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Locality and Similarity Preserving Embedding for Feature Selection

Xiaozhao Fang, Yong Xu, Member, IEEE, Xuelong Li, Fellow, IEEE, Zhizhu Fan, Hong Liu, and Yan Chen

Abstract—Features selection (FS) methods have commonly been used as a main way to select the relevant features. In this
paper, we propose a novel unsupervised FS method, i.e., locality and similarity preserving embedding (LSPE) for feature selections.
Specifically, the nearest neighbor graph is firstly constructed to preserve the locality structure of data points, and then this locality
structure is mapped to the reconstruction coefficients such that the similarity among these data points is preserved. Moreover, the
sparsity derived by the locality is also preserved. Finally, the low dimensional embedding of the sparse reconstruction is evaluated to
best preserve the locality and similarity. We impose ℓ2,1-norm on the transformation matrix to achieve row-sparsity, which allows us
to select relevant features and learn the embedding simultaneously. The selected features have good stability due to the locality and
similarity preserving, and more importantly, they contain natural discriminating information even if no class labels are provided.
We present the optimization algorithm and analysis of convergence of the proposed method. The extensive experimental results
show the effectiveness of the proposed method.

Index Terms—Feature selection, locality and similarity preserving, sparse reconstruction, transformation matrix, discriminating
information.

I. INTRODUCTION

IN the fields of computer vision, data mining and machine
learning, a mass of data is represented by high dimensional

feature vectors. The original high dimensional feature vector
might contain a large portion of redundant information, even
corrupted noises. The direct way to deal with the problem is
dimensionality reduction (DR). In the literature, there are two
different ways to perform DR: feature selection and feature
learning (or ‘feature extraction’) [1-2]. Feature selection aims
to select a few relevant features to represent the original high
dimensional feature vector meanwhile removing unfavorable
features that seriously affect the performance of the algo-
rithm [3]. Generally speaking, feature selection can produce
three benefits: speeding up the learning process, improving
the mode generalization capability and alleviating the effect
of the curse of dimensionality [4]. Compared with feature
learning which may introduce some new features for original
data representation, feature selection does not change the
original representation of data. Consequently, feature selection
is preferred if the original physical meaning of each feature
is demanded to retain in a task. For example, in molecular
biology research, it is easy to identify a set of genes that
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are relevant to a key biological process by using feature
selection. However, it is hard to interpret the results of feature
learning because the features learned from the original data is a
combination of all the original features. Thus, results of feature
selection can well interpret which features are important to a
given task.

In the past two decades, many effective feature selection
algorithms have been proposed [5-6], which can be classified
into three different categories: filter, wrapper, and embedded
methods [7]. The filter methods commonly filter out some
features that possess poor information by using statistical
properties [8-12]. The filter methods do not directly optimize
the performance of any specific learning algorithm. Thus they
usually do not perform as well as some state-of-the-art meth-
ods. In wrapper methods, feature selection is performed, and
simultaneously, the performance of algorithms are optimized
[13-14]. Wrapper methods usually outperform filter methods
in the performance. However, wrapper methods have high
computational complexity because they need to train a large
number of classifiers [15]. Many heuristic algorithms and
hybrid methods have been proposed to alleviate this issue
[16]. Nevertheless, these heuristic algorithms also have to
take a large amount of time to perform the search [15]. To
reduce the complexity, in practice, a simple classifier is used to
evaluate the goodness of feature subsets and then the selected
features are sent into a complicated classifier for ultimate data
analysis. Another disadvantage of wrapper methods is that
they are required to manually specify the parameters of the
trained classifiers. This is probably one of the main reasons
why filter methods are more popular in practical applications
than wrapper methods [17-18]. Embedded methods usually
incorporate feature selection into the learning process of the
designed classifier [15][19-21] and show good performance.

Recently, several manifold learning-based algorithms were
developed to perform DR, such as locally liner embedding
(LLE) [22], Isometric feature mapping (ISOMAP) [23] and
laplacian eigenmaps (LE) [24]. These methods are based on
the idea that data points are actually sampled from a low-
dimensional manifold that is embedded in a high-dimensional
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space. However, as pointed out in [25], all these manifold
learning methods suffer from the problem that a new data
point cannot easily find its low-dimensional embedding by
utilizing the low-dimensional embedding results of the training
data points (out of sample) because of the implicitness of
the nonlinear mapping. Locality preserving projections (LPP)
[26], locality preserving discriminant projections(LPDP) [27]
and neighborhood preserving embedding (NPE)[28] were pro-
posed to address this problem. Some novel methods, which
integrates the theory of sparse representation and subspace
learning, have also been proposed and successfully applied
in many real-world applications [29-30]. The representative
methods include sparse neighborhood preserving embedding
(SNPE) [31], sparsity preserving projections (SPP) [32] and
local coordinate coding (LCC) [33]. It should be noted that, in
[30-31][33], the locality constraint is imposed on sparse coding
(SC). Moreover, in [33], the theoretical analysis pointed out
that under certain assumptions locality is more essential than
sparsity and helpful for successful nonlinear function learning.
To achieve good classification performance, the coding scheme
should generate similar codes for similar descriptors [34].
Such locality and similarity is useful for producing good
discriminative ability of the designed algorithm [30][34]. For
example, if two data points xi and xj are close in the intrinsic
geometry of the data distribution, then the optimal reconstruc-
tion coefficients of these two data points are also close to
each other. The above mentioned methods ignore the problem
that there are many unfavorable features in the original high
dimensional feature representation. Most previous algorithms
perform the sparse reconstruction task in the original high
dimensional feature space, e.g., SNPE, laplacian sparse coding
(LSc)[30] and LCC. However, it is difficult to perform the
sparse reconstruction in a high dimensional feature space due
to the fact that the high dimensional feature representation is
not always reliable and even corrupted by noises. Intuitively,
the sparse reconstruction task may benefit from the feature
extraction process because it may remove the unfavorable
features and noises. Therefore, a scheme which simultaneously
integrates both the sparse reconstruction and optimal feature
representation is demanded.

