β .

that, although the two sub-networks do not have deep depths,
integrating them can perform very well in comparison with very
deep single networks, e.g., FFDNet and IRCNN. In our opinion,
dilated convolutions have similar functions to deep networks in
increasing the size of the receptive field. Finally, we use a RL
method in BRDNet to improve performance again.

4. Experimental results

In this section, we mainly introduce the experimental re-
sults from the following aspects: datasets, experimental setting,
component analysis, BRDNet for gray synthetic noisy images,
and for color synthetic noisy images, real-noisy-image denoising,
and running time. First, we present the parameters of BRDNet.
Next, we prove the effectiveness of main techniques detailed in
this paper. Then, the performance of BRDNet on the BSD68 and
Set12 (Roth & Black, 2009) public datasets for gray synthetic noisy
image denoising is reported. Several state-of-the-art methods for
gray synthetic noisy image denoising, such as BM3D (Dabov et al.,
2007), WNNM (Gu et al., 2014), MLP (Burger, Schuler, & Harmel-
ing, 2012), trainable nonlinear reaction diffusion (TNRD) (Chen &
Pock, 2017), expected patch log likelihood (EPLL) (Zoran & Weiss,
2011), cascade of shrinkage fields (CSF) (Schmidt & Roth, 2014),
DnCNN (Zhang, Zuo, Chen et al., 2017), IRCNN (Zhang, Zuo, Gu
& Zhang, 2017), and FFDNet (Zhang et al., 2018a) are chosen for
comparison with the proposed method.

To test the performance of the proposed method, we use
the recognized peak signal-to-noise ratio (PSNR) (Zhang, Zuo, &
Zhang, 2018b) and visual effect to verify the denoising effect. If
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the PSNR value of the denoising method on the test dataset is
larger, the denoising method has exhibited better performance.
Furthermore, to clarify the visual effect on the denoised images,
we zoom in on one area from one obtained potential clean image
to demonstrate it. If the magnified area is clearer, we deem that
the tested method is more effective. In particular, PSNR = 10 ∗
log10 (MAX)2/MSE, where MAX represents the maximum pixel
value of each image. It is noted that MAX is 1.0 in Figs. 3–8.
The MSE is the error between a real clean image and a predicted
clean image, and computed by MSE = 1

n

∑n
j=1

∑n
i=1 (x

i
j − yij)

2,
where xij and yij denote the pixels of point (i, j) from a given clean
and recovered clean images, respectively. To give an example, we
assume that a given real clean image from cc dataset is xx in
Section 4.5, the corresponding recovered clean image is yy from
denoising model of BRDNet. MAX is the maximum pixel between
xx and yy. Thus, their PSNR values can be computed by PSNR =
10∗log10 (MAX)2/MSE. Next, we show the performance of BRDNet
on color synthetic noisy images denoising. We also illustrate the
results of our method and several popular methods on real noisy
images. Specifically, we refer to Xu, Zhang, and Zhang (2018),
Zhang, Zuo, Chen et al. (2017), Zhang, Zuo, Gu and Zhang (2017)
and Zhang et al. (2018a), and obtain convincing denoising results
of other comparative methods for synthetic and real noisy images.
Finally, we measure the computational cost, the results of which
show that our method is also very competitive.

4.1. Datasets

4.1.1. Training datasets
For Gaussian image denoising, we used 3,859 images from the

Waterloo Exploration Database to train the model. The training
images were cropped into 20× 58, 319 patches in *.bmp format.
The patch size was set as 50 × 50. The patch size was set
as 50 × 50 for the following reasons: our designed network
consists of two sub-networks, the depth of each being 17, the
depth of BRDNet is 18, and the receptive field of one network
is 2 × 17 + 1 = 35 and that of the other is 61. If patch
size is obviously greater than receptive field size, the designed
network will consume more computational cost. Therefore, we
calculated the average value of the receptive field size of the two
sub-networks as the receptive field of BRDNet, and its size is
[(35+ 61)+ 2]/2 = 49. Here the patch size is set as 50 × 50 (50
>49) in this work. It is noted that patch size of 50 is less receptive
field size of the second network, which cannot fully map the
second sub-network. However, the patch size is greater receptive
field size of the first network, which can provide complementary
information for the second network. Thus, to make a tradeoff
between efficiency and performance, patch size of 50 is proper.

