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Abstract— Due to the powerful capability of the data represen-
tation, deep learning has achieved a remarkable performance in
supervised hash function learning. However, most of the existing
hashing methods focus on point-to-point matching that is too
strict and unnecessary. In this article, we propose a novel deep
supervised hashing method by relaxing the matching between
each pair of instances to a point-to-angle way. Specifically,
an inner product is introduced to asymmetrically measure the
similarity and dissimilarity between the real-valued output and
the binary code. Different from existing methods that strictly
enforce each element in the real-valued output to be either
+1 or −1, we only encourage the output to be close to its cor-
responding semantic-related binary code under the cross-angle.
This asymmetric product not only projects both the real-valued
output and the binary code into the same Hamming space but
also relaxes the output with wider choices. To further exploit the
semantic affinity, we propose a novel Hamming-distance-based
triplet loss, efficiently making a ranking for the positive and
negative pairs. An algorithm is then designed to alternatively
achieve optimal deep features and binary codes. Experiments
on four real-world data sets demonstrate the effectiveness and
superiority of our approach to the state of the art.
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I. INTRODUCTION

DUE to the rapid development of the internet, multimedia
data in search engines and social networks meets a great

increase in recent years. Subsequently, how to store these data
and allow searches to have a quick query when a test sample is
given has become a fundamental problem. Fortunately, hashing
techniques provide a reasonable solution, thanks to its low
storage cost (a few binary bits per sample) and fast retrieval
speed (low complexity of the Hamming distance computation).
The main goal of hashing methods is to learn multiple hash
functions to project the input to a more compact Hamming
space, in which the feature is represented as binary codes.
Since these codes further enjoy the semantic or structure
information existing in the original space, hashing methods
have been used in many applications with a large-scale data
set, e.g., image retrieval [1]–[3], pattern recognition [4]–[6],
and data fusion [7].

Generally, hashing methods can be classified into two
categories: data-independent and data-dependent. A typical
data-independent method is the locality sensitive hashing
(LSH) [8]. Although LSH is quite simple and easy to be imple-
mented, it cannot meet our requirements when the length of
the binary codes is relatively small due to the random hashing
functions that are too weak to capture the complex distribution
of the input data. To address this problem, data-dependent
methods aim to learn adaptive hashing functions based on
the input data, achieving much better performances with
fewer binary bits per sample compared with LSH. Anchor
graph hashing (AGH) [9] and spectral hashing (SH) [10]
introduce the graph-based hashing methods to automatically
discover the neighborhood structure inherent in the data to
learn appropriate compact codes. However, these two methods
discard the discrete constraints by solving the continuous prob-
lems. Therefore, discrete graph hashing (DGH) [11] further
presents a tractable alternating maximization algorithm to deal
with the discrete constraints. In addition, instead of using
hyperplane-based hashing functions, spherical hashing [12]
proposes a novel hypersphere-based hashing function, being
capable of mapping more spatially coherent data points into a
binary code. Despite the fact that the aforementioned methods
learn the data-driven based hashing functions, the supervised
information that is valuable for the performance improvement
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Fig. 1. Motivation of the point-to-angle matching. Assume f1, f2, f3, f4, f5,
f6, and b1 belong to the same Hamming space R1. 1) (fT

1 f2 −k)2 makes them
similar and discrete. However, if f1 and f2 are both transformed to f ′

1 and f ′
2

in R2, the value of fT
1 f2 remains unchanged but their hashing codes change.

2) The asymmetric inner product (fT
1 b1 − k)2 can well tackle the problem

in 1), but this term strongly enforces each element in f1 (f2) to approximate to
be either +1 or −1. This is too strict and unnecessary since what we need is
sign(f1). 3) To address the problem in 2), although some works try to use the
cosine distance to measure the similarity, it may be unable to process some
specific cases like (f3, f4).

is ignored. To tackle this problem, fast supervised hashing
(FastH) [13] and supervised discrete hashing (SDH) [14]
simultaneously project the original features to compact binary
codes and preserve the label-based similarity. Although these
traditional data-dependent hashing methods are superior to
data-independent approaches, two separated steps (feature
extraction and hashing learning) limit their applications to
large-scale data sets, which have complex distributions. Fortu-
nately, deep learning [15], [16] provides a reasonable way to
jointly train the features and hashing functions in an end-to-
end structure. For instance, deep pairwise supervised hashing
(DPSH) [17] introduces the deep network and a pairwise
loss to extract deep features and learn the hashing function,
achieving a much better performance on image retrieval. More
learning to hash algorithms including both shallow and deep
architectures can be found in [18]. In this article, we aim to
apply our deep hashing method to image retrieval.

However, existing studies on deep hashing methods still
encounter several problems as follows.

1) The first limitation is that most deep hashing approaches
aim to match each pair of samples through point-to-
point. Assume that fi ∈ R

k×1 and f j ∈ R
k×1 are outputs

corresponding to the i th and j th samples, where k is
the dimension of the output. A common strategy in
hashing learning is to minimize their Hamming distance
through (fT

i f j − kSi j )
2, where Si j is the element of

the similarity matrix in the i th row and j th column.
Although this term approximates (fi , f j ) to be close to
the discrete values (either +1 or −1) and exploits their
pairwise semantic information, it fails in some specific
cases. As shown in Fig. 1, suppose f1 and f2 have the
same ground-truth and are located in the same Hamming
space R1. However, if both points are transformed to f ′

1
and f ′

2 in another Hamming space R2, there is no change
for the value of f

′T
1 f ′

2, while their corresponding hashing
codes sign(f ′

1) and sign(f ′
2) are obviously different from

their ground-truth sign(f1) and sign(f2). To address

this problem, several studies [19] try to use the asym-
metric loss (fT

2 b1 −kS21)
2 to alternatively update binary

code b1 and real-valued output f2. Experimental results
demonstrate the superiority of this asymmetric inner
product. Note that what we require are the binary codes
sign(f1) and sign(f2). Thus, encouraging f1, f2, and
b1 to be in the same Hamming space is necessary,
while the traditional asymmetric product fT

1 b1 (fT
2 b1)

not only enforces f1 (f2) and b1 in the same Hamming
space but also requires them to be close in Euclidean
distance, which is too strict and unnecessary. Therefore,
Cao et al. [20] and He et al. [21] introduced the cosine
distance (〈fi , f j 〉/‖fi‖‖f j‖) to make similar points lie
in the same hypercube with high probability. However,
this method also cannot meet our requirement in some
specific cases. As shown in Fig. 1, assume (f3, f4) and
(f5, f6) enjoy the same semantic information. We favor f5
and f6, but avoid f3 and f4. In fact, the cosine distance in
both pairs is large, while f3 and f4 have different hashing
codes. Therefore, based on the aforementioned analysis,
we propose a novel relaxed asymmetric strategy to
achieve the matching through point-by-angle. Particu-
larly, as shown in Fig. 1, points f5 and f6 are encouraged
to be close to the binary variable b1 in cosine distance.
Thanks to this strategy, we can not only make samples
belonging to the same class in a common hypercube
without any length constraint but also efficiently avoid
the case occurring between f3 and f4.

