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a b s t r a c t

Feature selection (FS) methods have commonly been used as a main way to select the relevant features.
In this paper, we propose a novel unsupervised FS method, i.e., locality and similarity preserving
embedding (LSPE) for feature selection. Specifically, the nearest neighbor graph is firstly constructed to
preserve the locality structure of data points, and then this locality structure is mapped to the
reconstruction coefficients such that the similarity among these data points is preserved. Moreover,
the sparsity derived by the locality is also preserved. Finally, the low dimensional embedding of the
sparse reconstruction is evaluated to best preserve the locality and similarity. We impose ℓ2;1�norm on
the transformation matrix to achieve row-sparsity, which allows us to select relevant features and learn
the embedding simultaneously. The selected features have good stability due to the locality and
similarity preserving, and more importantly, they contain natural discriminating information even if
no class labels are provided. We present the optimization algorithm and analysis of convergence of the
proposed method. The extensive experimental results show the effectiveness of the proposed method.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

In the fields of computer vision, data mining and machine
learning, a mass of data is represented by high dimensional feature
vectors. The original high dimensional feature vector might con-
tain a large portion of redundant information, even corrupted
noises. The direct way to deal with the problem is dimensionality
reduction (DR). In the literature, there are two different ways to
perform DR: feature selection and feature learning (or ‘feature
extraction’) [1,2]. Feature selection aims to select a few relevant
features to represent the original high dimensional feature vector
meanwhile removing unfavorable features that seriously affect the
performance of the algorithm [3]. Generally speaking, feature
selection can produce three benefits: speeding up the learning
process, improving the mode generalization capability and alle-
viating the effect of the curse of dimensionality [4]. Compared
with feature learning which may introduce some new features for
original data representation, feature selection does not change the
original representation of data. Consequently, feature selection is
preferred if the original physical meaning of each feature is

demanded to retain in a task. For example, in molecular biology
research, it is easy to identify a set of genes that are relevant to a
key biological process by using feature selection. However, it is
hard to interpret the results of feature learning because the
features learned from the original data are a combination of all
the original features. Thus, results of feature selection can well
interpret which features are important to a given task.

In the past two decades, many effective feature selection
algorithms have been proposed [5,6], which can be classified into
three different categories: filter, wrapper, and embedded methods
[7]. The filter methods commonly filter out some features that
possess poor information by using statistical properties [8–12].
The filter methods do not directly optimize the performance of any
specific learning algorithm. Thus they usually do not perform
as well as some state-of-the-art methods. In wrapper methods,
feature selection is performed, and simultaneously, the perfor-
mance of algorithms is optimized [13,14]. Wrapper methods
usually outperform filter methods in the performance. However,
wrapper methods have high computational complexity because
they need to train a large number of classifiers [15]. Many heuristic
algorithms and hybrid methods have been proposed to alleviate
this issue [16]. Nevertheless, these heuristic algorithms also have
to take a large amount of time to perform the search [15]. To
reduce the complexity, in practice, a simple classifier is used to
evaluate the goodness of feature subsets and then the selected
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features are sent into a complicated classifier for ultimate data
analysis. Another disadvantage of wrapper methods is that they
are required to manually specify the parameters of the trained
classifiers. This is probably one of the main reasons why filter
methods are more popular in practical applications than wrapper
methods [17,18]. Embedded methods usually incorporate feature
selection into the learning process of the designed classifier
[15,19–21] and show good performance.

Recently, several manifold learning-based algorithms were
developed to perform DR, such as locally liner embedding (LLE)
[22], isometric feature mapping (ISOMAP) [23] and Laplacian
eigenmaps (LE) [24]. These methods are based on the idea that
data points are actually sampled from a low-dimensional manifold
that is embedded in a high-dimensional space. However, as
pointed out in [25], all these manifold learning methods suffer
from the problem that a new data point cannot easily find its low-
dimensional embedding by utilizing the low-dimensional embed-
ding results of the training data points (out of sample) because of
the implicitness of the nonlinear mapping. Locality preserving
projections (LPP) [26], locality preserving discriminant projections
(LPDP) [27] and neighborhood preserving embedding (NPE) [28]
were proposed to address this problem. Some novel methods,
which integrates the theory of sparse representation and subspace
learning, have also been proposed and successfully applied in
many real-world applications [29,30]. The representative methods
include sparse neighborhood preserving embedding (SNPE) [31],
sparsity preserving projections (SPP) [32] and local coordinate
coding (LCC) [33]. It should be noted that, in [30,31,33], the locality
constraint is imposed on sparse coding (SC). Moreover, in [33], the
theoretical analysis pointed out that under certain assumptions
locality is more essential than sparsity and helpful for successful
nonlinear function learning. To achieve good classification perfor-
mance, the coding scheme should generate similar codes for
similar descriptors [34]. Such locality and similarity is useful for
producing good discriminative ability of the designed algorithm
[30,34]. For example, if two data points xi and xj are close in the
intrinsic geometry of the data distribution, then the optimal
reconstruction coefficients of these two data points are also close
to each other. The above-mentioned methods ignore the problem
that there are many unfavorable features in the original high
dimensional feature representation. Most previousalgorithms per-
form the sparse reconstruction task in the original high dimen-
sional feature space, e.g., SNPE, Laplacian sparse coding (LSc) [30]
and LCC. However, it is difficult to perform the sparse reconstruc-
tion in a high dimensional feature space due to the fact that the
high dimensional feature representation is not always reliable and
even corrupted by noises. Intuitively, the sparse reconstruction
task may benefit from the feature extraction process because it
may remove the unfavorable features and noises. Therefore, a
scheme which simultaneously integrates both the sparse recon-
struction and optimal feature representation is demanded.