For real noisy image denoising, we used 100 images from
Xu, Li, Liang, Zhang, and Zhang (2018) to train the model. These
real noisy images were captured by different cameras, i.e., Canon
5D Mark II, Canon 80D, Canon 600D, Nikon D800, and Sony A7
II, the sensor sizes of the cameras and scenes are all different.
The training images were cropped into 423,200 patches in *.bmp
format. Each patch size is the same as the gray and color image
patch sizes.

4.1.2. Test datasets
For gray-noisy image denoising, we use the Gaussian noise to

train the denoising model. According to the DnCNN and FFDNet
methods, we choose Berkeley segmentation dataset 68 (BSD68)
and Set12 (Roth & Black, 2009) as test datasets. The BSD68 dataset
includes 68 natural images with a size of 481× 321 or 321× 481.
The Set12 is composed of 12 gray images.

For color-noisy image denoising, we use CBSD68, Kodak24
(Franzen, 1999), and McMaster to test the BRDNet for image

denoising. The CBSD68 includes 68 color images and is the same
background as BSD68. The Kodak24 is composed of 24 natural
images and their sizes are 500 × 500. The McMaster consists of
18 color images and their sizes are 500 × 500.

It is known that real noisy images are usually captured by
cameras of different types with different ISO values (Plotz &
Roth, 2017). Motivated by the fact, we choose cc (Nam, Hwang,
Matsushita, & Joo Kim, 2016) as the test dataset for real noisy
image, as shown in Fig. 2. The cc dataset has 15 noisy images, that
are captured by three different cameras, i.e., Nikon D800, Nikon
D600, and Canon 5D Mark III with different ISO values (i.e., 1600,
3200, and 6400).

4.2. Experimental setting

We set the BRDNet depth as 18 for gray synthetic, color syn-
thetic and real noisy images denoising. The objective function is
used to predict the residual image as shown in Eq. (1). We utilize
learning rate of 1 × 10−3, beta_1 of 0.9, beta_2 of 0.999, epsilon
of 1 × 10−8, and the method of He et al. (2015) to initialize the
weights. The mini-batch size is 20. The number of epochs is 50 for
training the BRDNet models. The learning rates of the 50 epochs
vary from 1 × 10−3 to 1 × 10−4.

We apply the Keras packet (Chollet et al., 2015) to train the
proposed BRDNet denoising model. All experiments are imple-
mented in the Ubuntu 14.04 and Python 2.7 environments, and
run on a PC with an Intel Core i7-6700 CPU, 16 GB RAM, and a
Nvidia GeForce GTX 1080Ti graphical processing unit (GPU). The
Nvidia CUDA of 8.0 and cuDNN of 7.5 are chosen to accelerate the
computational ability of the GPU. It takes approximately 144 h to
train the proposed model for color synthetic noisy images.

4.3. Component analysis

To test the effectiveness of each technique for BRDNet on
image denoising, we design six visual images. The effectiveness of
the RL for image denoising is shown in Figs. 3 and 4. It is obvious
from the figures that, the average PSNR of BRDNet without a
RL operation is lower than that of BRDNet with a RL operation.
The RL techniques in two sub-networks are used to obtain clean
images, respectively. Then, obtained clean images rather than
noise mapping are fused to obtain cleaner image, which can
prevent enhancement of noise. It is noted that although fused
clean image can improve the quality of image, it may result in
part pixels are excessively prominent in comparison with the
given clean image. Thus, the convolution in the last layer is used
to eliminate the naïve effect above and convert the obtained
features into corresponding noise mapping. Finally, the RL in
the end of BRDNet is used to obtain the final clean image via
noisy image and predicted noise mapping. The performance of
using three RLs and only one RL in BRDNet for image denoising
can be shown via ‘Two sub-networks without RL’ and ‘BRDNet’
in Table 1. In addition, some other plug-in units, such as BRN
and dilated convolutions, are also very beneficial to improve the
denoising performance.

We use the BRN technique to improve the image-denoising
performance. BRN uses individual samples instead of the entire
mini-batch to approximate the distribution of training data. This
approach is not only effective in tackling small-batch-size and
non-i.i.d. mini-batch problems, but also inherits the aforemen-
tioned merits of BN. BRN was described in detail in Section 2.3.
To verify that BRN is more effective in image denoising than BN
with a small batch, we design several experiments with σ = 15.
Batch sizes are set to 20, 32, and 64, respectively. The training
dataset is the Waterloo Exploration Database (Ma et al., 2017).
The test set is McMaster (Zhang, Wu, Buades, & Li, 2011). From
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Fig. 2. Twelve images from the cc dataset.