2) The second problem is how to efficiently exploit the
semantic affinity existing in the original space. In recent
years, several functions have been proposed to reveal
the similarity and dissimilarity between each pair of
samples. The two commonest ways are the pairwise loss
and triplet loss. The pairwise loss enforces the samples
belonging to the same class to be close while those
belonging to different classes to be far. In contrast,
the triplet loss encourages the distance between each
pair of similar (positive) samples to be smaller than
that between each pair of dissimilar (negative) samples.
In fact, in the image retrieval task, what we need is to
make the similar samples closer than other dissimilar
samples. Thus, we focus on using the triplet loss to
measure the semantic affinity.

The traditional triplet loss uses the Euclidean distance to
separate the similar and dissimilar pairs. However, the Euclid-
ean distance is not adaptive for our relaxed asymmetric
method. As shown in Fig. 2, f1 and f2 belong to the same
category and are located in the same Hamming space, while
f3 is dissimilar to them and falls in another Hamming space.
In fact, both f1 and f2 are in appropriate positions in the
relaxed point-to-angle viewpoint since their cosine distances
to b1 are large. However, the Euclidean distance between f1
and f2 is much larger than that between f2 and f3. Therefore,
if the traditional triplet loss is directly used for semantic
information exploration, there would be an influence on our
proposed relaxed asymmetric strategy. To address this prob-
lem, we propose a novel triplet loss based on the Hamming
distance. Particularly, we first normalize the output onto a
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Fig. 2. Motivation of the novel triplet loss. f1 and f2 belong to the same
class, while f3 belongs to another class. According to the analysis in Fig. 1, f1
and f2 are located in appropriate positions. However, the Euclidean distance
between them is much larger than that of f2 and f3. The traditional triplet
cannot be directly used. Thus, we propose a novel triplet loss. First, each
output is normalized onto a unit ball to get f̄1, f̄2, and f̄3 corresponding to f1,
f2, and f3, respectively. Then [1− (f̄T

1 f̄3 −1)2
2 + (f̄T

1 f̄2 −1)2
2]+ is constructed

to encourage f̄1 to be closer to f̄2 than to f̄3 under the Hamming distance.

multidimensional unit ball and get f̄1, f̄2, and f̄3 corresponding
to f1, f2 and f3, respectively. Different from traditional methods
that only consider the Euclidean distance in the triplet loss,
we further use the Hamming distance to encourage (f̄1, f̄2) to
be closer than (f̄1, f̄3) and (f̄2, f̄3). Mathematically, the triplet
loss among these three points can be represented as [1−(f̄T

1 f̄3−
1)2 + (f̄T

1 f̄2 − 1)2]+ and [1 − (f̄T
2 f̄3 − 1)2 + (f̄T

1 f̄2 − 1)2]+,
where [z]+ = max(z, 0). We will discuss the details of this in
Section III.

The main contributions are concluded as follows.

1) A relaxed asymmetric strategy is proposed to reveal
the similarity between real-valued outputs and discrete
binary codes in point-to-angle matching. The real-valued
features and hashing variables are encouraged to fall
in the same Hamming space through an inner product
without any length constraint.

2) A novel triplet loss is presented, which is quite adaptive
for our proposed relaxed asymmetric method. Different
from the traditional version that only ranks the positive
and negative pairs by using the Euclidean distance,
we normalize each output onto a multidimensional unit
ball and the Hamming distance is introduced to make a
ranking for different pairs.

3) An efficient algorithm is designed to alternatively update
various variables in an end-to-end deep structure. Par-
ticularly, the binary codes can be obtained in a discrete
way.

4) In image retrieval, experimental results on four
large-scale data sets substantiate the effectiveness and
superiority of our proposed method compared with some
existing state-of-the-art hashing approaches.

The rest of this article is organized as follows. The related
works, including both data-independent and data-dependent
hashing methods, are briefly reviewed in Section II.
In Section III, the proposed relaxed asymmetric deep hash-
ing (RADH) is analyzed, followed by its optimization, infer-
ence, and implementation. In Section IV, experiments are
conducted on four large-scale data sets to demonstrate the

superiority of RADH. This article is finally concluded in
Section V.

II. RELATED WORKS

As described in the first section, the hashing methods can
be roughly divided into data-independent and data-dependent
approaches.

LSH [8] is one of the most typical data-independent meth-
ods, which aims to use several randomly projections to get the
hashing codes, ensuring the probability of collision is much
higher for data points that are closer to each other than for
those that are far apart. LSH is further extended to a kernel
version (KLSH) [22] to nonlinearly represent the real-world
data sets with more complex structures. In addition, various
distance or similarity priors are also imposed on the basic
LSH to achieve several extensions [23]–[25]. However, there
is a performance limitation for LSH due to the fact that it is
totally data-independent and ignores the data distribution that
is valuable for the performance improvement.

To tackle this problem, researchers focus on the
data-dependent methods to learn an adaptive hashing func-
tion for a specific data set. Generally, data-dependent meth-
ods can also be separated into two parts: unsupervised and
supervised. Unsupervised hashing methods aim to exploit the
structure information to learn compact codes for the input
data. Density-sensitive hashing (DSH) [26] was proposed to
replace the random projection in LSH. SH was proposed by
Weiss et al. [10]. SH bridges the binary coding to the graph
partitioning. Due to the high complexity of SH when the data
set is large, Heo et al. proposed spherical hashing based on
the hyperplane to learn a spherical Hamming distance [12].
Jiang and Li [27] proposed a scalable graph hashing (SGH)
for large-scale graph hashing. Different from SH and SGH
that ignore the discrete constraint, the DGH [11] was studied,
which can find the inherent neighborhood structure in a dis-
crete code space. In contrast to graph hashing, iterative quanti-
zation (ITQ) [28] and double-bit quantization (DBQ) [29] were
presented to minimize the quantization error. Instead of mea-
suring data similarity by the Euclidean distances, Hu et al. [30]
designed a cosine similarity-based hashing learning strategy
to achieve better performances. Different from unsupervised
hashing methods that ignore the label information in the
training set, supervised hashing learning focuses on learning
the hash function to encourage the projected hashing codes
to preserve the semantic information existing in the original
space. Some typical supervised hashing approaches include
kernel-based supervised hashing (KSH) [31], FastH [13],
SDH [14], and column sample-based discrete supervised hash-
ing (COSDISH) [32]. Both KSH and FastH achieve nonlin-
earity in supervised hashing, while SDH and COSDISH opti-
mize their models discretely. Considering that there do exist
potentially noisily labeled samples, the robust discrete code
modeling (RDCM) [33] was presented to employ l2,p-norm,
being capable of performing code selection and noisy sample
identification.