The above observations motivate us to consider how to
devise an elegant method which can achieve the above pur-
poses. In this paper, we propose a novel unsupervised fea-
ture selection method, i.e., locality and similarity preserving
embedding (LSPE) for feature selections. Specifically, in the
proposed method, the nearest neighbor graph G is firstly
constructed to preserve the locality and similarity among data
points to be reconstructed, and then the low dimensional
embedding of the reconstruction is generated with the goal
to best preserve such locality and similarity. As suggested by
LCC [33], locality is more essential than sparsity, as locality
must lead to sparsity but not necessary vice versa. Therefore,
the reconstruction coefficients of our method is sparse in the
case where similar data points have nearly same reconstruction
coefficients. Generally speaking, LSPE seeks the projections
which can not only preserve the locality and similarity but also
the sparse reconstruction relationship. We impose ℓ2,1-norm
minimization on the transformation matrix to simultaneously

select relevant features and learn the embedding. By preserving
the locality and similarity, LSPE can alleviate the instability
of selected features. This will be confirmed by the subsequent
experimental results. Although no class labels are provided,
LSPE tends to select the discriminative features due to the
sparsity [32]. We can learn a sparse transformation matrix from
the ℓ2,1-norm minimization for feature ranking. We provide
an effective algorithm to solve this ℓ2,1-norm minimization
problem. And the analysis of convergence of the proposed
method is presented.

The most important contributions of our proposed method
are as follows.
(1) The sparse reconstruction is finally performed on the
derived optimal low dimensional space, which can effectively
eliminate the influence of the unfavorable features.
(2) Unlike most previous feature selection algorithms which
separately treat the embedding learning and the feature selec-
tion, LSPE unifies these two objectives.
(3) Unlike SPP [32], which uses a two-stage strategy to
learning the sparse reconstruction coefficient matrix and the
transformation matrix, our method optimizes them simultane-
ously.
(4) Although supervised information is not needed, LSPE can
select discriminative features in comparison with some similar
unsupervised feature selection algorithms.
(5) Compared with other unsupervised feature selection algo-
rithms, the features selected by LSPE have good stability.

The remaining of this paper is organized as follows: Section
II briefly reviews some methods that are closely related to our
method. Section III introduces the basis idea of locality and
similarity preserving embedding (LSPE) for feature selection;
Section IV provides some discussion of the proposed method
including the analysis of convergence of the proposed method.
Extensive experiments are conducted in Section V. Finally, we
conclude the paper in section VI.

II. RELATED METHODS

In this section, we will introduce some notations. The ℓ2,1-
norm of a matrix is first introduced in [35] as a rotational in-
variant ℓ1-norm and has attracted increasing attention[36][37].
For the matrix A ∈ ℜm×d, let Ai. the ith row of A. The ℓ2,1-
norm of A is defined as

∥ A ∥2,1=
m∑
i=1

∥ Ai. ∥2 (1)

We consider an original set of n data points X =
[x1, x2, ..., xn] ∈ ℜm×n. The task of dimension reduction is
to find a linear transformation matrix A ∈ ℜm×d to transform
the original high dimensional data point xi ∈ ℜm into a low
dimensional form yi ∈ ℜd (d < m) by using yi = ATxi.

Our method is fundamentally based on two of the most
popular manifold learning methods, NPE and SPP. We will
review these two methods briefly in next subsections. It
should be noted that there is a distinct difference between
the sparse matrix learned by ℓ2,1-norm and ℓ1-norm. Using
the unified sparse subspace learning framework (SSL) [38] as
an example, we respectively impose ℓ2,1-norm and ℓ1-norm
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Fig. 1. A toy example for the transformation matrix learned by (a) ℓ2,1-norm;
and (b) ℓ1-norm.

on the transformation matrix. Fig.1 (a) gives a toy example of
the transformation matrix learned by ℓ2,1-norm. Each row of
this transformation matrix corresponds to a feature, while each
column corresponds to a dimension of the embedding. We can
see that the 3rd and 5th rows are all zeros, which indicates that
the 3rd and 5th rows correspond to the irrelevant features and
they should be discarded. Hence it is very clear which features
are really useful to the task. Fig.1 (b) is the toy example of
the transformation matrix learned by ℓ1-norm. We can see that
for the first dimension of the embedding, the 2nd and 4th
features are not selected. However, for the second dimension
of the embedding, all the features are selected expect for the
1st and 4th ones. Therefore, it is still unclear which features
are really useful as a whole. In this paper, we aim to use
ℓ2,1-norm to learn a transformation matrix with the similar
row-sparsity property as the one shown in Fig.1 (a).

