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What is (Evolutionary) PDE?

* Heat Equation

Governing Egn.
A _— & L]

ol __
ot = AL » .
Ty = o, < Initial Condition
— O. ° °
o 10D " —Boundary Condition

A K. Jain. Partial differential equations and finite-difference methods in image processing, part 1.
Journal of Optimization Theory and Applications, 23:65-91, 1977.



How to Use PDE for Image Proc.?

* Heat Equation
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A K. Jain. Partial differential equations and finite-difference methods in image processing, part 1.
Journal of Optimization Theory and Applications, 23:65-91, 1977.



How to Use PDE for Image Proc.?

* Heat Equation

oL = AI
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Theo = Ip, < Input Image
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 Discretization

9 —A1 = _—Explicit Scheme
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A K. Jain. Partial differential equations and finite-difference methods in image processing, part 1.
Journal of Optimization Theory and Applications, 23:65-91, 1977.



Connection to Neural Networks
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A Brief History of PDE Methods

* Scale Space

I, = Iy x G(0?,%x).
* Heat Equation

=0

A. Witkin. Scale-space filtering. In Proc. Int. Joint Conf. Artificial Intelligence, 1983.
J. Koenderink. The structure of images. Biological Cybernetics, 50:363-370, 1984.



A Brief History of PDE Methods

* Anisotropic PDEs
{ 5 = V-(vIpv),

Ili=o =
or exp(—(z/K)?).

P. Perona and ]J. Malik. Scale-space and edge detection using anisotropic diffusion. [IEEE TPAMI,
12(7):629-639, 1990.



A Brief History of PDE Methods

* Shock Filters
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Original Perona, Malik Rudin, Osher,

S.J. Osher and L. I. Rudin. Feature-oriented image enhancement using shock filters. SIAM J.
Numerical Analysis, 27(4):919-940, 1990.



A Brief History of PDE Methods

e Active Contours

win | g(IVICE)IFIC 0) ] dp

Variational , Euler-Lagrange , Gradient | Evolutionary
Calculus = Equat%on ® Descent ™ PDEs

G. Aubert and P. Kornprobst. Mathematical Problems in Image Processing. Springer-Verlag, 2002.



Summary

* Two kinds of approaches
— Direct design: write down PDEs directly

— Variational design: energy functional — Euler-Lagrange
equation

 Existing applications of PDEs

— Denoising
L '.’ b i
— Enhancement ‘<% » < o5
— Segmentation z 1 fe A~ 7 '
< 1 "'~:~.. ,: J., _'“ b g . : |
— Stereo (e gal
— Inpainting

It was as hot as artificial neural network in 1990s!

G. Aubert and P. Kornprobst. Mathematical Problems in Image Processing. Springer-Verlag, 2002.



But...

* Designing PDEs is too difficult!
— High math skills
— Good insights into the problem

* Can we have a convenient way?
Possible!

PDEs + Learning = Learning Based PDEs

Liu, Lin, Zhang, Tang, and Su, Toward Designing Intelligent PDEs for Computer Vision: A Data-Based
Optimal Control Approach, Image and Vision Computing, 2013.



Basic Idea

* Observe the invariant properties of vision problems
* Determine differential invariants

* Determine combination coefficients among invariants
— By PDE-constrained optimal control

* A user only have to prepare
input/output training data!

* The SAME framework for various problems

Liu, Lin, Zhang, Tang, and Su, Toward Designing Intelligent PDEs for Computer Vision: A Data-Based
Optimal Control Approach, Image and Vision Computing, 2013.



General PDEs
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Our PDEs

( O = Lo(a, <O>7 <P>), (X?t) € Q,
O = 0, (x,t) € T,
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p: indicator function, for collecting large scale information.

a=1a;} and b = {b;} are control functions.
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Liu, Lin, Zhang, Tang, and Su, Toward Designing Intelligent PDEs for Computer Vision: A Data-Based
Optimal Control Approach, Image and Vision Computing, 2013.



Two Basic Invariances

e Shift Invariance
 Rotation Invariance

Theorem 1: Coefficients {a; } and {b; } must be independent of x.

Theorem 2: Lo and L, must be functions of fundamental differential
invariants that are invariant under shift and rotation.

Fundamental differential invariants can be viewed as “bases” of PDEs.