Table 1
Gaussian denoising results of eight specific models for color synthetic noisy
images. All four models were trained with σ = 50 and evaluated on the CBSD68
dataset.
Methods Epochs = 50

Upper network 27.33
Lower network 28.06
Lower network without dilated convolutions 27.74
Two sub-networks with dilated convolutions 28.16
Two sub-networks without RL 28.11
DnCNN 28.01
Concatenation of two DnCNNs 28.01
BRDNet 28.16

Table 2, when the batch size is smaller, BRN’s performance is
better. For example, BRDNet exhibits excellent performance for
Batchsize = 20. Thus, BRN is more suitable for image denoising
under small mini-batch conditions. Small mini-batches are very

suitable to low-configuration hardware, thus, BRDNet with BRN
is very appropriate for real applications.

The integration of RL and BRN for image denoising is also
interesting. Accordingly, we perform comparative experiments,
the results of which are in Figs. 5 and 6, where the average PSNR
of BRN with RL is higher than that of single RL in image denoising.

Dilated convolution allows the network to capture more infor-
mation from the context by enlarging the receptive field. Thus,
dilated convolutions are used in BRDNet for image denoising.
The effectiveness of dilated convolutions is shown in Figs. 7 and
8. It can be seen from the figures that the performance of the
combination of RL, BRN, and dilated convolution is better than
that of the combination of RL and BRN for image denoising.
Moreover, the PSNR of the lower network is higher than that of
the lower network without dilated convolutions from Table 1,
which also proves the effectiveness of dilated convolutions in
BRDNet for image denoising.
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Fig. 3. Gaussian denoising results for two specific models, one consisting of RL,
and the other of only convolutional layers. Both were trained with σ = 15.
Results for 68 images from the CBSD68 dataset were evaluated.

Fig. 4. Gaussian denoising results for two specific models, one consisting of RL
and the other of only convolutional layers. Both were trained with σ = 50.
Results for 68 images from the CBSD68 dataset were evaluated.

Table 2
Comparison of image-denoising results for BRN and BN in proposed network.
Datasets Methods Batchsize = 20 Batchsize = 32 Batchsize = 64

McMaster BRN 35.08 35.09 35.08
BN 34.94 35.07 35.07

It is known that different network architectures can generate
different features (Zhang et al., 2018) that are complementary in
image denoising. Thus, we design two different network architec-
tures for BRNet (i.e., upper and lower networks) to improve de-
noising performance. The fusion of two networks is more useful
than a single network in image denoising. For example, BRDNet

Fig. 5. Gaussian denoising results for two specific models, one consisting of BRN
and RL and the other of only RL. Both were trained with σ = 15. Results for
68 images from the CBSD68 dataset were evaluated.

Fig. 6. Gaussian denoising results for two specific models, one consisting of BRN
and RL and the other of RL only. Both were trained with σ = 50. Results for
68 images from the CBSD68 dataset were evaluated.

has a better PSNR than those of the upper and lower networks
when σ = 50, as shown Table 1. In addition, it is noteworthy
that we use only dilated convolutions in the lower network for
image denoising, which can not only produce a greater difference
between two networks, but also have a higher efficiency than
those of two networks with dilated convolutions, proved in Ta-
ble 3. When two sub-networks (i.e., two lower networks) utilize
dilated convolutions for 2–8 and 10–15 layers, their running
time is higher than that of BRNet. However, their performance
is the same as shown in Table 1. Thus, network architecture of
BRDNet is proper. Further, BRDNet’s performance is illustrated in
Sections 4.4–4.6.

Table 3
Running time of two different methods for denoising images of sizes 256 × 256, 512 × 512 and 1024 × 1024.
Methods Device 256 × 256 512 × 512 1024 × 1024

Two sub-networks with dilated convolutions GPU 0.081 0.238 0.935
BRDNet GPU 0.062 0.207 0.788
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Fig. 7. Gaussian denoising results of two specific models, one consisting of BRN
and RL and the other of RL, BRN, and Dilated Conv. Both were trained with σ

= 15. Results for 68 images from the CBSD68 dataset were evaluated.

Fig. 8. Gaussian denoising results of two specific models, one consisting of BRN
and RL and the other consists of RL, BRN and Dilated Conv. Both were trained
with σ = 50. Results for 68 images from the CBSD68 were evaluated.