A. Neighborhood Preserving Embedding (NPE)

Different from Principal Component Analysis (PCA) [39-
40], NPE [28] aims at preserving the local neighborhood
structure of the data points. NPE evaluates the affinity weight
matrix using local least squares approximation [41]. The first
step of NPE constructs an adjacency graph by using K-
nearest neighbors (KNN) algorithm [42]. Then, it uses the
local approximation error to compute the weights on these
edges

min
P

∑
j

∥ xi −
∑
j

Pi,jxj ∥2 (2)

s.t.
∑

j Pi,j = 1, j = 1, 2, ..., n

where P is the reconstruction coefficients matrix (the affinity
weight matrix). The second step of NPE is to utilize a
reasonable criterion for determining a linear projection. This
can be converted into the following generalized eigenvector
problem [28]

XMXT zi = λXXT zi (3)

where M = (1− P )T (1− P )
I = diag(1, ..., 1)

Let zi (i = 1, 2, ..., d) be the eigenvectors respectively
corresponding to the first d smallest eigenvalues of the above

eigenvector problem. The desirable optimal low-dimensional
representation of the original data is as follows

xi → yi = ZTxi (4)

where yi is the desirable representation. From the description
of NPE, we can see that NPE is indeed a linear version of
LLE [22].

B. Sparsity Preserving Projections (SPP) [32]

SPP constructs the affinity weight matrix in a completely
different way from LLE. SPP first uses as few as possible data
points from X to reconstruct each data point xi ∈ X . Hence
a sparse reconstruction vector si for xi is sought to perform
the following reconstruction task.

min
si

∥ si ∥1 (5)

s.t. xi = Xxi, 1 = 1T si
where ∥ · ∥1 is the ℓ1-norm [43]. 1 ∈ ℜn is a vector of all
ones. After computing the sparse reconstruction vector si for
each xi (i = 1, 2, ...n), SPP obtains the sparse reconstruction
matrix S = [s1, ..., sn]. The element si,j in S essentially
reflects a close relation between xi and xj and it is reasonable
to use S as the affinity weight matrix. Similar to LLE and
NPE, SPP seeks the projections which best preserve the sparse
reconstruction relationship. SPP has the following objective
function [32]

min
Q

n∑
i=1

∥ QTxi −QTXsi ∥2 (6)

where Q is the projection matrix. The problem defined by (6)
can be converted into the problem to minimize the following
formulation
n∑

i=1

∥ QTxi−QTXsi ∥2= QT (
n∑

i=1

(xi−Xsi)(xi−Xsi)
T )Q

(7)
The optimal projection vectors Q can be obtained by solving

the following generalized eigenvalue problem

X(I − S − ST + STS)XT qi = λXXT qi (8)

Specifically, let q1, ..., qd be the eigenvectors of (8) corre-
sponding to the first d smallest eigenvalues, λ1 ≤, ...,≤ λd.
Then, the transformation matrix of SPP is Q = [q1, ..., qd].

III. LOCALITY AND SIMILARITY PRESERVING
EMBEDDING FOR FEATURE SELECTION

In this section, we will present the basic idea of our method.
To achieve good classification performance, the reconstruction
scheme should follow the rule that similar data points should
have similar reconstruction coefficients [33][44]. To obtain this
purpose, we reformulate the problem as follows. For the set of
m-dimensional data points X = [x1, ..., xn] ∈ ℜm×n, we can
construct a nearest neighbor graph G with n vertices each of
which denotes a data point [45]. Let W be the weight matrix
of G. The weight setting is subject to the following criterion:
if xi is among the k-nearest neighbors of xj or xi is among



4

the k-nearest neighbors of xi, Wi,j = exp
(
−∥xi−xj∥2

σ

)
(σ

is the heat kernel parameter), otherwise Wi,j = 0. To map
the weight matrix to the sparse reconstruction coefficients, an
ideal mapping is to minimize the following objective function

1

2

n∑
i=1

n∑
j=1

∥ si − sj ∥2 Wi,j = Tr(SLST ) (9)

where S is the reconstruction coefficient matrix. Let D be
a diagonal matrix whose entries are column or row sums of
W , Di,i =

∑
j Wj,i. L = D − W is the graph Laplacian.