P. Olver. Applications of Lie Groups to Differential Equations, Springer-Verlarg. 1993.



Shift/Rotation Invariant Fundamental
Ditferential Invariants

Table 1: Shift and rotationally invariant fundamental differential invariants up

to second order.
i inv;(p, O)

0,12 |1, p O
3,4,5 | |IVpll? = pz + 03, (Vp)'VO = p,0; + p, Oy, |IVO||* = O + O;
6,7 | tr(H,) = pax + Duy; tr(Ho) = Oz + Oyy
8 | (Vp)'H,Vp = pxpm + 200 pyPay + pypyy

10 (Vp)'H, VO = 202020 + (pyOs + pa:O )Py + Py Oypyy
11 | (Vp)'HoVO = p;0;045 + (pyOg + p20y)Ogy + pyOy Oy,
12 | (VO)'H,VO = OZpzz + 20.0ypey + O; py,

13 | (VO)Y'HoVO = 020,, + 20,0,0,, + 020,

14 | tr(H)) = py + 203y + pyy

15 tr(H Ho) = p22Ozz + 202yOry + pyy Oyy

16 | tr(Hy) = Oz, + 202, + O;,

P. Olver. Applications of Lie Groups to Differential Equations, Springer-Verlarg. 1993.



Simplest PDEs

Liu, Lin, Zhang, Tang, and Su, Toward Designing Intelligent PDEs for Computer Vision: A Data-Based
Optimal Control Approach, Image and Vision Computing, 2013.



Learning Coeftficients by Optimal Control
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(Im,ém) are training samples, where I,, is the input image and O,, is the
expected output image, m=1,2,---, M.

Liu, Lin, Zhang, Tang, and Su, Toward Designing Intelligent PDEs for Computer Vision: A Data-Based
Optimal Control Approach, Image and Vision Computing, 2013.



Solving Optimal Control Governed by
PDEs

e Gradient descent /Gateaux derivative
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Liu, Lin, Zhang, Tang, and Su, Toward Designing Intelligent PDEs for Computer Vision: A Data-Based
Optimal Control Approach, Image and Vision Computing, 2013.



Adjoint Equations

The adjoint equation for ¢y, is
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Layer-wise Optimization

* Minimize the difference from the ground truth at every
time step.

Ortl = On + At-inv? (O, p") - a”, n >0,
pp =Pt + At -inv? (pnt Opt) bl n> 1

FATSA

Expected
output

Goal

Evolved Evolved
Learned PDEs Learned PDEs Learned PDEs

Input Evolved

t=0 t=T/N t=T(N-1)/N t=T

Zhao et al., A Fast Alternating Time-Splitting Approach for Learning Partial Differential Equations, Neurocomputing
2016.



So Complex ...

» The above is our effort to set up the framework
* A user only have to prepare input/output training pair
* Once coefficients are computed, PDEs are obtained

Liu, Lin, Zhang, Tang, and Su, Toward Designing Intelligent PDEs for Computer Vision: A Data-Based
Optimal Control Approach, Image and Vision Computing, 2013.



Experiments

* The same form of PDEs for different problems!

Liu, Lin, Zhang, Tang, and Su, Toward Designing Intelligent PDEs for Computer Vision: A Data-Based
Optimal Control Approach, Image and Vision Computing, 2013.



Image Blur

& A
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RMSE=0.46, PSNR=54.88dB

Liu, Lin, Zhang, Tang, and Su, Toward Designing Intelligent PDEs for Computer Vision: A Data-Based
Optimal Control Approach, Image and Vision Computing, 2013.



Image Blur

(a)

Figure 2: The learnt coefficients (a) a; and (b) b;. 2 = 0, --- . 16, for image blurring.

Standard heat equation: ay = const > 0, a; =0, ¢ # 7, and b; =0, j =
0,---,16.

Liu, Lin, Zhang, Tang, and Su, Toward Designing Intelligent PDEs for Computer Vision: A Data-Based
Optimal Control Approach, Image and Vision Computing, 2013.



Perceptual Edge Detection
a2 B =

L™

Liu, Lin, Zhang, Tang, and Su, Toward Designing Intelligent PDEs for Computer Vision: A Data-Based
Optimal Control Approach, Image and Vision Computing, 2013.




Image Denoising - Gaussian Noise

OUR: 27.87+2.07dB; Other PDE: 26.91 +2.68dB

G. Gilboa, N. Sochen, and Y.Y. Zeevi. Image enhancement and denoising by complex diffusion
processes. IEEE TPAMI, 26(8):1020-1036, 2004.