Although many data-dependent methods have been studied,
they often meet a performance limitation due to the use of
hand-crafted features. In recent years, deep learning with
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Fig. 3. Framework of the proposed method. The top and bottom streams with different weights are used to extract features from the images. A shared binary
code bi is then generated from the same input for both streams. Here we assume that (b1, f1, f2) have the same semantic information, while (b2, f3) enjoy
different semantic information from b1. In the learning step, the relaxed asymmetric is exploited to make (b1, f1, f2) locate in the same Hamming space
without the length constraint. We also propose a novel triplet loss to rank the positive and negative pairs.

an end-to-end network provides a reasonable and promising
solution. A deep network was proposed by Liong et al. [34]
to jointly represent the data and obtain binary codes. Due
to the powerful image representation, convolutional neural
networks (CNN) are widely applied to hashing learning. For
instance, Zhang et al. [35] combined the CNN and hashing
learning in a unified model and applied it to image retrieval
and person re-identification. Similarly, deep hashing network
(DHN) [36], deep supervised hashing (DSH-DL) [37], and
CNN-based hashing (CNNH) [38] were also proposed. A pair-
wise loss (DPSH) was presented in [17] to preserve the seman-
tic information between each pair of outputs. Shen et al. [39]
deep asymmetric pairwise hashing (DAPH) and Jiang and Li
asymmetric deep supervised hashing (ADSH) [19] proposed
asymmetric structures and experimental results demonstrated
their superiority. Note that an asymmetric hashing method,
named asymmetric inner-product binary coding (AIBC), was
previously proposed in [40] by revealing the inner products
between raw data vectors and the discrete vectors, whose
objective function is similar to that of ADSH. However,
our proposed method is greatly different from these three
asymmetric methods. For ADSH and AIBC, they only try to
use the point-to-point based inner product to link the relation-
ship between the real-valued output and the discrete variable.
By contrast, RADH transforms the point-to-point operation to
the point-to-angle way, which can provide more freedom for
the estimation of the real-valued outputs. This strategy is more
adaptive and reasonable for hashing learning, being beneficial
to the performance improvement. Referring to DAPH, it only
takes two streams of networks for training, while the Hamming
distance-based measurement between the binary variable and
the real-valued output is ignored. By contrast, our proposed
method RADH not only takes the two-stream network into
account but also introduces a novel measurement between the
binary variable and the real-valued output.

To exploit the ranking information, the triplet labels are
used to learn hashing models, including deep semantic
ranking-based hashing (DSRH) [41], deep similarity com-
parison hashing (DSCH) [35], deep regularized similarity

comparison hashing (DRSCH) [35], and unsupervised deep
triplet hashing (UDTH) [42]. Note that, although UDTH
uses the cosine similarity to construct the pseudo, it still
exploits the Euclidean distance to measure the similarity and
dissimilarity. Since there is not any length constraint on the
learned features in RADH, these existing triplet losses are
unsuitable to be directly applied to RADH. By contrast, our
proposed triplet loss not only normalizes each learned feature
to a unit length first but also transforms the Euclidean distance
to the relaxed Hamming distance, which is more suitable for
hashing learning. In addition, Heo et al. [12], [43] proposed
a hypersphere-based hashing method, in which the pivot
positions of two hyperspheres are made closer if the number of
data points in a subset corresponding to two hashing functions
are smaller or equal to a threshold. Otherwise, the pivots would
be placed farther away. By contrast, our proposed method
exploits the relaxed Hamming distance to encourage the dis-
tance between the positive pair to be smaller than that between
the negative pair, which introduces the ranking information,
being quite different from the measurement in [12] and [43].
Also, Gordo et al. [44] proposed the asymmetric schemes to
binarize the database signatures but not the query. Differently,
our presented approach exploits the supervised information
between the binary codes and real-valued features, as well as
the positive pairs and negative pairs.

III. PROPOSED METHOD

In this section, we first define the deep structure and
some notations used in this article. The presented RADH is
then analyzed, followed by its optimization, inference, and
implementation.

A. Network Structure and Notations

In [39], it has been proved that the asymmetric deep network
can preserve more similarity information. Note that in this
article, we mainly focus on the efficiency of the relaxed
asymmetric and novel triplet losses. Thus, we only simply
apply the CNN-F [45] and the asymmetric deep network [39]
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to represent the input data, as shown in Fig. 3. The main
advantage of this two-stream network is that we can regard
the input in one stream as the query and view the other one as
the database, which is beneficial for updating the weights in
each stream in a supervised way. It is obvious that this deep
structure can be replaced with other network structures, e.g.,
VGG and ResNet, whereas these different structures are not
the focus of this article.

Since we prefer to obtain a k-bit binary code, the last layer
in CNN-F is replaced with a k-D vector. Besides this, we ini-
tialize the weights of the first seven layers in CNN-F by using
the pretrained ImageNet model, where the weights in the last
layer are set to be random values. Here we denote the inputs
in the first and second streams as X = {x1, . . . , xi , . . . , xN } ∈
R

N×d1×d2×3 and Y = {y1, . . . , yi , . . . , yN } ∈ R
N×d1×d2×3,

where N is the number of training samples and (d1, d2) are
the size of an image. Note that X and Y are only different in
symbol notations. They both represent the same training set.
Being similar to [39], the purpose of our model is to learn
two hash functions F and G to map the raw data X and Y
into the Hamming space. In this article, we denote the outputs
associated with X and Y as F = [f1, . . . , fi , . . . , fN ]T ∈
R

N×k and G = [g1, . . . , gi , . . . , gN ]T ∈ R
N×k , respec-

tively. In addition, their corresponding shared binary codes are
denoted as B = [b1, . . . , bi , . . . , bN ]T ∈ R

N×k , where bi ∈
{−1,+1}k×1. As our method performs supervised learning,
a matrix S ∈ R

N×N is introduced to measure the semantic
similarity between X, Y, and B. Si j is its element in the i th
row and j th column. Si j = 1 if xi and y j (b j ) share the same
semantic information or label, otherwise Si j = 0 − ε, where ε
is a slack variable, e.g., 0.11. Note that, the sizes of F, G, and
B are all the same. In our two-stream network, being the same
to DAPH, we input the images X and Y (both are the same
training set) into the first and second streams alternatively.
When the images are inputted into the first stream and get the
output F, we encourage F to do retrieval from G. The second
stream carries out the same operation. Then B is the binary
code that is completely associated with F and G row by row.

B. RADH

The framework of the proposed method is shown in Fig. 3.
There are two streams and both are used to extract the features
from the input images. Different from DAPH [39] that learns
two binary codes associated with these two streams, we aim
to learn a shared hashing code associated with the outputs
from the first and second streams. More specifically, a relaxed
asymmetric strategy is used to encourage the real-valued
outputs and the discrete hashing variables enjoying the same
semantic information to be close in terms of the cosine
distance. The novel triplet loss is then introduced to make
an efficient ranking for each positive and negative pair.