We expect that the desirable characteristics (the locality and
similarity) in the original high dimensional feature space can
be preserved in the low dimensional embedding space. In
other words, the low dimension embedding of the sparse
reconstruction can best preserve the locality and similarity.
Unlike SPP [32], where the sparse reconstruction coefficient
matrix S is firstly learned in the original high dimensional
feature space, and then the projection is sought to best preserve
this optimal S, we optimize S and the transformation matrix
simultaneously. Therefore, we define the following objective
function.

min
A,S

n∑
i=1

∥ AT (xi −Xsi) ∥2 +
1

2
β

n∑
i=1

n∑
j=1

∥ si − sj ∥2 Wi,j

(10)
where A ∈ ℜm×d is the transformation matrix and d is
the dimensionality of embedding. We utilize ℓ2,1-norm min-
imization constraint to select the relevant features which can
best preserve the locality and similarity among data points
to be reconstructed. Denote Ai.(i = 1, ...,m) as the ith row
vector of A which is used to measure the importance of the
ith feature. We expect that the transformation matrix holds
the sparsity property for feature ranking. In other words, we
expect that only a few numbers of Ai. are non-zeros. To this
end, we impose ℓ2,1-norm on A and try to minimize ∥ A ∥2,1.
Therefore, our objective function can be formulated as follows

min
A,S

n∑
i=1

∥ AT (xi −Xsi) ∥2 +
1

2
β

n∑
i=1

n∑
j=1

∥ si − sj ∥2 Wi,j

+ α ∥ A ∥2,1
(11)

where β and α are two balance parameters.

A. Solution

It seems that solving ℓ2,1-norm problem defined in (1) is
difficult since it is hard to derive its closed solution directly.
Inspired by [4], we divide the problem in (11) into two steps:
learning the reconstruction coefficient matrix S while fixing
the transformation matrix A, and learning A while fixing S.
For convenience, the problem in (11) can be rewritten as

follows
n∑

i=1

∥ AT (xi −Xsi) ∥2 +
1

2
β

n∑
i=1

n∑
j=1

∥ si − sj ∥2 Wi,j

+ α ∥ A ∥2,1

= Tr(
n∑

i=1

AT (xi −Xsi)(xi −Xsi)
TA) + βTr(SLST )

+ α ∥ A ∥2,1

= Tr(AT (
n∑

i=1

(xi −Xsi)(xi −Xsi)
T )A) + βTr(SLST )

+ α ∥ A ∥2,1
= Tr(AT (XXT −XSXT −XSTXT +XSTSXT )A)

+ βTr(SLST ) + α ∥ A ∥2,1
= Tr(ATX(I − S − ST + STS)XTA) + βTr(SLST )

+ α ∥ A ∥2,1
(12)

If S is fixed, we denote L(A) = Tr(ATXKXTA) + α ∥
A ∥2,1, where K = (I − S − ST + STS). By constructing
an auxiliary function, L(A) can be rewritten as L(A) =
Tr(ATXKXTA) + αTr(ATUA), where U ∈ ℜm×m is a
diagonal matrix whose ith diagonal element is

Ui,i =
1

2 ∥ Ai. ∥2
(13)

To avoid degenerated solution, the orthogonal constraint
ATA = I is imposed. Thus, the objective function becomes

argmin
A

Tr(AT (XKXT + αU)A) (14)

s.t. ATA = I

The solution of (14) can be obtained by solving the follow-
ing eigenvalue problem.

(XKXT + αU)ai = λai (15)

Let A = [a1, ..., ad] be the solution of (15). These column
vectors ai (i=1,2,,d) correspond to the eigenvectors associated
with the first d smallest eigenvalues.

Recalling the definition of Uii in (13), we know that
Tr(ATUA) =

∥A∥2,1

2 if Ai. ̸= 0. Thus we can say that
min
A

Tr(ATUA) is a sparse constraint on A. If ∥ Ai. ∥2 is
small, then Uii is large and thus the minimization of L(A)
trends to force ∥ Ai. ∥2 to be a very small value. After several
times of iteration, some ∥ Ai. ∥2s may be close to zero and
thus we obtain a sparse A. Since problem (14) is solved in
an iteration way, we can initialize U by an identity matrix.
In practice, the traditional regularization way can be used to
redefine Uii =

1
2∥Ai.∥2+ζ (ζ is a very small constant) because

∥ Ai. ∥2 could be zero theoretically. In summary, we present
algorithm 1 for optimizing (14) as follows.

When A is fixed, we would like to take the deriva-
tive of C(S) = min

S
(Tr(D(I − S − ST + STS)DT ) +
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Algorithm 1 : Optimizing (14)
Initialize: S = 1n×n, where 1n×n is a matrix of ones;
Computer K = (I − S − ST + STS);
Set t = 0 and initialize U0 ∈ ℜm×m as an identity matrix;
repeat

Compute Pt = (XKXT + αU)
Compute At = [p1, ..., pd], where p1, ..., pd are the
eigenvectors of Pt corresponding to the first d smallest
eigenvalues;
Updata the diagonal matrix Ut+1 as

Ut+1 =


1

2∥At
1.∥2

...
1

2∥At
m.∥2

 ;

t = t+ 1;
until Convergence

βTr(SLST )) (ATX = D) with respect to S and set it to
zeros, namely

∂C(S)

∂S
= −2DTD + 2SDTD + 2βSL = 0 (16)

or equivalently,

S = DTD(DTD + βL)−1 (17)

After deriving A and S, we use ℓ2-norm of Ai., i.e., ∥
Ai. ∥2, to rank the features. The larger ∥ Ai. ∥2 is , the more
important this feature is. We can select a number of features
whose ∥ Ai. ∥2 are larger than a threshold which is set in
advance.