The above observations motivate us to consider how to devise
an elegant method which can achieve the above purposes. In this
paper, we propose a novel unsupervised feature selection method,
i.e., locality and similarity preserving embedding (LSPE) for feature
selections. Specifically, in the proposed method, the nearest
neighbor graph G is firstly constructed to preserve the locality
and similarity among data points to be reconstructed, and then the
low dimensional embedding of the reconstruction is generated
with the goal to best preserve such locality and similarity. As
suggested by LCC [33], locality is more essential than sparsity, as
locality must lead to sparsity but not necessary vice versa. There-
fore, the reconstruction coefficients of our method are sparse in
the case where similar data points have nearly same reconstruc-
tion coefficients. Generally speaking, LSPE seeks the projections
which cannot only preserve the locality and similarity but also the

sparse reconstruction relationship. We impose ℓ2;1�norm mini-
mization on the transformation matrix to simultaneously select
relevant features and learn the embedding. By preserving the
locality and similarity, LSPE can alleviate the instability of selected
features. This will be confirmed by the subsequent experimental
results. Although no class labels are provided, LSPE tends to select
the discriminative features due to the sparsity [32]. We can learn a
sparse transformation matrix from the ℓ2;1�norm minimization
for feature ranking. We provide an effective algorithm to solve this
ℓ2;1�norm minimization problem. And the analysis of conver-
gence of the proposed method is presented.

The most important contributions of our proposed method are
as follows.

(1) The sparse reconstruction is finally performed on the derived
optimal low dimensional space, which can effectively elim-
inate the influence of the unfavorable features.

(2) Unlike most previous feature selection algorithms which
separately treat the embedding learning and the feature
selection, LSPE unifies these two objectives.

(3) Unlike SPP [32], which uses a two-stage strategy to learning
the sparse reconstruction coefficient matrix and the transfor-
mation matrix, our method optimizes them simultaneously.

(4) Although supervised information is not needed, LSPE can
select discriminative features in comparison with some similar
unsupervised feature selection algorithms.

(5) Compared with other unsupervised feature selection algo-
rithms, the features selected by LSPE have good stability.

The remaining of this paper is organized as follows: Section 2
briefly reviews some methods that are closely related to our method.
Section 3 introduces the basis idea of locality and similarity preser-
ving embedding (LSPE) for feature selection; Section 4 provides
some discussion of the proposed method including the analysis of
convergence of the proposed method. Extensive experiments are
conducted in Section 5. Finally, we conclude the paper in Section 6.

2. Related methods

In this section, we will introduce some notations. The
ℓ2;1�norm of a matrix is first introduced in [35] as a rotational
invariant ℓ1�norm and has attracted increasing attention [36,37].
For the matrix AARm�d, let Ai: the ith row of A. The ℓ2;1�norm of A
is defined as

JAJ2;1 ¼ ∑
m

i ¼ 1
JAi: J2 ð1Þ

We consider an original set of n data points X ¼ ½x1;
x2;…; xn�ARm�n. The task of dimension reduction is to find a
linear transformation matrix AARm�d to transform the original
high dimensional data point xiARm into a low dimensional form
yiARd ðdomÞ by using yi ¼ ATxi.

Our method is fundamentally based on two of the most
popular manifold learning methods, NPE and SPP. We will review
these two methods briefly in next subsections. It should be noted
that there is a distinct difference between the sparse matrix
learned by ℓ2;1�norm and ℓ1�norm. Using the unified sparse
subspace learning framework (SSL) [38] as an example, we
respectively impose ℓ2;1�norm and ℓ1�norm on the transforma-
tion matrix. Fig. 1(a) gives a toy example of the transformation
matrix learned by ℓ2;1�norm. Each row of this transformation
matrix corresponds to a feature, while each column corresponds to
a dimension of the embedding. We can see that the 3rd and
5th rows are all zeros, which indicate that the 3rd and 5th rows
correspond to the irrelevant features and they should be
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discarded. Hence it is very clear which features are really useful to
the task. Fig. 1(b) is the toy example of the transformation matrix
learned by ℓ1�norm. We can see that for the first dimension of the
embedding, the 2nd and 4th features are not selected. However,
for the second dimension of the embedding, all the features are
selected expect for the 1st and 4th ones. Therefore, it is still
unclear which features are really useful as a whole. In this paper,
we aim to use ℓ2;1�norm to learn a transformation matrix with
the similar row-sparsity property as the one shown in Fig. 1(a).