Let F and G be the outputs in the first and second streams,
respectively. Since our goal is to obtain hash functions through
the deep networks, the binary code B is also generated by
minimizing the distance between B and F / G. As analyzed
in DAPH and ADSH, the asymmetric strategy can reduce the
difficulty of the discrete constraint optimization. Equation (1)

is used to not only make the real-valued outputs and the
hashing variables close in Hamming distance but also enjoy
the semantic affinity existing in the original space

min
(
bT

i f j − kSi j
)2

2 + (
bT

i g j − kSi j
)2

2. (1)

However, (1) also enforces F or G to be similar in the length,
which is too strict and unnecessary. What we need is to ensure
the hashing codes and real-valued outputs to have the same
semantic information in a common Hamming space rather than
the same length. To address this problem, we relax (1) to (2).

min

(
bT

i f j

‖bi‖‖f j ‖ − Si j

)2

+
(

bT
i g j

‖bi‖‖g j‖ − Si j

)2

(2)

where ‖bi‖, ‖f j‖, and ‖g j‖ represent the length of bi , f j , and
g j , respectively. Since ‖bi‖ = √

k, we further transform (2)
to (3)

min La =
∑
i, j

⎛
⎝(

bT
i f j

‖f j‖ −√
kSi j

)2

+
(

bT
i g j

‖g j‖ −√
kSi j

)2
⎞
⎠ .

(3)

From (3), it is easy to see that there is not any length constraint
on the learned features, while this equation simultaneously
makes the real-valued outputs and binary codes locate in the
same hypercube if they belong to the same class, otherwise
they will be located in different Hamming spaces. Compared
with (1), this strategy provides more freedom for the estima-
tion of f j and g j , which is more adaptive and reasonable for
hashing learning.

In the retrieval task, what we need is to ensure the distance
between each positive pair to be smaller than that of the
corresponding negative pair. Thus, we further introduce the
triplet loss, which is quite adaptive for the retrieval task.
However, directly applying the existing triplet loss to RADH
is not reasonable due to the following two limitations.

1) In hashing learning, the input vectors for the existing
triplet loss often follow the constraint that each element
is encouraged to be +1 or −1, so that their lengths
would be limited to a narrow range. However, there
is not any length constraint on the vectors in RADH,
which makes the existing triplet loss unsuitable for our
proposed method, as shown in Fig. 2.

2) The adaptive measurement in hashing learning is the
Hamming distance, while the existing triplet loss often
adopts the Euclidean distance to measure the similarity
or dissimilarity, subsequently resulting in the quantative
error.

By contrast, in this article, we propose a novel triplet loss that
is quite suitable for RADH. Particularly, we first normalize
the real-valued features to a unit ball so that the vector
length problem can be well avoided. The inner product of two
outputting vectors is then introduced as the relaxed Hamming
distance, which would be more adaptive and reasonable for
our hashing learning.

Our proposed triplet comparison formulation is trained on
a series of triplets (fi , f j , ft ), where fi and f j belong to the
same class, while f j and ft are from different classes. The
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same formulation can be applied to (gi , g j , gt ). To make the
Hamming distance between fi and f j smaller than that between
f j and ft , for any triplet (fi , f j , ft ), these three samples should
satisfy the following constraint:(

fT
t f j

‖ft‖‖f j ‖ − 1

)2

−
(

fT
i f j

‖fi‖‖f j‖ − 1

)2

> 1 − ξi j t (4)

where ξi j t is a nonnegative slack variable. Note that since
there is not any constraint on the length of the output, we first
normalize (fi , f j , ft ) onto a k-dimensional unit ball. However,
it is difficult to get the gradient of f j since it may also be
associated with other samples as a retrieval point. Thanks to
our two-stream network structure, we can regard f j as a query,
while {gi}N

i=1 is used as a retrieval data set. Thus, jointly taking
(fi , f j , ft ) and (gi , g j , gt ) into account, the triplet loss function
in RADH is

min L p

=
∑
i, j,t

⎡
⎣1 −

(
gT

t f j

‖gt‖‖f j‖ − 1

)2

+
(

gT
i f j

‖gi‖‖f j‖ − 1

)2
⎤
⎦

+

+
∑
i, j,t

⎡
⎣1 −

(
fT
t g j

‖ft‖‖g j ‖ − 1

)2

+
(

fT
i g j

‖fi‖‖g j ‖ − 1

)2
⎤
⎦

+
(5)

where [z]+ = max(z, 0). Compared with the existing triplet
loss that only uses the Euclidean distance to measure the rank-
ing between the positive and negative pairs, (5) successfully
transforms it to a hashing-based function, efficiently exploiting
the Hamming distance to achieve a satisfactory ranking.

As described in [39], an additional Euclidean regularization
between b j and f j / g j is beneficial to the performance
improvement. Thus, we further enforce b j and f j / g j to
be close in terms of the Euclidean distance as shown in the
following equation:

min Le =
∑

j

(∥∥∥∥√
k

f j

‖f j‖ − b j ‖2
2 + ‖√k

g j

‖g j‖ − b j

∥∥∥∥
2

2

)
. (6)

Here
√

k(f j/‖f j‖) and
√

k(g j/‖g j ‖) are applied to make their
elements close to either −1 or +1.

In addition, as shown in (7), in order to achieve a balance
for each bit in the training samples, as well as to maximize
the information provided by each bit, another regularization is
introduced

min Lr = ‖√kF̄T 1‖2
2 + ‖√kḠT 1‖2

2 (7)

where F̄ = [f̄1, . . . , f̄N ]T = [(f1/‖f1‖), . . . , (fN /‖fN ‖)]T ,
Ḡ = [ḡ1, . . . , ḡN ]T = [(g1/‖g1‖), . . . , (gN /‖gN ‖)]T and 1
is a N × 1 vector whose elements are all 1.

Overall, the objective function can be obtained as follows:
min La + τ L p + γ Le + ηLr , s.t. bi ∈ {−1,+1} (8)

where τ , γ , and η are the nonnegative parameters to make a
tradeoff among various terms.

C. Optimization

In the objective function (8), the variables including F,
G and B should be optimized. Due to the discrete constraint
on B, it is difficult to get the optimal solution directly. In this
article, an efficient algorithm is designed to alternatively and
discretely update different variables.

1) Update F With G and B Fixed: By fixing G and B,
the objective function (8) is transformed to

min L f =
∑
i, j

(
bT

i f̄ j − √
kSi j

)2 + γ
∑

j

‖√k f̄ j − b j‖2
2

×τ
∑
i, j,t

[
1 − (

ḡT
t f̄ j − 1

)2 + (
ḡT

i f̄ j − 1
)2]

+

+ η
∥∥√

kF̄T 1
∥∥2

2. (9)

We obtain the following derivative of L f with respect to f̄ j :

∂L f

∂ f̄ j
= 2

∑
i

bi
(
bT

i f̄ j − √
kSi j

) + 2γ
√

k(
√

k f̄ j − b j )

+ 2τ
∑
i,t

Mit
( − ḡt (ḡT

t f̄ j − 1) + ḡi (ḡT
i f̄ j − 1

))
+ 2ηkF̄T 1 (10)

where M is a mask matrix and its component in the i th row
and j th column is denoted as Mit . Mit = 1 if [1 − (f̄T

t f̄ j −
1)2 + (f̄T

i f̄ j − 1)2] > 0, otherwise Mit = 0.
Then the derivative of f̄ j with respect to f j is calculated as

follows:

∂ f̄ j

∂f j
= I

‖f j‖ − f j fT
j

‖f j‖3 . (11)

Combining (10) and (11) together and exploiting the chain
rule, the derivative of L f with respect to f j is

∂L f

∂f j
= ∂ f̄ j

∂f j

∂L f

∂ f̄ j
. (12)

After getting the gradient (∂L f /∂f j ), the chain rule is used
to obtain (∂L f /∂W f ), where W f is the weight in the first
stream. W f is updated by using backpropagation.