4.4. BRDNet for gray- and color-image denoising

For gray-noisy image denoising, BRDNet and several state-
of-the-art methods (i.e., BM3D, WNNM, EPLL, MLP, CFS, TNRD,
DnCNN, IRCNN and FFDNet) are used to conduct experiments
on the BSD68. As shown in Table 4, the proposed BRDNet can
obtain the highest PSNR, which is better than those of the bench-
marks, BM3D and DnCNN, for gray-image denoising. The best and
second-best PSNR results for different σ values are highlighted in
red and blue, respectively, in Table 4. The average PSNR of BRDNet
is 0.72 dB higher than that of BM3D for σ = 25, which indicates
that BRDNet has better performance.

To easily observe the performance of BRDNet and other meth-
ods, we zoom in on one area from one potential clean image
obtained using different methods, as illustrated in Fig. 9. To
observe the performance of a single class image, we use Set12
to conduct the experiments. Fig. 10 shows the visual images
from the Set12. Table 5 shows the PSNR values of a single image

Fig. 9. Denoising results of one image from the BSD68 dataset with noise level
25 using for different methods: (a) original image, (b) noisy image /20.30 dB,
(c) WNNM/29.75 dB, (d) EPLL/29.59 dB, (e) TNRD/29.76 dB, (f) DnCNN/30.16 dB,
(g) BM3D/29.53 dB, (h) IRCNN/30.07 dB, and (i) BRDNet/30.27 dB.

from Set12 obtained using the proposed method and the above-
mentioned methods. The best and second-best PSNR results for
each method are highlighted in red and blue, respectively, in
Table 5. Fig. 11 illustrates the visual results obtained from the
aforementioned methods. It can be seen from the figure that
the proposed method can recover and obtain clearer images
compared with the other methods.

For color-noisy image denoising, we exploit six noise levels
(σ = 15, 25, 35, 50, 60, 75) to train the models. We compare
BRDNet with the state-of-the-art methods on the CBSD68, Ko-
dak24 (Franzen, 1999), and McMaster datasets for color-image
denoising. The best and second-best PSNR results for different σ

values are highlighted in red and blue, respectively, in Table 6. It
can be seen from the table that the proposed BRDNet is more
effective than other methods in color-image denoising, which
indicates that the proposed method is more robust to low- and
high-level noises. For example, for Kodak24 and σ = 75, the
average PSNR of BRDNet is 0.24 dB higher than that of FFDNet.
For McMaster and σ = 15, the average PSNR of BRDNet is 0.50 dB
higher than that of IRCNN.

Figs. 12 and 13 vividly describe the results of different meth-
ods with σ = 35 and σ = 60, respectively, for color-image
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Table 4
Average PSNR (dB) results of different methods on BSD68 dataset with noise levels of 15, 25 and
50.

Fig. 10. Twelve widely-used test images in experiments.

Fig. 11. Denoising results of image ‘‘monar’’ from Set12 with noise level 50 using different methods: (a) original image, (b) noisy image/14.71 dB, (c) WNNM/26.32 dB,
(d) EPLL/25.94 dB, (e) TNRD/26.31 dB, (f) DnCNN/26.78 dB, (g) BM3D/25.82 dB, (h) IRCNN/26.61 dB, and (i) BRDNet/26.97 dB.
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Table 5
PSNR (dB) results for different methods on 12 widely used images with noise levels of 15, 25 and 50.

Table 6
Average PSNR (dB) results of different methods on the CBSD68, Kodak24, and McMaster datasets with noise levels
of 15, 25, 35, 50, and 75.

denoising. One can see from the figures that the clean images
obtained using the proposed method are clearer than those ob-
tained using other methods, that is, the proposed method is more
suitable for color-image denoising. From the experimental results
for the gray and color images, it can be seen that the proposed

method is more robust and effective than other state-of-the-art
methods in image denoising. From these results, it is known that
the proposed BRDNet is superior to both traditional denoising
methods, such as BM3D and state-of-the-art denoising methods,
such as DnCNN in gray and color noisy images.
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Table 7
PSNR (dB) results for different methods on real noisy images.

Fig. 12. Denoising results for one color image from the McMaster dataset with noise level 35: (a) original image/ σ = 35, (b) noisy image/18.62 dB, (c) CBM3D/31.04 dB,
(d) FFDNet/31.94 dB, and (e) BRDNet/32.25 dB.