2.1. Neighborhood preserving embedding (NPE)

Different from Principal Component Analysis (PCA) [39,40],
NPE [28] aims at preserving the local neighborhood structure of
the data points. NPE evaluates the affinity weight matrix using
local least squares approximation [41]. The first step of NPE
constructs an adjacency graph by using k-nearest neighbors
(KNN) algorithm [42]. Then, it uses the local approximation error
to compute the weights on these edges

min
P

∑
j
‖xi�∑

j
Pi;jxj‖2

s:t: ∑
j
Pi;j ¼ 1; j¼ 1;2;…;n ð2Þ

where P is the reconstruction coefficients matrix (the affinity
weight matrix). The second step of NPE is to utilize a reasonable
criterion for determining a linear projection. This can be converted
into the following generalized eigenvector problem [28]:

XMXTzi ¼ λXXTzi ð3Þ
where

M¼ ð1�PÞT ð1�PÞ

I¼ diagð1;…;1Þ
Let zi ði¼ 1;2;…; dÞ be the eigenvectors respectively correspond-

ing to the first d smallest eigenvalues of the above eigenvector
problem. The desirable optimal low-dimensional representation of
the original data is as follows:

xi-yi ¼ ZTxi ð4Þ
where yi is the desirable representation. From the description of
NPE, we can see that NPE is indeed a linear version of LLE [22].

2.2. Sparsity preserving projections (SPP) [32]

SPP constructs the affinity weight matrix in a completely
different way from LLE. SPP first uses as few as possible data
points from X to reconstruct each data point xiAX. Hence a sparse
reconstruction vector si for xi is sought to perform the following
reconstruction task:

min
si

Jsi J1

s:t: xi ¼ Xxi; 1¼ 1T si ð5Þ
where J � J1 is the ℓ1�norm [43]. 1ARn is a vector of all ones.
After computing the sparse reconstruction vector si for each
xi ði¼ 1;2;…nÞ, SPP obtains the sparse reconstruction matrix
S¼ ½s1;…; sn�. The element si;j in S essentially reflects a close
relation between xi and xj and it is reasonable to use S as the
affinity weight matrix. Similar to LLE and NPE, SPP seeks the
projections which best preserve the sparse reconstruction rela-
tionship. SPP has the following objective function [32]:

min
Q

∑
n

i ¼ 1
JQTxi�QTXsi J2 ð6Þ

where Q is the projection matrix. The problem defined by (6) can
be converted into the problem to minimize the following formula-
tion:

∑
n

i ¼ 1
JQTxi�QTXsi J2 ¼QT ∑

n

i ¼ 1
ðxi�XsiÞðxi�XsiÞT

 !
Q ð7Þ

The optimal projection vectors Q can be obtained by solving the
following generalized eigenvalue problem:

XðI�S�ST þSTSÞXTqi ¼ λXXTqi ð8Þ
Specifically, let q1;…; qd be the eigenvectors of (8) correspond-

ing to the first d smallest eigenvalues, λ1r ;…; rλd. Then, the
transformation matrix of SPP is Q ¼ ½q1;…; qd�.

3. Locality and similarity preserving embedding for
feature selection

In this section, we will present the basic idea of our method.
To achieve good classification performance, the reconstruction
scheme should follow the rule that similar data points should

Fig. 1. A toy example for the transformation matrix learned by (a) ℓ2;1�norm and (b) ℓ1�norm.
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have similar reconstruction coefficients [33,44]. To obtain this
purpose, we reformulate the problem as follows. For the set of
m-dimensional data points X ¼ ½x1;…; xn�ARm�n, we can construct
a nearest neighbor graph G with n vertices each of which denotes
a data point [45]. Let W be the weight matrix of G. The weight
setting is subject to the following criterion: if xi is among the k-
nearest neighbors of xj or xi is among the k-nearest neighbors of xi,
Wi;j ¼ expð� Jxi�xj J2=sÞ (s is the heat kernel parameter), other-
wise Wi;j ¼ 0. To map the weight matrix to the sparse reconstruc-
tion coefficients, an ideal mapping is to minimize the following
objective function:

1
2

∑
n

i ¼ 1
∑
n

j ¼ 1
Jsi�sj J2Wi;j ¼ TrðSLST Þ ð9Þ

where S is the reconstruction coefficient matrix. Let D be a
diagonal matrix whose entries are column or row sums of W,
Di;i ¼∑jWj;i. L¼D�W is the graph Laplacian. We expect that the
desirable characteristics (the locality and similarity) in the original
high dimensional feature space can be preserved in the low
dimensional embedding space. In other words, the low dimension
embedding of the sparse reconstruction can best preserve the
locality and similarity. Unlike SPP [32], where the sparse recon-
struction coefficient matrix S is firstly learned in the original high
dimensional feature space, and then the projection is sought to
best preserve this optimal S, we optimize S and the transformation
matrix simultaneously. Therefore, we define the following objec-
tive function:

min
A;S

∑
n

i ¼ 1
JAT ðxi�XsiÞJ2þ

1
2
β ∑

n

i ¼ 1
∑
n

j ¼ 1
Jsi�sj J2Wi;j ð10Þ

where AARm�d is the transformation matrix and d is the dimen-
sionality of embedding. We utilize ℓ2;1�norm minimization con-
straint to select the relevant features which can best preserve the
locality and similarity among data points to be reconstructed.
Denote Ai: ði¼ 1;…;mÞ as the ith row vector of A which is used to
measure the importance of the ith feature. We expect that the
transformation matrix holds the sparsity property for feature
ranking. In other words, we expect that only a few numbers of
Ai: are non-zeros. To this end, we impose ℓ2;1�norm on A and try
to minimize JAJ2;1. Therefore, our objective function can be
formulated as follows:

min
A;S

∑
n

i ¼ 1
JAT ðxi�XsiÞJ2þ

1
2
β ∑

n

i ¼ 1
∑
n

j ¼ 1
Jsi�sj J2Wi;jþαJAJ2;1 ð11Þ

where β and α are two balance parameters.