In summary, we describe the detailed procedure of LSPE in
algorithm 2 as follows.

Algorithm 2 : The detailed procedure of LSPE
set t = 0;
repeat

Compute At based on Algorithm 1;
Compute St = (Dt)TDt((Dt)TDt + βL)−1,
where Dt = (At)TX;
t = t+ 1;

until Convergence
Sort each feature fi|mi=1 according to ∥Ai.∥2 in descending
order and select the top ranked ones

IV. DISCUSSIONS

In this section, we will analyze the convergence behavior
of LSPE and then give comparisons between LSPE and some
related works.

A. Convergence Analysis

Before starting our analysis, we give a lemma [4].
Lemma 1. For any non-zero vectors q, p ∈ ℜm, the

following result holds

∥ q ∥2 − ∥ q ∥22
2 ∥ p ∥2

≤∥ p ∥2 − ∥ p ∥22
2 ∥ p ∥2

(18)

Proof . The detailed proof is similar as that in [4].
In our method, solving A usually requires computationally

demanding optimization procedures whereas the solution of
S can be derived analytically by the analytical solution: S =
DTD(DTD+βL)−1. So the solution of S can be performed
fast. In practice, we only need to prove that the solution A in
algorithm 1 can monotonically decrease the objective function
value in (11) in each iteration.

Theorem 1. The optimization procedure in solving (14) will
monotonically decrease the objective function value in (11) in
each iteration.

Proof . When we fix U as U t in the ith iteration and
compute At+1 and St+1, the following inequality holds,

Tr((At+1)TXKt+1XTAt+1 + βTr(St+1)L(St+1)T )

+ αTr((At+1)TU tAt+1)

≤ Tr((At)TXKtXTAt) + βTr(StL(St)T )

+ αTr((At)TU tAt)

(19)

Since ∥A∥2,1 =
m∑
i=1

∥Ai.∥2 , the above inequality indicates

Tr((At+1)TXKt+1XTAt+1) + βTr(St+1L(St+1)T )

+ α ∥ At+1 ∥2,1 +α
m∑
i=1

(
∥ At+1

i. ∥22
2 ∥ At

i. ∥2
− ∥ At+1

i. ∥2)

≤ Tr((At)TXKtXTAt) + βTr(StL(St)T )

+ α ∥ At ∥2,1 +α
m∑
i=1

(
∥ At

i. ∥22
2 ∥ At

i. ∥2
− ∥ At

i. ∥2)

(20)

According to Lemma 1, we have

∥ At+1
i. ∥22

2 ∥ At
i. ∥2

− ∥ At+1
i. ∥2≥

∥ At
i. ∥22

2 ∥ At
i. ∥2

− ∥ At
i. ∥2 (21)

Combining (20) with (21), we have the following inequality

Tr((At+1)TXKt+1XTAt+1) + βTr(St+1L(St+1)T )

+ α ∥ At+1 ∥2,1
≤ Tr((At)TXKtXTAt) + βTr(StL(St)T )

+ α ∥ At ∥2,1

(22)

which indicates that the objective function value in (11) will
monotonically decrease using the updating rule in Algorithm
1. Besides, since the two items in (14) is convex function and
thus (14) has a lower bound. Thus, the above iteration will
converge to the global solution. 2

B. Comparison to other methods

Undoubtedly, LSPE is closely related to SPP. In other
words, LSPE is an improved version of SPP. Both LSPE
and SPP seek the projections that best preserve the sparse
reconstruction relationship. However, SPP uses a two-stage
strategy to construct the sparse reconstruction coefficient ma-
trix and the transformation matrix, our method optimize them
simultaneously. In this way, LSPE can learn them optimally.
Moreover, LSPE maps the locality among data points to the
sparse reconstruction coefficients such that these reconstruc-
tion coefficients vary smoothly along the geodesics of the data
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manifold. What’s more, the features selected by LSPE have
good stability because they consistently guarantee that the
similar data points always have nearly the same reconstruction
coefficients. LSPE can select the relevant features by imposing
ℓ2,1-norm on the transformation matrix. However, SPP does
not lead to feature selection.

Considering the deduction of LSPE, we know that LSPE is
also related to laplacian score for feature selection (LapScore)
[8] and spectral feature selection (SPEC) [46]. LapScore and
LSPE construct the graph to characterize the data manifold.
LapScore selects features which can best preserve the locality
relationship revealed by weight matrix W . However, LSPE
select features which can best preserve both the locality and
the similarity among data points to be reconstructed. SPEC
can be regarded as an extension of LapScore. LSPE focuses
on the unsupervised feature selection. SPEC, however, mainly
emphasizes the supervised case. Although the locality pays
an important role in developing various kinds of algorithms,
e.g., DR, semi-supervised learning algorithm, the features
selected by the locality preserving-based feature selection
algorithms may not contain discriminant information due to
the lack of label information. The reconstruction coefficient
of LSPE is sparse because the locality restraint is imposed on
the reconstruction coefficient [34]. This entitles the features
selected by LSPE to more discriminant ability than those by
using LapScore and SPEC, which is proved by the subsequent
experimental results.