Image Denoising - Real Noise

- 27.61dB 28.35dB

- 27.98dB 28.67dB 29.52dB 32.29dB
Noiseless Noisy ROF V-, LPDE



Plane Detection

Liu, Lin, Zhang, Tang, and Su, Toward Designing Intelligent PDEs for Computer Vision: A Data-Based
Optimal Control Approach, Image and Vision Computing, 2013.



Plane Detection

Liu, Lin, Zhang, Tang, and Su, Toward Designing Intelligent PDEs for Computer Vision: A Data-Based
Optimal Control Approach, Image and Vision Computing, 2013.



Plane Detection
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Liu, Lin, Zhang, Tang, and Su, Toward Designing Intelligent PDEs for Computer Vision: A Data-Based
Optimal Control Approach, Image and Vision Computing, 2013.



Buttertly Detection
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Liu, Lin, Zhang, Tang, and Su, Toward Designing Intelligent PDEs for Computer Vision: A Data-Based
Optimal Control Approach, Image and Vision Computing, 2013.



Buttertly Detection

Liu, Lin, Zhang, Tang, and Su, Toward Designing Intelligent PDEs for Computer Vision: A Data-Based
Optimal Control Approach, Image and Vision Computing, 2013.



Buttertly Detection

Liu, Lin, Zhang, Tang, and Su, Toward Designing Intelligent PDEs for Computer Vision: A Data-Based
Optimal Control Approach, Image and Vision Computing, 2013.



Handling Color Images

* Correlation among colors is tricky!
* Multi-channels + one indicator function
e 69 fundamental differential invariants

Liu, Lin, Zhang, Tang, and Su, Toward Designing Intelligent PDEs for Computer Vision: A Data-Based
Optimal Control Approach, Image and Vision Computing, 2013.



Experiments - Color2Gray
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Experiments - Demosaicking

Full image Zoomed region Bl SA [18] DFAPD [20] BI + 13 layers



Experiments - T'ext Detection
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(a) Input imag (b) Output image

Zhenyu Zhao, Cong Fang, Zhouchen Lin, and Yi Wu, A Robust Hybrid Method for Text Detection
in Natural Scenes by Learning-based Partial Differential Equations, Neurocomputing, 2015.



Experiments - T'ext Detection

Zhenyu Zhao, Cong Fang, Zhouchen Lin, and Yi Wu, A Robust Hybrid Method for Text Detection
in Natural Scenes by Learning-based Partial Differential Equations, Neurocomputing, 2015.



Experiments - Text Detection

EREELON,

Rreal .49 \THp e

(a) Input (b) SWT
Zhenyu Zhao, Cong Fang, Zhouchen Lin, and Yi Wu, A Robust Hybrid Method for Text Detection
in Natural Scenes by Learning-based Partial Differential Equations, Neurocomputing, 2015.



Experiments - T'ext Detection

| BUFEETT WAY
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ICDAR

Zhenyu Zhao, Cong Fang, Zhouchen Lin, and Yi Wu, A Robust Hybrid Method for Text Detection
in Natural Scenes by Learning-based Partial Differential Equations, Neurocomputing, 2015.



Experlments - Text Detection

SVT

Zhenyu Zhao, Cong Fang, Zhouchen Lin, and Yi Wu, A Robust Hybrid Method for Text Detection
in Natural Scenes by Learning-based Partial Differential Equations, Neurocomputing, 2015.



Experiments - T'ext Detection

Table 2: Comparison with most recent text detection results on the ICDAR 2005 test database. The results of other

methods are quoted from [12, 26].

Methods Description Precision | Recall | F-measure
Our method Hybrid 0.87 0.67 0.76
Pan et al. [12] Hybrid 0.67 0.70 0.69
Huang et al. [26] CC (SWT) 0.81 0.74 0.72
Yao et al. [25] CC (SWT) 0.69 0.66 0.67
Epshtein et al. [5] CC (SWT) 0.73 0.60 0.66
Chen et al. [47] CC (MSER) 0.73 0.60 0.66
Neumann and Matas [49] CC (MSER) 0.65 0.64 0.63
Wang et al. [50] CC 0.77 0.61 0.68
Yi and Tian [51] CC 0.71 0.62 0.63
Zhang and Kasturi [52] CC 0.73 0.62 -
Yi and Tian [21] ccC 0.71 0.62 0.62
Lee et al. [40] Sliding window 0.66 0.75 0.70

Zhenyu Zhao, Cong Fang, Zhouchen Lin, and Yi Wu, A Robust Hybrid Method for Text Detection
in Natural Scenes by Learning-based Partial Differential Equations, Neurocomputing, 2015.