3.1. Solution

It seems that solving ℓ2;1�norm problem defined in (1) is
difficult since it is hard to derive its closed solution directly.
Inspired by [4], we divide the problem in (11) into two steps:
learning the reconstruction coefficient matrix S while fixing the
transformation matrix A, and learning A while fixing S. For
convenience, the problem in (11) can be rewritten as follows:

∑
n

i ¼ 1
JAT ðxi�XsiÞJ2þ

1
2
β ∑

n

i ¼ 1
∑
n

j ¼ 1
Jsi�sj J2Wi;jþαJAJ2;1

¼ Trð ∑
n

i ¼ 1
AT ðxi�XsiÞðxi�XsiÞTAÞþβ TrðSLST ÞþαJAJ2;1

¼ TrðAT ð ∑
n

i ¼ 1
ðxi�XsiÞðxi�XsiÞT ÞAÞþβ TrðSLST ÞþαJAJ2;1

¼ TrðAT ðXXT �XSXT �XSTXT þXSTSXT ÞAÞþβ TrðSLST ÞþαJAJ2;1

¼ TrðATXðI�S�ST þSTSÞXTAÞþβ TrðSLST ÞþαJAJ2;1 ð12Þ

If S is fixed, we denote LðAÞ ¼ TrðATXKXTAÞþαJAJ2;1, where
K ¼ ðI�S�ST þSTSÞ. By constructing an auxiliary function, L(A) can
be rewritten as LðAÞ ¼ TrðATXKXTAÞþα TrðATUAÞ, where UARm�m

is a diagonal matrix whose ith diagonal element is

Ui;i ¼
1

2JAi: J2
ð13Þ

To avoid degenerated solution, the orthogonal constraint
ATA¼ I is imposed. Thus, the objective function becomes

arg min
A

TrðAT ðXKXT þαUÞAÞ

s:t: ATA¼ I ð14Þ
The solution of (14) can be obtained by solving the following

eigenvalue problem:

ðXKXT þαUÞai ¼ λai ð15Þ
Let A¼ ½a1;…; ad� be the solution of (15). These column vectors

ai (i¼1,2,…,d) correspond to the eigenvectors associated with the
first d smallest eigenvalues.

Recalling the definition of Uii in (13), we know that TrðATUAÞ ¼
JAJ2;1=2 if Ai:a0. Thus we can say that minA TrðATUAÞ is a sparse
constraint on A. If JAi: J2 is small, then Uii is large and thus the
minimization of L(A) trends to force JAi: J2 to be a very small value.
After several times of iteration, some JAi: J2's may be close to zero
and thus we obtain a sparse A. Since problem (14) is solved in an
iteration way, we can initialize U by an identity matrix. In practice,
the traditional regularization way can be used to redefine Uii ¼
1=ð2JAi: J2þζÞ (ζ is a very small constant) because JAi: J2 could be
zero theoretically. In summary, we present Algorithm 1 for optim-
izing (14) as follows.

Algorithm 1. Optimizing (14).

Initialize: S¼ 1n�n, where 1n�n is a matrix of ones;

Compute K ¼ ðI�S�ST þSTSÞ;
Set t¼0 and initialize U0ARm�m as an identity matrix;
repeat
Compute Pt ¼ ðXKXT þαUÞ;
Compute At ¼ ½p1;…; pd�, where p1;…;pd are the eigenvectors
of Pt corresponding to the first d smallest eigenvalues;
Update the diagonal matrix Utþ1 as

Utþ1 ¼

1
2 JAt

1: J 2

...
1

2 JAt
m: J 2

2
664

3
775;

t ¼ tþ1;
until Convergence

When A is fixed, we would like to take the derivative of
CðSÞ ¼minSðTrðDðI�S�ST þSTSÞDT Þþβ TrðSLST ÞÞðATX ¼DÞ with
respect to S and set it to zeros, namely

∂CðSÞ
∂S

¼ �2DTDþ2SDTDþ2βSL¼ 0 ð16Þ

or equivalently,

S¼DTDðDTDþβLÞ�1 ð17Þ
After deriving A and S, we use ℓ2�norm of Ai:, i.e., JAi: J2, to

rank the features. The larger JAi: J2 is, the more important this
feature is. We can select a number of features whose JAi: J2 are
larger than a threshold which is set in advance.