Feature selection via joint embedding learning and sparse
regression (JELSR) [47] also has somewhat relationship with
LSPE. JELSR unifies the procedures of the embedding learn-
ing and the sparse regression into a framework. More precisely,
JELSR can be regarded as solving the following problem.

min
W,Y

Tr(Y LY T ) + β(∥ WTX − Y ∥22 +α ∥ W ∥2,1) (23)

s.t. Y Y T = I
where Y is the low dimension representation of the original
data X and W is the projection matrix. JELSR mainly focus
on the issue that nearby points, in the desired low dimensional
space, should have similar properties. Similarly, LSPE also
seeks to this purpose. We set yi = ATxi. Our objective
function (11) can be formulated as follows

min
A,S

Tr(Y (I−S−ST+STS)Y T )+βTr(SLST )+α ∥ A ∥2,1
(24)

s.t. ATA = I
From (24), we know that LSPE imposes locality and sim-

ilarity preserving on the reconstruction coefficients S and
simultaneously delivers such preserving to the low dimen-
sional representation Y by virtual of S. Thus, we can say
the first terms in (23) and (24) share the similar purpose.
Comparing the formulations in (23) and (24), it is easy to find
out that JELSR selects the features which can best preserve the
locality. However, LSPE selects features which simultaneously
best preserve the locality and the similarity. This somewhat
consistent with the purpose of laplacian sparse coding (LSc)
[44][48]. Thus, it outperforms JELSR in many cases. Note that

LSc performs the sparse reconstruction in the original high
dimensional feature space while LSPE does in the desirable
low dimensional embedding space.

V. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of LSPE on
several real data sets. We perform three groups’ experiments.
The first group evaluates LSPE using K-means clustering [47]
as the metric. The second group evaluates LSPE using Nearest
Neighbor classifier (NN) [42] for classification. We discuss the
influence of the parameters used in LSPE in the last group.
We compare LSPE with the following unsupervised feature
selection algorithms, LapScore [8], SPEC[46], Unsupervised
feature selection for multi-cluster data (MCFS) [49], JELSR
[47] and Efficient spectral feature selection with minimum
redundancy (MRSF) [50]. We use all features as the base-
line in our experiments. The code of the proposed method
is available at http://www.yongxu.org/lunwen.html. For some
graph-based algorithms, such as LapScore, MCFS, SPEC and
LSPE, we tune k which specifies the size of neighborhood, by
selecting the most suitable value from {3, 5, 7, 10, 15} for all
the data sets. Similarly, we tune the heat kernel parameter σ
from {100, 103, 105}. For LSPE, we tune parameters α from
{300, 500, 800, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 800
0} . and β from {0.01, 0.1, 0.5, 1.0, 3.0, 5.0, 7.0, 9.0, 11.0, 13.0
0, 15.00, 17.00}. We begin with a description of these data
sets.

A. Data sets descriptions
Seven different data sets, including Umist [47], Isolet [47],

Sonar[51], Breast Cancer (BC) [52], Ionosphere [53], ORL[28]
and Vehicle [54], are used in our experiments. Some data
sets in Matlab format after being preprocessed is available
at: http://www.cad.zju.edu.cn/home/dengcai/Data/data.html. A
summary of characteristics of these data sets is presented in
Table I.

TABLE I
A SUMMARY OF CHARACTERISTICS OF THESE DATA SETS

Data set Dimensionality Size Class
Umist 644 575 20
Isolet 617 1560 26
ORL 1024 400 40
Sonar 60 208 2
BC 30 569 2
Ionosphere 34 351 2
Vehicle 18 846 4

B. Clustering results with K-means clustering
In the first group experiment, K-means clustering is em-

ployed on the first six data sets to evaluate the performance of
LSPE with fixed selected features. Two metrics, the accuracy
(AC) and the normalized mutual information metric (MI),
are used to measure the clustering performance. Given a data
point xi, let ri and li be the obtained cluster label and the
label provided by the corpus, respectively. The AC is defined
as follows

AC =

∑n
i=1 δ(li,map(ri))

n
(25)
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(a) Umist (b) Isolet

(c) ORL (d) Ionosphere

(e) Sonar (f) BC

Fig. 2. The detained clustering results of K-means clustering on six different data sets.

where n is the total number of data points and δ(x, y) is
the delta function that equals one if x = y and equals zero
otherwise, and map(ri) is the permutation mapping function
that maps each cluster label ri to the equivalent label from
the data corpus [49]. The best mapping can be determined
by using the Kuhn-Munkres algorithm [55]. Let C denote
the set of clusters obtained from the ground truth and C ′

obtained from the algorithms used in this section. Their mutual
information metric MI(C,C ′) is defined as follows [49]:

MI(C,C ′) =
∑

ci∈C,c′j∈C′

p(ci, c
′
j) · log2

p(ci, c
′
j)

p(ci) · p(c′j)
(26)

where p(ci) and p(c′j) are respectively the probabilities that
a sample arbitrarily selected from the data set belongs to the
clusters ci and c′j and p(ci, c

′
j) is the joint probability that the

arbitrarily selected sample belongs to the clusters ci as well as
c′j at the same time. In our experiments, we use the normalized
mutual information NMI as follows:

NMI(C,C ′) =
MI(C,C ′)

max(H(C),H(C ′))
(27)

where H(C) and H(C ′) are the entropies of C and C ′,
respectively. It is easy to check that NMI(C,C ′) ranges from
0 to 1. NMI = 1 if the two sets of clusters are identical, and
NMI = 0 if the two sets are independent.
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TABLE II
CLUSTERING RESULTS OF DIFFERENT ALGORITHMS ON SIX DATA SET (MEAN±STD%)

Data set All features LapScore SPEC MCFS JELSR MRSF LSPE
Umist 44.23±1.02 37.30±0.93 42.56±1.20 46.55±1.00 48.90±1.03 48.38±1.05 49.26±1.12
Isolet 50.58±0.85 48.79±0.56 49.50±0.63 54.48±0.84 55.08±0.45 50.80±0.69 56.11±0.63
ORL 50.00±0.43 44.50±0.73 49.88±0.23 49.40±0.93 50.02±0.56 49.78±0.69 50.25±0.80
Ionosphere 63.81±0.50 66.94±2.20 67.70±2.33 57.26±3.00 67.90±2.81 63.00±2.30 70.00±2.66
Sonar 54.32±1.20 58.80±1.14 61.00±1.26 54.20±0.84 64.20±0.94 60.33±1.40 66.25±1.67
BC 72.27±0.20 70.17±0.36 74.00±0.23 71.00±0.58 74.20±0.30 72.79±0.22 75.86±0.24

TABLE III
MEAN NMI WITH STANDARD DEVIATION OF DIFFERENT ALGORITHMS ON THREE DATA SETS (MEAN±STD)

Data set All features LapScore SPEC MCFS JELSR MRSF LSPE
Umist 0.6030±0.0145 0.5632±0.0152 0.5704±0.0124 0.6920±0.0131 0.7018±0.0164 0.6667±0.0143 0.7091±0.0155
Isolet 0.7302±0.0092 0.6680±0.0120 0.6690±0.0149 0.7043±0.0193 0.7050±0.0134 0.6835±0.0167 0.7101±0.0185
ORL 0.7036±0.0117 0.6780±0.0176 0.7026±0.0165 0.7098±0.0178 0.7020±0.0172 0.7050±0.0181 0.7104±0.0111

For the other feature selection algorithms, we select their
best results as the final results. We set different numbers of
selected features for different data sets. In our experiment,
each feature selection algorithm is first performed to select
features. Then K-means clustering algorithm is performed
based on the selected features. Since the results of K-means
clustering depend on initializations, we repeated 100 times
experiments with random initialization and report the mean
performance with standard deviation (MEAN±STD%). Table
II gives the best clustering results of different feature selection
algorithms using different parameters. As seen from Table II,
LSPE outperforms other algorithms. We can also see from
this table that JELSR is the second best algorithm. From the
analysis in [47], we know that SPEC, MCFS and MRSF adopt
a two-step strategy for feature selection. For example, SPEC
analyzes features separately and selects features one after
another whereas MCFS selects features in batch-mode. For
MRSF, it separates embedding learning and sparse regression.
However, JELSR integrates the two objectives into one step,
which can lead to a good performance. Similarly, LSPE unifies
the two objectives of embedding learning and feature selection.
Moreover, LSPE imposes the similarity preserving on the
reconstruction coefficients. Thus, LSPE perform better than
JELSR in our experiments. This observation validates that it
is a better way to implement embedding learning and feature
selection jointly for feature selection. Fig. 2 gives the detailed
clustering results of different number of the selected features.
As we can see, LSPE consistently requires few features to
achieve reasonably good results whereas the most of other
algorithms need more features. We also note that the change
curve of the performance of LSPE is more smooth than ones of
the most of other algorithms, which indicates that the stability
of the features selected by LSPE is superior to ones of other
algorithms. Moreover, from the results in Fig.2, it is easy to
conclude that more features do not lead to the best results. This
may be caused by the adding of redundant features when we
select more features. Table III gives the best results of NMI
of different algorithms on the range of selected features. For
Sonar ,BC and Ionosphere data sets, the values of NMI are
so small that they are not persuasive. We, here, give the mean
NMI with standard deviation on three data sets. A big value

of NMI implies good performance. LSPE always outperforms
all its competitors.

C. Classification results with NN classifier

In the second group experiment, we carry out NN algorithm
with selected different features on the last four data sets. In
order to evaluate the experimental results better, for each data
set, we randomly choose one third, one second, and two third
of the total samples as training set and the rest are used
as test set. The experiments are repeated 100 times on the
best parameter combination. The mean classification error with
standard deviation (MEAN±STD%) is used as the final result.