2) Update G With F and B Fixed: By fixing F and B,
the objective function (8) is transformed to

min Lg =
∑
i, j

(
bT

i ḡ j − √
kSi j

)2 + γ
∑

j

‖√kḡ j − b j‖2
2

× τ
∑
i, j,t

[
1 − (

f̄T
t ḡ j − 1

)2 + (
f̄T
i ḡ j − 1

)2]
+

+ η‖√kḠT 1‖2
2. (13)

Similarly, the derivative of Lg with respect to g j is

∂Lg

∂g j
= ∂ ḡ j

∂g j

∂Lg

∂ ḡ j
(14)
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where

∂ ḡ j

∂g j
= I

‖g j‖ − g j gT
j

‖g j‖3 (15)

∂Lg

∂ ḡ j
= 2

∑
i

bi
(
bT

i ḡ j − √
kSi j

) + 2γ
√

k(
√

kḡ j − b j )

+ 2τ
∑
i,t

Mit
( − f̄t

(
f̄T
t ḡ j − 1

) + f̄i
(
f̄T
i ḡ j − 1

))
+ 2ηkḠT 1. (16)

After getting the gradient (∂Lg/∂g j ), we use the chain rule
to obtain (∂Lg/∂Wg), where Wg is the weight in the second
stream. Wg is updated by using backpropagation.

3) Update B With F and G Fixed: By fixing F and G,
the objective function (8) is transformed to

min Lb = ‖F̄BT − √
kS‖2

F + ‖ḠBT − √
kS‖2

F

+ γ
(‖√kF̄ − B‖2

F + ‖√kḠ − B‖2
F

)
s.t. bi ∈ {−1,+1}. (17)

Then (17) can be rewritten as

min Lb = −2Tr[B(
√

k(F̄T + ḠT )(S + γ I))]
+ ‖BF̄T ‖2

F + ‖BḠT ‖2
F + const.

s.t. bi ∈ {−1,+1} (18)

where “const" means a constant value without any association
with B. Here let Q = −2

√
k(ST + γ I)(F̄ + Ḡ). Equation (18)

can then be simplified to

min Lb = ‖BF̄T ‖2
F + ‖BḠT ‖2

F + Tr[BQT ] + const

s.t. bi ∈ {−1,+1}. (19)

Since it is difficult to optimize B directly, we update it bit by
bit. In other words, we update one column in B with remaining
columns fixed. Denote B∗c as the cth column and B̂c as the
remaining columns in B. The same can be applied to F∗c, F̂c,
G∗c, Ĝc, Q∗c, and Q̂c. When we optimize B∗c, (19) can then
be rewritten as

min
B∗c

Tr
(
B∗c

[
2
(
FT∗cF̂c + GT∗cĜc

)
B̂T

c + QT∗c

] + const

s.t. B ∈ {−1,+1}n×k . (20)

It is easy to get the optimal solution for B∗c

B∗c = −sign
(
2B̂c

(
F̂T

c F∗c + ĜT
c G∗c

) + Q∗c
)
. (21)

After computing B∗c, we update B by replacing the cth column
with B∗c. Then we repeat (21) until all columns are updated.

Algorithm 1 shows the details of the optimization.

D. Out-of-Sample

After performing training, we obtain the weights W f and
Wg associated with the first and second streams. Given an
out-of-sample image x∗ belonging to the query set, we can
get its corresponding binary code by following either b∗

f =
sign(F(x∗, W f ) or b∗

g = sign(G(x∗, Wg). The experimental
results show that b∗

f and b∗
g achieve the similar performance.

However, in order to obtain a more robust result, we regard

Algorithm 1 RADH
Input: Training data X/Y; similarity matrix S; hash code

length k; predefined parameters τ , γ and η.
Output: Hashing functions F and G for the two streams,

respectively.
Initialization: Initialize weights of the first seven layers by

using the pretrained ImageNet model; the last layer is
initialized randomly; B is set to be a matrix whose elements
are zero.

1: while not converged or the maximum iteration is not
reached do

2: Update (F, W f ):
Fix (G, Wg) and B and update (F, W f ) using
back-propagation according to Eq.(12).

3: Update (G, Wg):
Fix (F, W f ) and B and update (G, Wg) using
back-propagation according to Eq.(14).

4: Update B:
Fix (F, W f ) and (G, Wg) and update B according to
Eq.(21).

5: end while

their average as the final result, as shown in the following
equation:

b∗ = sign(F(x∗, W f ) + G(x∗, Wg)). (22)

E. Implementation

We implement RADH under the deep learning toolbox Mat-
ConvNet [46] on a Titan X GPU. Specifically, the pretrained
model of CNN-F on the ImageNet data set is applied to both
streams to initialize their weights, which is greatly beneficial
to the performance improvement. Since the output of the last
layer is different from that in the original CNN-F model,
we randomly initialize the weight in this layer. In the training
phase, we set the maximized epoch to be 150, the learning
rate to be 10−3, the batch size to be 64, and the weight decay
to be 5 ×10−4. The stochastic gradient descent (SGD) is then
exploited to update the weights.

In (5), the triplet loss is achieved by ranking each positive
pair and negative pair. However, it is too time consuming if
we take all training samples into account. In our experiments,
we sort the positive pairs in descending order and the negative
pairs in ascending order by following (fT

i g j −1)2 / (gT
i f j −1)2.

We then select top 200 samples from each part as the positive
and negative instances, respectively.

IV. EXPERIMENTS

In this section, different experiments on four data sets are
conducted based on different experimental settings. We first
followed the settings in some existing methods to make a
comparison between RADH and other deep hashing methods.
In order to better demonstrate the generality of the proposed
model, additional experiments based on our settings are also
conducted, followed by the analysis on the sensitivity of the
parameters τ , γ , and η.
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A. Data Sets and Evaluation Protocol

In this article, four real-world data sets, including
CIFAR-10 [47], NUS-WIDE [48], IAPR-12 [49], and
MIRFLICKR-25K [50], are used to evaluate the superiority
of RADH.

CIFAR-10 is composed of 60 000 images, where each sam-
ple belongs to one of ten classes.

NUS-WIDE consists of 269 648 web images. Following [17]
and [19], 195 834 images are selected, which are associated
with the 21 most frequent tags. Since images in this data set
are multilabel, Si j = 1 if there is at least one label between
xi and x j , otherwise Si j = 0 − ε. Here ε is set to 0.11.

IAPR-12 is composed of 20 000 images associated with
255 classes. Note that some samples in the IAPR-12 data set
have multiple labels. The definition of Si j is the same to that
in NUS-WIDE.