In summary, we describe the detailed procedure of LSPE in
Algorithm 2 as follows.
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Algorithm 2. The detailed procedure of LSPE.

set t¼0;
repeat

Compute At based on Algorithm 1;
Compute St ¼ ðDtÞTDtððDtÞTDtþβLÞ�1,
where Dt ¼ ðAtÞTX;
t ¼ tþ1;

until Convergence
Sort each feature f ijmi ¼ 1 according to JAi: J2 in descending order

and select the top ranked ones

4. Discussions

In this section, we will analyze the convergence behavior of LSPE
and then give comparisons between LSPE and some related works.

4.1. Convergence analysis

Before starting our analysis, we give a lemma [4].

Lemma 1. For any non-zero vectors q, pARm, the following result
holds:

JqJ2�
JqJ22
2JpJ2

r JpJ2�
JpJ22
2JpJ2

ð18Þ

Proof. The detailed proof is similar as that in [4]. □

In our method, solving A usually requires computationally
demanding optimization procedures whereas the solution of S
can be derived analytically by the analytical solution: S¼DTD
ðDTDþβLÞ�1. So the solution of S can be performed fast. In
practice, we only need to prove that the solution A in Algorithm
1 can monotonically decrease the objective function value in (11)
in each iteration.

Theorem 1. The optimization procedure in solving (14) will mono-
tonically decrease the objective function value in (11) in each iteration.

Proof. When we fix U as Ut in the ith iteration and compute Atþ1

and Stþ1, the following inequality holds:

TrððAtþ1ÞTXKtþ1XTAtþ1þβ TrðStþ1ÞLðStþ1ÞT Þ
þα TrððAtþ1ÞTUtAtþ1Þ
rTrððAtÞTXKtXTAtÞþβ TrðStLðStÞT Þ
þα TrððAtÞTUtAtÞ ð19Þ

Since JAJ2;1 ¼∑m
i ¼ 1 JAi: J2, the above inequality indicates

TrððAtþ1ÞTXKtþ1XTAtþ1Þþβ TrðStþ1LðStþ1ÞT Þ

þαJAtþ1 J2;1þα ∑
m

i ¼ 1

JAtþ1
i: J22

2JAt
i: J2

� JAtþ1
i: J2

 !

rTrððAtÞTXKtXTAtÞþβ TrðStLðStÞT Þ

þαJAt J2;1þα ∑
m

i ¼ 1

JAt
i: J22

2JAt
i: J2

� JAt
i: J2

 !
ð20Þ

According to Lemma 1, we have

JAtþ1
i: J22

2JAt
i: J2

� JAtþ1
i: J2Z

JAt
i: J22

2JAt
i: J2

� JAt
i: J2 ð21Þ

Combining (20) with (21), we have the following inequality:

TrððAtþ1ÞTXKtþ1XTAtþ1Þþβ TrðStþ1LðStþ1ÞT Þ

þαJAtþ1 J2;1

rTrððAtÞTXKtXTAtÞþβ TrðStLðStÞT Þ
þαJAt J2;1 ð22Þ

which indicates that the objective function value in (11) will
monotonically decrease using the updating rule in Algorithm 1.
Besides, since the two items in (14) are convex function and thus
(14) has a lower bound. Thus, the above iteration will converge to
the global solution. □

4.2. Comparison to other methods

Undoubtedly, LSPE is closely related to SPP. In other words,
LSPE is an improved version of SPP. Both LSPE and SPP seek the
projections that best preserve the sparse reconstruction relation-
ship. However, SPP uses a two-stage strategy to construct the
sparse reconstruction coefficient matrix and the transformation
matrix, our method optimize them simultaneously. In this way,
LSPE can learn them optimally. Moreover, LSPE maps the locality
among data points to the sparse reconstruction coefficients such
that these reconstruction coefficients vary smoothly along the
geodesics of the data manifold. Moreover, the features selected by
LSPE have good stability because they consistently guarantee that
the similar data points always have nearly the same reconstruction
coefficients. LSPE can select the relevant features by imposing
ℓ2;1�norm on the transformation matrix. However, SPP does not
lead to feature selection.

Considering the deduction of LSPE, we know that LSPE is also
related to Laplacian score for feature selection (LapScore) [8] and
spectral feature selection (SPEC) [46]. LapScore and LSPE construct
the graph to characterize the data manifold. LapScore selects
features which can best preserve the locality relationship revealed
by weight matrix W. However, LSPE select features which can best
preserve both the locality and the similarity among data points to
be reconstructed. SPEC can be regarded as an extension of Lap-
Score. LSPE focuses on the unsupervised feature selection. SPEC,
however, mainly emphasizes the supervised case. Although the
locality pays an important role in developing various kinds of
algorithms, e.g., DR, semi-supervised learning algorithm, the
features selected by the locality preserving-based feature selection
algorithms may not contain discriminant information due to the
lack of label information. The reconstruction coefficient of LSPE is
sparse because the locality restraint is imposed on the reconstruc-
tion coefficient [34]. This entitles the features selected by LSPE to
more discriminant ability than those by using LapScore and SPEC,
which is proved by the subsequent experimental results.