TABLE IV
CLASSIFICATION ERROR ON SONAR DATA SET(MEAN±STD%)

Method One third train One second train Two third train
All features 22.77±2.09 18.20±2.90 16.47±2.63
LapScore 21.61±2.72 17.67±2.56 14.74±2.50
SPEC 22.68±2.42 18.50±2.13 16.22±2.18
LSPE 21.10±2.58 17.30±2.10 14.20±2.00

TABLE V
CLASSIFICATION ERROR ON BC DATA SET(MEAN±STD%)

Method One third train One second train Two third train
All features 11.39±1.34 11.21±1.52 10.50±1.78
LapScore 11.33±1.46 9.83±1.61 9.19±1.38
SPEC 9.80±1.29 8.79±1.20 8.20±1.82
LSPE 8.50±1.40 7.30±1.57 6.90±1.37

TABLE VI
CLASSIFICATION ERROR ON IONOSPHERE DATA SET(MEAN±STD%)

Method One third train One second train Two third train
All features 17.97±2.27 16.80±2.50 16.50±2.40
LapScore 17.58±2.45 15.90±2.23 14.95±2.26
SPEC 17.07±2.74 14.81±2.68 14.01±2.82
LSPE 16.00±2.10 14.00±2.22 13.00±2.12

The best results on range of selected features are shown
in Tables IV-VII. The detailed classification performance for
each selected feature is presented in Fig. 3. As can be seen
from these tables, in the range of the selected features, the
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Fig. 3. The detailed classification performance of different algorithms on Sonar (the first row), BC (the second row), Ionosphere(the third row) and Vehicle
(the fourth row).

TABLE VII
CLASSIFICATION ERROR ON VEHICLE DATA SET(MEAN±STD%)

Method One third train One second train Two third train
All features 36.89±1.68 35.23±1.72 34.31±2.23
LapScore 36.62±1.77 34.46±1.93 33.64±2.39
SPEC 35.79±1.82 33.99±1.62 33.17±2.28
LSPE 32.81±1.90 30.56±1.76 29.69±2.06

best results of FSPE are better than those of other algorithms.
However, from the results in Fig.3, it would be interesting
to note that the stability of features selected by LSPE is
consistently better than all the other algorithms. However, the
change curves of the classification performance of LapScore
and SPEC are very volatile. This is attributed to the using
of the locality and similarity perverting [29]. Moreover, we
also notice that LSPE obtains reasonable results with less
features. For example, on BC and Ionosphere data sets, FSPE
obtains the reasonably results with typically around 4 and

6 features, respectively. For the other three algorithms, they
usually require more features to achieve a reasonable result.
It is easy conclude that LSPE can achieve better classification
performance with the least amount of features. In other words,
the features selected by LSPE have better discriminant ability
than those by using other algorithms.

D. Parameters selection

In the third group experiment, there are five parameters, i.e.,
k, σ, α, β, and d. In our method, we can obtain reasonable
results when we tune k from {5, 10} and set σ=1.0 for all
data sets. Therefore, in this section, we don’t discuss these two
parameters. It is time-consuming to select α, β, and d based
on the gird search. Fortunately, α and β affect the performance
of LSPE slightly if they are set in feasible range. However,
the performance of LSPE is comparatively sensitive to d, the
dimensionality of the low dimensional embedding. We set the
range of d as [(15 ) × (#f), ( 12 ) × (#f)], where #f is the
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Fig. 4. The mean classification error variation of LSPE versus different parameters on Sonar (the first row) and BC (the second row).

number of the features of a data set. We select two data sets,
i.e., Sonar and BC, and perform NN algorithm on these two
data sets to validate this strategy. We randomly choose one
second of the total samples as training set and the rest are used
as test set. These trails are independently performed 100 times,
and the mean classification error (MEAN(CE)%) is reported.
Fig. 4 shows this strategy works well on the selected two data
sets. The performance are consistent when each of α and β
is selected from a wide range. Specifically, for Sonar and BC,
we respectively set d = ( 14 ) × (#f) = ( 14 ) × 60 = 15 and
d = ( 13 ) × (#f) = ( 13 ) × 30 = 10. Form Fig. 4, we can see
that the performance of LSPE is not very sensitive to α and β
in the wide range, when we fix d. However, the performance is
comparatively sensitive to d, when we fix α and β. Moreover,
we also see that, for Sonar, a valley appears when d = 15.
For BC (Fig. 4 (the second row)), there appears a valley when
d = 10 . This indicates that the proposed method performs
well under this setting d ∈ [(1/5)× (#f), (1/2)× (#f)].
To our knowledge, previous literature do not propose a very
feasible method to resolve the problem that how to determine
the suitable number of the selected features, and thus, in this
experiment, it is set by experience. For example, Fig. 4 gives
the performance of LSPE versus α or β with the number of
the selected features fixed to 40 and 15 for Sonar and BC,
respectively.

VI. CONCLUSION

In this paper, we propose a novel feature selection method,
i.e., locality and similarity preserving embedding (LSPE) for
feature selection, which unifies embedding learning and fea-
ture selection. We introduce an iterative algorithm to optimize
LSPE and theoretically show its convergence. LSPE seeks
an optimal transformation matrix by determining the sparse
reconstruction coefficient matrix and transformation matrix
simultaneously. The major advantage of the proposed LSPE
method is that the selected features have good stability by p-
reserving locality and similarity among data points. Moreover,

LSPE trends to select discriminative features because of the
sparsity, which leads LSPE to achieve better performance with
the least amount of features. In the future, we attempt to extend
LSPE to the supervised case for obtaining better performance.
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