MIRFLICKR-25K is composed of 25 000 images collected
from Flickr. Being similar to the IAPR-12 data set, this is
also a multilabel data set. Here, we also define two images to
be ground-truth neighbors if they share at least one common
label. According to [51], 20 015 images annotated with at least
24 tags are selected.

To quantatively evaluate different approaches, the mean
average precision (MAP) and top-k precision are adopted.

B. Existing Experimental Settings

Since the CIFAR-10 and NUS-WIDE data sets are the most
common data sets used in existing deep hashing methods,
we show the results conducted on these two data sets. Being
similar to existing methods, MAP and Top-50 000 MAP are
applied to evaluate the performance of different approaches on
the CIFAR-10 and NUS-WIDE data sets, respectively. Note
that all results of the comparison methods in this subsection
are directly copied from the published articles [17], [19], [35].
Besides, DRSCH, DSCH, and DSRH are the triplet label-based
methods.

Note that, since the training number is quite large and if we
use all training samples in each epoch, the required storage of
the similarity matrix S would be very huge, being impractical
in the implementation. Thus, being similar to ADSH, we also
randomly sample a part of instances from the training set
in each epoch. Table I makes a comparison among RADH,
DSH-DL, DHN, and ADSH conducted on the CIFAR-10 and
NUS-WIDE data sets. Here 1000 samples are selected for
testing (100 per class) and remaining samples are used for
training in the CIFAR-10 data set. Similarly, 2100 samples
(100 per class) are selected for testing and the rest of images
are used for training in the NUS-WIDE data set. As we can
see, RADH obtains much better performance compared with
these deep hashing methods in all cases. Especially in the
CIFAR-10 data set, when the code length is small, e.g., 12-bit,
the gap of the performance obtained by RADH and other
methods is quite large, relatively indicating the effectiveness
of our method. In the NUS-WIDE data set, RADH always
achieves the remarkable improvement compared with DPSH
and several existing triplet label-based methods.

TABLE I

MAP AND MAP@TOP50000 SCORES OBTAINED BY DIFFERENT
METHODS ON THE CIFAR-10 AND NUS-WIDE DATA SETS,

RESPECTIVELY. 1000 AND 2100 SAMPLES ARE

SELECTED FOR TESTING AND REMAINING SAMPLES

ARE USED FOR TRAINING IN THESE TWO
DATA SETS, RESPECTIVELY

TABLE II

MAP SCORES OBTAINED BY DIFFERENT METHODS
ON THE CIFAR-10 DATA SET

C. Additional Experimental Settings

Although our method obtains satisfactory performance
in Table I, it cannot comprehensively show the generality of
the models due to the too large number of training samples.
To address this problem, we aim to divide the data set into
three parts: training, retrieval, and testing sets.

CIFAR-10: 100 samples per class are used for testing,
500 samples per class are selected for training, and the
remaining images are used for retrieval.

NUS-WIDE: 2100 images are selected for testing and
the remaining images are used for retrieval, in which
10 500 images are selected for training.

IAPR-12: The retrieval set consists of 18 000 images and
the test set is composed of the remaining 2000 images. Fur-
thermore, we randomly select 5000 images from the retrieval
set to be the training set.

MIRFLICKR-25K 2000 are used for testing while the
remaining samples are regarded as the retrieval subset. Also,
5000 images from this retrieval subset are randomly selected
for training.

Some existing hashing methods including data-independent
and data-dependent are compared with our proposed method
to demonstrate its superiority. These are LSH [8], SpH [12],
ITQ [28], DSH [26], DPSH [17], ADSH [19], and
DAPH [39]. Since LSH, SpH, ITQ, and DSH are traditional
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TABLE III

MAP@TOP500 AND PRECISION@TOP500 SCORES OBTAINED BY DIFFERENT METHODS ON THE CIFAR-10 DATA SET

Fig. 4. PR curves computed by LSH, SpH, ITQ, SDH, SGH, DPSH, ADSH,
DAPH, and RADH on the CIFAR-10 data set. (a)–(f) Figures associated with
the code lengths of 8-bit, 12-bit, 16-bit, 24-bit, 36-bit, and 48-bit.

hashing methods, the features should be extracted in advance.
In this article, we use the CNN feature to be the input for
these methods. We implement RADH with the MatconvNet
tool under the CNN-F structure. This is done to make a fair
comparison since the released codes of DPSH and ADSH
are also based on the MatconvNet and CNN-F. Also, since
DAPH is similar to DPSH and can be easily re-implemented
by using MatconvNet and CNN-F, we also make a comparison
between RADH and DAPH. Specifically, for DPSH and ADSH
that are all deep learning methods, we apply the CNN-F as
the network for the feature extraction and parameters in them
are set according to the descriptions in their publications. For
DAPH, the original network is ResNet. We replace it with the
CNN-F and try our best to tune the parameters in the modified
DAPH. Specifically, these three deep hashing methods are
implemented with MatConvNet and the raw image is their
input. Note that DPSH, ADSH, and DAPH achieve the state-
of-the-art performance in existing deep hashing methods.
Thus, it is reasonable for us to only compare RADH with
them.

Here the MAP is exploited as the evaluation protocol. Fur-
thermore, being similar to [39], we also adopt the MAP of the
top 500 retrieval samples (MAP@500) and the mean precision
of the top 500 retrieval samples (Precision@500) as another
two evaluation protocols.

1) Comparison With Other Methods: We make a compar-
ison between the proposed method and other state-of-the-art
approaches on four real-world data sets. Note that γ and τ are

TABLE IV

MAP SCORES OBTAINED BY DIFFERENT METHODS ON

THE NUS-WIDE DATA SET

set to 500 and 0.1 for the four data sets, respectively. η is set
to 0.3 for the NUS-WIDE, IAPR TC-12, and MIRFLICKR-
25K data sets, while it is set to 1 for the CIFAR-10 data set.
All these values are selected by cross-validation.

a) CIFAR-10: The experimental results about MAP
scores obtained by different methods are tabulated in Table II.
From this table, it is easy to see that RADH arrives to the
highest points on the MAP score in all cases, especially when
the code length is relatively small. Compared with LSH, SpH,
ITQ, and DSH, which are not deep learning methods, DPSH,
ADSH, DAPH, and our proposed RADH always get the better
results. In contrast to these three deep comparison methods,
RADH also has more or less improvement. Particularly, when
the code length is only 8-bit, our method obtains the much
larger enhancement, achieving more than 10% on the MAP
score.

Table III further lists the MAP@Top500 and Preci-
sion@Top500 scores computed by different approaches. As we
can see, RADH is still superior to other approaches. When the
code length is set to be 8-bit, RADH achieves almost more
than 10% enhancement on the both MAP@Top500 and Preci-
sion@Top500 scores, compared with all comparison methods.
With the increase in the code length, although the performance
gap meets a degradation, RADH is still superior to the other
algorithms. Particularly, when the code length is set to be 48-
bit, our proposed method gains about 4% improvement.