Feature selection via joint embedding learning and sparse
regression (JELSR) [47] also has somewhat relationship with LSPE.
JELSR unifies the procedures of the embedding learning and the
sparse regression into a framework. More precisely, JELSR can be
regarded as solving the following problem:

min
W ;Y

TrðYLYT ÞþβðJWTX�Y J22þαJW J2;1Þ

s:t: YYT ¼ I ð23Þ

where Y is the low dimension representation of the original data X
and W is the projection matrix. JELSR mainly focus on the issue
that nearby points, in the desired low dimensional space, should
have similar properties. Similarly, LSPE also seeks to this purpose.
We set yi ¼ ATxi. Our objective function (11) can be formulated as
follows:

min
A;S

TrðYðI�S�ST þSTSÞYT Þþβ TrðSLST ÞþαJAJ2;1

s:t: ATA¼ I ð24Þ

X. Fang et al. / Neurocomputing 128 (2014) 304–315308



From (24), we know that LSPE imposes locality and similarity
preserving on the reconstruction coefficients S and simultaneously
delivers such preserving to the low dimensional representation Y
by virtual of S. Thus, we can say the first terms in (23) and (24)
share the similar purpose. Comparing the formulations in (23) and
(24), it is easy to find out that JELSR selects the features which can
best preserve the locality. However, LSPE selects features which
simultaneously best preserve the locality and the similarity. This
somewhat consistent with the purpose of Laplacian sparse coding
(LSc) [44]. Thus, it outperforms JELSR in many cases. Note that
LSc performs the sparse reconstruction in the original high
dimensional feature space while LSPE does in the desirable low
dimensional embedding space.

5. Experimental results

In this section, we evaluate the performance of LSPE on several
real data sets. We perform three groups' experiments. The first
group evaluates LSPE using K-means clustering [47] and clustering
using local discriminant models and global integration (LDMGI)
[48] as the metrics. The second group evaluates LSPE using Nearest
Neighbor (NN) classifier [42] and Multiple Kernel Learning (MKL)
method proposed in [49,50] for classification. We discuss the
influence of the parameters used in LSPE in the last group. We
compare LSPE with the following unsupervised feature selection
algorithms, LapScore [8], SPEC [46], Unsupervised feature selection
for multi-cluster data (MCFS) [51], JELSR [47] and Efficient spectral
feature selection with minimum redundancy (MRSF) [52]. We use
all features as the baseline in our experiments. The code of the
proposed method is available at http://www.yongxu.org/lunwen.
html. For some graph-based algorithms, such as LapScore, MCFS,
SPEC and LSPE, we tune k which specifies the size of neighbor-
hood, by selecting the most suitable value from f3;5;7;10;15g
for all the data sets. Similarly, we tune the heat kernel para-
meter s from f100;103;105g. For LSPE, we tune parameters
α from f300;500;800;1000;2000;3000;4000;5000;6000;7000;
8000g and β from f0:01;0:1;0:5;1:0;3:0;5:0;7:0;9:0;11:0;13:00;
15:00;17:00g. We begin with a description of these data sets.

5.1. Data sets descriptions

Nine different data sets, including Umist [47], Isolet [47], Sonar
[53], Breast Cancer (BC) [54], Ionosphere [55], ORL [28], Vehicle
[56] , Yale [26] and LFW [57], are used in our experiments.
Some data sets in Matlab format after being preprocessed are
available at: http://www.cad.zju.edu.cn/home/dengcai/Data/data.
html A summary of characteristics of these data sets is presented
in Table 1.

5.2. Clustering results with K-means clustering and LDMGI

In the first group experiment, K-means clustering and LDMGI
are employed on the several data sets to evaluate the performance
of LSPE with fixed selected features. Two metrics, the accuracy
(AC) and the normalized mutual information metric (MI), are used
to measure the clustering performance. Given a data point xi, let ri
and li be the obtained cluster label and the label provided by the
corpus, respectively. The AC is defined as follows:

AC ¼∑n
i ¼ 1δðli;mapðriÞÞ

n
ð25Þ

where n is the total number of data points and δðx; yÞ is the delta
function that equals one if x¼y and equals zero otherwise, and
mapðriÞ is the permutation mapping function that maps each
cluster label ri to the equivalent label from the data corpus [51].
The best mapping can be determined by using the Kuhn–Munkres
algorithm [58]. Let C denote the set of clusters obtained from the
ground truth and C′ obtained from the algorithms used in this
section. Their mutual information metric MIðC;C′Þ is defined as
follows [49]:

MIðC;C′Þ ¼ ∑
ci AC;c′j AC′

pðci; c′jÞ � log 2
pðci; c′jÞ

pðciÞ � pðc′jÞ
ð26Þ

where pðciÞ and pðc′jÞ are respectively the probabilities that a sample
arbitrarily selected from the data set belongs to the clusters ci and c′j
and pðci; c′jÞ is the joint probability that the arbitrarily selected
sample belongs to the clusters ci as well as c′j at the same time.
In our experiments, we use the normalized mutual information NMI
as follows:

NMIðC;C′Þ ¼ MIðC;C′Þ
maxðHðCÞ;HðC′ÞÞ ð27Þ

where H(C) and HðC′Þ are the entropies of C and C′, respectively.
It is easy to check that NMIðC;C′Þ ranges from 0 to 1. NMI¼1 if the
two sets of clusters are identical, and NMI¼0 if the two sets are
independent.