Fig. 13. Denoising results for one color image from the Kodak24 dataset with noise level 60: (a) original image/ σ = 60, (b) noisy image/13.45 dB, (c) CBM3D/31.00 dB,
(d) FFDNet/31.49 dB, and (e) BRDNet/31.85 dB.

4.5. BRDNet for real noisy image denoising

To test the performance of the proposed method for real
noisy images, we choose the popular methods, e.g., color block-
matching and 3-D filtering(CBM3D), MLP , TNRD, DnCNN, CSF
(Schmidt & Roth, 2014), noise clinic (NC) (Lebrun, Colom, & Morel,
2015a, 2015b) and WNNM (Gu et al., 2014) to design contrast
experiments. It can be seen from Table 7 that using the proposed
method results in 0.12 dB, 0.96 dB and 2.87 dB improvements
over TNRD, WNNM, and DnCNN, respectively. In the table, red
and blue entries represent the best and second-best results, re-
spectively, for condition in Table 7. Thus, the proposed method is
more suitable to deal with more complex noisy images, such as
real noisy images.

4.6. Running time

Testing speed is a more important index than training speed in
evaluating performance for low-level vision (Dabov et al., 2007;
Gu et al., 2014; Schmidt & Roth, 2014). We therefore compare
BM3D, WNNM, EPLL, MLP, TNRD, CSF and DnCNN with the pro-
posed method in running time experiments, using gray noisy
images of sizes of 256 ×256, 512× 512, and 1024 × 1024 with
σ = 25. Also, we find that BRDNet is also very competitive with
some methods on a GPU, such as DnCNN, as shown in Table 8.

A good denoiser should realize a tradeoff between PSNR and
running time (Zhang, Zuo, Gu & Zhang, 2017). The effectiveness
of the proposed BRDNet with BRN has been proved via pre-
viously described experiments. For example, BRDNet with BRN
has superiority to low-configuration hardware, such as GTX960
and GTX970. Further, due to the complementarity of two sub-
networks, BRDNet is more robust than state-of-the-art denoising
methods, such as DnCNN in color synthetic and real noisy images.
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Table 8
Running time for different methods in denoising images of sizes 256 × 256, 512× 512, and
1024 × 1024.
Methods Device 256 × 256 512 × 512 1024 × 1024

BM3D (Dabov et al., 2007) CPU 0.59 2.52 10.77
WNNM (Gu et al., 2014) CPU 203.1 773.2 2536.4
EPLL (Zoran & Weiss, 2011) CPU 25.4 45.5 422.1
MLP (Burger et al., 2012) CPU 1.42 5.51 19.4
TNRD (Chen & Pock, 2017) CPU 0.45 1.33 4.61
CSF (Schmidt & Roth, 2014) GPU – 0.92 1.72
DnCNN (Zhang, Zuo, Chen et al., 2017) GPU 0.036 0.111 0.410
BRDNet GPU 0.062 0.207 0.788

Table 9
Complexity analysis of BRDNet, DnCNN and two DnCNNs.
Methods Parameters GFlops

DnCNN (Zhang, Zuo, Chen et al., 2017) 0.56 M 1.40
Concatenation of two DnCNNs 1.11 M 2.78
BRDNet 1.11 M 2.78

In addition, shallow architecture of BRDNet with dilated convolu-
tions is also very competitive with two DnCNNs in performance
and complexity for image denoising as shown in Tables 1 and 9,
respectively. That is, the proposed BRDNet has small computa-
tional cost, which is very suitable to smart phone and camera. In
summary, those experiments all prove that the proposed BRDNet
is a stronger denoiser.

5. Conclusions

In this paper, we propose a novel model-based-CNN denoiser
named BRDNet, that combines two different networks to enhance
image-denoising performance. Moreover, BRDNet uses BRN, RL,
and dilated convolutions to improve the denoising performance,
and make the model more easily trained. BRN is used not only
to accelerate the convergence of BRDNet, but also to address the
small-batch problem. The RL is applied to separate the noise from
noisy images, and to obtain latent clean images in BRDNet. Di-
lated convolutions can enlarge the receptive field to obtain more
context information. Experimental results show that BRDNet is
very competitive with other state-of-the-art methods for image
denoising. In the future, we plan to use CNN with prior knowledge
to deal with more complex real noisy image denoising, such as
low-light and blurred images.
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