Fig. 4 plots the precision–recall (PR) curves when the code
length ranges from 8-bit to 48-bit on the CIFAR-10 data set.
It is obvious to observe that the presented strategy covers the
largest or competitive areas. Except for the case when the
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TABLE V

MAP@TOP500 AND PRECISION@TOP500 SCORES OBTAINED BY DIFFERENT METHODS ON THE NUS-WIDE DATA SET

Fig. 5. PR curves computed by LSH, SpH, ITQ, SDH, SGH, DPSH, ADSH,
DAPH, and RADH on the NUS-WIDE data set. (a)–(f) Figures associated with
the code length of 8-bit, 12-bit, 16-bit, 24-bit, 36-bit, and 48-bit.

code length is 36-bit, RADH gains more or less improvement.
In comparison to LSH, SpH, ITQ, and DSH, there are much
larger areas computed by RADH. Although RADH only has a
slight increase when the code length is 48-bit compared with
DPSH, ADSH, and DAPH, it enlarges the gap of covered areas
remarkably when the code length is 8-bit, 12-bit, 16-bit, and
24-bit, demonstrating its superiority.

b) NUS-WIDE: The MAP scores obtained by different
methods are shown in Table IV. As we can see, the proposed
method RADH achieves a remarkable improvement compared
with other approaches. In contrast to the nondeep learning
strategies, including LSH, SpH, ITQ, and DSH, RADH always
gains about more than 15% enhancement. Referring to the
deep hashing methods, RADH is still superior to them. Par-
ticularly, our presented approach obtains 73.47% on the MAP
score, while the best performance computed by other deep
hashing methods is only 68.12%.

Table V tabulates the MAP@Top500 and Precision@
Top500 scores, which also demonstrate the superiority of the
proposed method. Except for the case when the code length
is 8-bit, RADH arrives to the highest points. In comparison
to LSH, SpH, ITQ, and DSH, there is at least 5% improve-
ment in both metrics. Compared with DPSH and DAPH, our
approach still gains more or less enhancement. Note that,
from Tables IV and V, we can see although ADSH obtains
better results in the MAP score compared with ITQ, its
MAP@Top500 and Precision@Top500 scores are much infe-
rior to that of ITQ, relatively indicating its instability. By con-

TABLE VI

MAP SCORES OBTAINED BY DIFFERENT METHODS

ON THE IAPR TC-12 DATA SET

trast, our proposed method RADH can get satisfactory results
in MAP, MAP@Top500, and Precision@Top500 scores.

The PR curves computed by various methods are displayed
in Fig. 5. It is easy to observe that RADH covers the largest
areas when the code length ranges from 8-bit to 48-bit.
Specifically, DPSH and RADH always gain satisfactory PR
curves compared with other methods. In contrast to DPSH,
RADH also achieves an obvious improvement.

c) IAPR TC-12: The experimental results on MAP scores
obtained by various methods are listed in Table VI. As we
can see, RADH gains better performance than all comparison
methods. For instance, as listed in Table VI, the MAP scores
computed by RADH are much higher than that obtained by
LSH, SpH, ITQ, and DSH, which relatively demonstrate that
data-independent and traditional data-dependent hashing meth-
ods are often inferior to deep hashing strategies. In contrast
to other deep hashing methods, our proposed method is also
superior. In most cases, RADH gets more than 4% improve-
ment on the MAP score, indicating the effectiveness of our
relaxed strategy and novel triplet loss.

Referring to MAP@Top500 and Precision@Top500 shown
in Table VII, there is also a remarkable improvement for
RADH compared with other approaches. In contrast to LSH,
SpH, ITQ, and DSH, RADH gains more than 10% improve-
ment on the MAP@Top500 and Precision@Top500 scores
in most cases. In comparison to DPSH, ADSH, and DAPH,
the proposed method also achieves more than 5% enhancement
on the two evaluation protocols when the code length ranges
from 12 to 48. Furthermore, in these three comparison deep
hashing methods, although ADSH obtains better performance
compared with DPSH and DAPH when the code length is 12,
16, 24, 36, or 48, it has much inferior results when the code
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TABLE VII

MAP@TOP500 AND PRECISION@TOP500 SCORES OBTAINED BY DIFFERENT METHODS ON THE IAPR TC-12 DATA SET

Fig. 6. PR curves computed by LSH, SpH, ITQ, SDH, SGH, DPSH, ADSH,
DAPH, and RADH on the IAPR TC-12 data set. (a)–(f) Figures associated
with the code length of 8-bit, 12-bit, 16-bit, 24-bit, 36-bit, and 48-bit.

TABLE VIII

MAP SCORES OBTAINED BY DIFFERENT METHODS ON

THE MIRFLICKR-25K DATA SET

length is 8. By contrast, our proposed method RADH always
gets the best performance no matter how long the code length
is, relatively indicating its superiority.

Fig. 6 shows the PR curves obtained by different methods
when the bit length ranges from 8 to 48. It is easy to
observe that PR curves computed by RADH cover larger
areas compared with that obtained by different comparison
approaches. In comparison to DPSH, ADSH, and DAPH,
RADH can get an obvious improvement due to the relaxed
asymmetric strategy and the novel triplet loss.

d) MIRFLICKR-25K: The experimental results about
MAP scores on the MIRFLICKR-25K data set computed
by RADH and other comparison methods are tabulated
in Table VIII. Similarly, our presented strategy is superior to
other methods on this evaluation protocol. Making a compar-

ison between the deep learning-based hashing methods and
data-independent and traditional data-dependent approaches,
deep hashing methods achieve much better results. In contrast
to DPSH, ADSH, and DAPH, although RADH obtains a
slight enhancement on the MAP scores when the bit length
is 8 and 12, it achieves larger improvement when the code
length ranges from 16 to 48. Particularly, RADH reaches
80.13% and 80.38% when the code length is 36 and 48,
respectively, while the best results gained by the three deep
hashing approaches are only 76.20% and 76.05%, being far
lower than that obtained by RADH.

Referring to MAP@Top500 and Precision@Top500 scores
tabulated in Table IX, our method has more remarkable
achievement. In contrast to LSH, SpH, ITQ, and DSH, there
is more than 10% improvement on both evaluation proto-
cols. Compared with the three deep hashing methods, RADH
gains also about 2%–4% enhancement when the code length
ranges from 8 to 48.

The PR curves on the MIRFLICK-25K data set computed
by LSH, SpH, ITQ, DSH, DPSH, ADSH, DAPH, and RADH
are shown in Fig. 7. As we can see, although RADH has a
similar result compared with ADSH when the code length is 8,
it covers larger areas in other situations. Particularly, with the
increase in the code length, our presented approach enlarges
the gap of covered areas compared with the three deep learning
based hashing methods. Furthermore, in Fig. 7, despite the fact
that ADSH has a competitive performance on the PR curve,
it is inferior to DPSH when the code length increases to 24, 36,
and 48, indicating its instability. By contrast, RADH always
obtains the competitive or best performance no matter how
long the code length is, which demonstrates the effectiveness
and robustness of our method.