For the other feature selection algorithms, we select their best
results as the final results. We set different numbers of selected
features for different data sets. In our experiment, each feature
selection algorithm is first performed to select features. Then
K-means clustering algorithm is performed based on the selected
features. Since the results of K-means clustering depend on
initializations, we repeated 100 times experiments with random

Table 1
A summary of characteristics of these data sets.

Data set Dimensionality Size Class

Umist 644 575 20
Isolet 617 1560 26
ORL 1024 400 40
LFW 127 1251 86
Sonar 60 208 2
BC 30 569 2
Ionosphere 34 351 2
Vehicle 18 846 4
Yale 105 165 15

Table 2
Clustering results of different algorithms on seven data sets (MEAN7STD%).

Data set All features LapScore SPEC MCFS JELSR MRSF LSPE

Umist 44.2371.02 37.3070.93 42.5671.20 46.5571.00 48.9071.03 48.3871.05 49.2671.12
Isolet 50.5870.85 48.7970.56 49.5070.63 54.4870.84 55.0870.45 50.8070.69 56.1170.63
ORL 50.0070.43 44.5070.73 49.8870.23 49.4070.93 50.0270.56 49.7870.69 50.2570.80
LFW 18.7870.33 19.5072.00 16.6071.76 19.6671.50 20.9072.03 20.4072.05 22.1472.50
Ionosphere 63.8170.50 66.9472.20 67.7072.33 57.2673.00 67.9072.81 63.0072.30 70.0072.66
Sonar 54.3271.20 58.8071.14 61.0071.26 54.2070.84 64.2070.94 60.3371.40 66.2571.67
BC 72.2770.20 70.1770.36 74.0070.23 71.0070.58 74.2070.30 72.7970.22 75.8670.24
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Fig. 2. The detained clustering results of K-means clustering on seven different data sets: (a) Umist, (b) Isolet, (c) ORL, (d) Ionosphere, (e) Sonar, (f) BC, (g) LFW.
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initialization and report the mean performance with standard
deviation (MEAN7STD%). Table 2 gives the best clustering results
of different feature selection algorithms using different para-
meters. As seen from Table 2, LSPE outperforms other algorithms.
We can also see from this table that JELSR is the second best
algorithm. From the analysis in [47], we know that SPEC, MCFS and
MRSF adopt a two-step strategy for feature selection. For example,
SPEC analyzes features separately and selects features one after
another whereas MCFS selects features in batch-mode. For MRSF,
it separates embedding learning and sparse regression. However,
JELSR integrates the two objectives into one step, which can lead
to a good performance. Similarly, LSPE unifies the two objectives
of embedding learning and feature selection. Moreover, LSPE
imposes the similarity preserving on the reconstruction coeffi-
cients. Thus, LSPE perform better than JELSR in our experiments.
This observation validates that it is a better way to implement
embedding learning and feature selection jointly for feature
selection. Fig. 2 gives the detailed clustering results of different
number of the selected features. As we can see, LSPE consistently
requires few features to achieve reasonably good results whereas
the most of other algorithms need more features. We also note
that the change curve of the performance of LSPE is more smooth
than ones of the most of other algorithms, which indicates that the
stability of the features selected by LSPE is superior to ones of
other algorithms. Moreover, from the results in Fig. 2, it is easy to
conclude that more features do not lead to the best results. This
may be caused by the adding of redundant features when we
select more features. Table 3 gives the best results of NMI of
different algorithms on the range of selected features. For Sonar,
BC and Ionosphere data sets, the values of NMI are so small that
they are not persuasive. We, here, give the mean NMI with
standard deviation on three data sets. A big value of NMI implies
good performance. LSPE always outperforms all its competitors.
Table 4 gives the best clustering results of LDMGI on three data
sets. We can also see that LSPE can obtain the best performance by
using LDMGI. This indicates that LSPE selects the best effective
features compared with other methods.

Next, we substitute the locality preserving with the sparsity
preserving in our method (SSPE) and compare these two methods
on K-means clustering. The comparative results can be found in
Table 5. The dimension of the data set is reduced to 189 (ORL),
266 (Isolet), and 105 (Yale) dimensions by PCA. LSPE obtains the
better results on ORL and Yale data sets without sacrificing slight
performance on Isolet data set.

Table 3
Mean NMI with standard deviation of different algorithms on three data sets (MEAN7STD).

Data set All features LapScore SPEC MCFS JELSR MRSF LSPE

Umist 0.603070.0145 0.563270.0152 0.570470.0124 0.692070.0131 0.701870.0164 0.666770.0143 0.709170.0155
Isolet 0.730270.0092 0.668070.0120 0.669070.0149 0.704370.0193 0.705070.0134 0.683570.0167 0.710170.0185
ORL 0.703670.0117 0.678070.0176 0.702670.0165 0.709870.0178 0.702070.0172 0.705070.0181 0.710470.0111

Table 4
Clustering results (LDMGI) of different algorithms on three data sets (MEAN7STD%).