Experiments - T'ext Detection

Table 3: Comparison with most recent text detection results on the ICDAR 2011 test database. These results are from

the papers [24, 48].

Methods Description | Precision | Recall | F-measure
Our method Hybrid 0.88 0.69 0.78
Yin et al. [24] CC (MSER) 0.86 0.68 0.76
Neumann and Matas [48] | CC (MSER) 0.85 0.68 0.75
Ye et al. [4] CC (MSER) 0.89 0.62 0.73
Neumann and Matas [23] | CC (MSER) 0.79 0.66 0.72
Shi et al. [53] CC (MSER) 0.83 0.63 0.72
Koo et al. [54] CC (MSER) | 0.83 0.63 0.71
Huang et al. [26] CC (SWT) 0.82 0.75 0.73
Yi and Tian [51] cC 0.81 0.72 0.71
Wang et al. [50] cC 0.71 0.57 0.63

Zhenyu Zhao, Cong Fang, Zhouchen Lin, and Yi Wu, A Robust Hybrid Method for Text Detection
in Natural Scenes by Learning-based Partial Differential Equations, Neurocomputing, 2015.



Experiments - T'ext Detection

Table 4: Comparison with most recent text detection results on the SVT 2010 database. The results of other methods

are quoted from respective papers.

Methods Description | Precision | Recall | F-measure

Our method, Hybrid 0.72 0.41 0.52

trained on the ICDAR 2011 database

Yin et al. [24],

trained on the SVT 2011 database CC (MSER) 0.66 0.41 0.51
trained on the ICDAR 2011 database 0.62 0.32 0.42
Phan et al. [55] CC 0.50 0.51 0.51

Epshtein et al. [5] CC (SWT) 0.54 0.42 0.47

Zhenyu Zhao, Cong Fang, Zhouchen Lin, and Yi Wu, A Robust Hybrid Method for Text Detection
in Natural Scenes by Learning-based Partial Differential Equations, Neurocomputing, 2015.



Experiments - T'ext Detection

Table 5: Comparison with most recent text detection results on the SVT 2011 database. The results of other methods

are quoted from respective papers.

Methods Description | Precision | Recall | F-measure
Our method. trained on Hybrid 0.65 0.39 0.49
the ICDAR 2011 database
Wang et al. [6] CC 0.67 0.29 0.41
Neumann et al. [38] CC (MSER) 0.19 0.33 -

Zhenyu Zhao, Cong Fang, Zhouchen Lin, and Yi Wu, A Robust Hybrid Method for Text Detection
in Natural Scenes by Learning-based Partial Differential Equations, Neurocomputing, 2015.



Grand Picture

* What are the PDEs that govern visual processing?

There should be!



Grand Picture

e How to find the PDEs?

Symmetries or Invariances

* Newton Laws: Galilean Transformation
* Maxwell Equations: Lorentzian Transformation

* Special Relativity: FitzGerald-Lorentz-Einstein
Transformation

* General Relativity: Gauge Invariance

 String Theory: Super-Symmetry

« Higgs Particle: Local Gauge Invariance of Young-Mills
Equation



Grand Picture

* Learning based PDEs only requires that its output is
close to that of real visual system when the input is a
meaningful image.

For example, although
O1(x,t) = ||Ix[|*sint and Oa(x,t) = (||x||* + (1 — t)|1x[)(sint + (1 - )[|x]*)

are very different functions, they initiate from the same function at ¢ = 0 and
also settle down at the same function at time ¢ = 1. So both functions fit our
needs and we need not care whether the system obeys eltherfuncton 3




Conclusions and Future Work

LPDEs is a promising framework to solve different
computer vision and image processing problems in a
unified way.

More invariants and more complex combinations are yet
to be explored.

Biological explanation of the LPDEs is also interesting.
Connections to deep learning?

7z 4




Thanks!

* zlin@pku.edu.cn
* http://www.cis.pku.edu.cn/faculty/vision/zlin/ zlin.htm
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