As mentioned above, to accelerate the speed, RADH sam-
ples a part of training samples in each training epoch. To make
a fair comparison, we remove this sampling operation in
RADH and reconduct experiments when the code length is
set to 16-bit. The results of the three metrics are (78.96,
76.59, 80.91), (64.18, 72.92, 73.12), (48.55, 62.27, 59.80),
and (76.83, 85.09, 84.27) for the four data sets, respectively.
Obviously, there is a slight improvement for ADSH if all the
training samples are used in each epoch. However, compared
with our proposed method RADH, ADSH is still inferior.

Totally, RADH achieves the best performances except one
case in Table V. In fact, both the distributions of different data
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TABLE IX

MAP@TOP500 AND PRECISION@TOP500 SCORES OBTAINED BY DIFFERENT METHODS ON THE MIRFLICKR-25K DATA SET

Fig. 7. PR curves computed by LSH, SpH, ITQ, SDH, SGH, DPSH, ADSH,
DAPH, and RADH on the MIRFLICKR-25K data set. (a)–(f) Figures associ-
ated with the code length of 8-bit, 12-bit, 16-bit, 24-bit, 36-bit, and 48-bit.

sets and the numbers of training samples can influence the
performance. To demonstrate the superiority of the proposed
method, it should achieve better performances on most of data
sets. In other words, it is possible that the proposed method is
inferior to other comparison methods in some specific cases.
Particularly, in Table I, RADH obtains much higher results
on the NUS-WIDE data set when the code length is small,
while it gets much more remarkable improvements in most
of the remaining experiments when the code length is large.
Thus, with various code lengths, the reason why RADH gains
different levels of enhancements is mainly associated with
different data sets and training numbers. Also, as mentioned
above, except the case when the code length is set to 8-
bit on the NUS-WIDE data set in Table V, RADH obtains
more or less an improvement on MAP values in all remaining
cases, further demonstrating the effectiveness and robustness
of RADH. In addition, referring to Table V, although RADH
is occasionally inferior to DPSH due to different training num-
bers, their gap is quite tiny, which also relatively substantiates
the superiority of RADH.

2) Parameter Sensitivity Analysis: In our proposed method,
three parameters, including η, γ , and τ , are introduced.
Additionally, the learning rate, batch size, and inner iteration
of (21) are also needed to be predefined. Here, we analyze
the sensitivity of them under different values when the code
length is 16-bit.

Fig. 8 displays the experimental results under the change
of η. Note that the γ and τ are set to 500 and 0.1 for the four

data sets, respectively. It is easy to see that with the increase
of η from a small value 0.01, there is a slight performance
improvement for the four data sets. Specifically, when η arrives
at 1, 0.3, 0.3, and 0.1 for the four data sets, which are quite
similar to our settings, RADH achieves the best performance
on the MAP scores. Furthermore, from this figure we can also
see that the proposed method is robust on η. When η is located
in the ranges of [0.01, 4], [0.01, 5], [0.01, 5] and [0.01, 5] for
these four data sets, RADH can always achieve satisfactory
performance.

The influences on the experimental results with different
values of γ are shown in Fig. 9. Note that the τ is set to
0.1 for the four data sets. The η is set to 0.3 for the NUS-
WIDE, IAPR TC-12 and MIRFLICK-25K data sets, while it
is set to 1 for the CIFAR-10 data set. From this figure, we can
observe that our presented approach is also insensitive to γ .
When γ is located in the range from 100 to 700, the maximum
of the performance gap is quite small on the MAP score.

Fig. 10 plots the MAP, MAP@Top500, and Preci-
sion@Top500 scores when τ ranges from 0.0001 to 10. Note
that in this experiment, γ is set to 500 for the four data sets.
The η is also set to 1 for the first data set and 0.3 for the
last three data sets. As we can see, with the increase of τ ,
there is about 2%–3% enhancement on the MAP scores for
the four data sets, which indicates the effectiveness of our
proposed triplet loss. Additionally, τ also has a wide choice
from 0.01 to 1, demonstrating its robustness.

Referring to the learning rate, we set it to 10−1, 10−2,
10−3, 10−4, and 10−5 for all the data sets, respectively, when
the code length is 16-bit. Their corresponding results are
shown in Table X. As we can see, the learning rate with a
large value would result in divergence or fluctuation, while
the learning rate with a tiny value would make the network
converge too slow, which may also influence the perfor-
mance. A typical example is the experiment on the CIFAR-10,
in which too large or too small learning rates have the inferior
influence on the performance. Thus, a suitable learning rate
is 10−3.

Table XI lists the results obtained by RADH when the batch
size changes from 16 to 128. Note that the code length is
set to 16-bit. It is easy to observe that our proposed method
is robust on the batch size, which is similar to many deep
learning methods [15], [16]. Thus, we empirically set it to
64 for all of the four data sets.
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Fig. 8. MAP, MAP@Top500, and Precision@Top500 scores under the change of η. Results conducted on (a) CIFAR-10, (b) NUS-WIDE, (c) IAPR TC-12,
and (d) MIRFLICK-25K.

Fig. 9. MAP, MAP@Top500, and Precision@Top500 scores under the change of γ . Results conducted on (a) CIFAR-10, (b) NUS-WIDE, (c) IAPR TC-12,
and (d) MIRFLICK-25K.

Fig. 10. MAP, MAP@Top500, and Precision@Top500 scores under the change of τ . Results conducted on (a) CIFAR-10, (b) NUS-WIDE, (c) IAPR TC-12,
and (d) MIRFLICK-25K.

TABLE X

RESULTS OBTAINED BY RADH WITH DIFFERENT LEARNING RATES

Referring to updating the variable B in (21), in fact, there
is an inner iteration when a column is updated while others
are fixed. In the aforementioned experiments, we set this inner
iteration to be 1. In fact, Huiskes and Lew [52] have proven
that setting the iteration number to be 1 for the subproblem
can also get similar solutions if the iteration for the whole

TABLE XI

RESULTS OBTAINED BY RADH WITH DIFFERENT BATCH SIZES

problem is large enough. Here we have conducted additional
experiments by setting this inner iteration number to be 10 and
the results are tabulated in Table XII. Note the code length
is set to 16-bit. It is easy to see that RADH obtains similar
results compared with results in Tables II–IX, demonstrating
the reasonability of the B updating strategy.
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TABLE XII

RESULTS OBTAINED BY RADH WITH DIFFERENT INNER
ITERATIONS IN UPDATING B COLUMN BY COLUMN.

M@TOP500 AND P@TOP500 MEAN MAP@TOP500
AND PRECISION@TOP500, RESPECTIVELY. RADH-B

DENOTES THE PROPOSED METHOD WITH TEN
ITERATIONS IN UPDATING B

V. CONCLUSION

In this article, an RADH method is proposed. Different
from the most existing methods that achieve the matching
between each pair of instances through a point-to-point way,
we relax it to a point-to-angle way. Specifically, there is
not any length constraint on the learned real-valued features,
while the asymmetric strategy encourages the discrete hashing
variables and real-valued features to be located in the same
Hamming space if they share the same semantic information.
In addition, to further make a good ranking for the positive and
negative pairs, a novel triplet loss is proposed, which is quite
adaptive for the hashing learning. Experiments conducted on
four real-world data sets demonstrate the superiority of our
proposed approach.
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