Data set All features LapScore SPEC MCFS JELSR MRSF LSPE

ORL(189) 68.0072.03 71.5072.77 71.5072.10 70.5072.52 71.4072.00 70.3072.86 72.2572.18
Isolet(266) 47.9272.05 49.7172,02 49.5872.17 50.7472.25 51.3072.22 50.5572.12 52.2872.45
Yale(105) 47.8872.33 50.3072.11 49.7072.53 51.5272.78 51.0072.06 50.6972.16 53.3372.58

Table 5
Clustering results of two algorithms on three sets (MEAN7STD%).

Algorithms ORL(189) Isolet(266) Yale(105)

All features 52.2572.10 52.3372.44 40.7072.83
SSPE 58.2571.81 55.1672.20 44.9771.50
LSPE 59.0072.03 54.6572.19 45.6671.30

Table 6
Classification error on Sonar data set (MEAN7STD%).

Method One third train One second train Two third train

All features 22.7772.09 18.2072.90 16.4772.63
LapScore 21.6172.72 17.6772.56 14.7472.50
SPEC 22.6872.42 18.5072.13 16.2272.18
LSPE 21.1072.58 17.3072.10 14.2072.00

Table 7
Classification error on BC data set (MEAN7STD%).

Method One third train One second train Two third train

All features 11.3971.34 11.2171.52 10.5071.78
LapScore 11.3371.46 9.8371.61 9.1971.38
SPEC 9.8071.29 8.7971.20 8.2071.82
LSPE 8.5071.40 7.3071.57 6.9071.37

Table 8
Classification error on Ionosphere data set (MEAN7STD%).

Method One third train One second train Two third train

All features 17.9772.27 16.8072.50 16.5072.40
LapScore 17.5872.45 15.9072.23 14.9572.26
SPEC 17.0772.74 14.8172.68 14.0172.82
LSPE 16.0072.10 14.0072.22 13.0072.12

Table 9
Classification error on Vehicle data set (MEAN7STD%).

Method One third train One second train Two third train

All features 36.8971.68 35.2371.72 34.3172.23
LapScore 36.6271.77 34.4671.93 33.6472.39
SPEC 35.7971.82 33.9971.62 33.1772.28
LSPE 32.8171.90 30.5671.76 29.6972.06
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5.3. Classification results with NN classifier and MKL method

In the second group experiment, we carry out NN algorithm
and MKL method with selected different features on the some data
sets. In order to evaluate the experimental results better, for each
data set, we randomly choose one third, one second, and two third
of the total samples as training set and the rest are used as test set.
The experiments are repeated 100 times on the best parameter

combination. The mean classification error with standard devia-
tion (MEAN7STD%) is used as the final result.

The best results on range of selected features are shown in
Tables 6–9. The detailed classification performance for each
selected feature is presented in Fig. 3. As can be seen from these
tables, in the range of the selected features, the best results of FSPE
are better than those of other algorithms. However, from the
results in Fig. 3, it would be interesting to note that the stability
of features selected by LSPE is consistently better than all the
other algorithms. However, the change curves of the classification
performance of LapScore and SPEC are very volatile. This is
attributed to the using of the locality and similarity perverting
[29]. Moreover, we also notice that LSPE obtains reasonable results
with less features. For example, on BC and Ionosphere data
sets, FSPE obtains the reasonably results with typically around
4 and 6 features, respectively. For the other three algorithms, they
usually require more features to achieve a reasonable result.
It is easy conclude that LSPE can achieve better classification

Fig. 3. The detailed classification performance of different algorithms on Sonar (the first row), BC (the second row), Ionosphere (the third row) and Vehicle (the fourth row).

Table 10
Classification error (MKL) of LSPE on four data sets (MEAN7STD%).

Method One third train One second train Two third train

Sonar 16.3372.51 13.0071.57 10.2872.14
BC 6.5071.41 5.2071.51 3.8071.90
Ionosphere 4.0072.83 3.8972.18 3.3471.27
Vehicle 18.2171.50 15.5371.02 14.2072.21
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performance with the least amount of features. In other words, the
features selected by LSPE have better discriminant ability than
those by using other algorithms. Table 10 represents the best
classification results of LSPE on four data sets by using MKL
method. We can see that, compared with NN, the classification
error is reduced significantly by using MKL method. This confirms
that the features selected by LSPE have good discriminability.

5.4. Parameters selection

In the third group experiment, there are five parameters, i.e.,
k; s;α;β, and d. In our method, we can obtain reasonable results
when we tune k from f5;10g and set s¼ 1:0 for all data sets.
Therefore, in this section, we do not discuss these two parameters.
It is time-consuming to select α;β; and d based on the gird search.
Fortunately, α and β affect the performance of LSPE slightly if they
are set in feasible range. However, the performance of LSPE is
comparatively sensitive to d, the dimensionality of the low dimen-
sional embedding. We set the range of d as ½ð15Þ � ð#f Þ; ð12Þ � ð#f Þ�,
where #f is the number of the features of a data set. We select two
data sets, i.e., Sonar and BC, and perform NN algorithm on these
two data sets to validate this strategy. We randomly choose one
second of the total samples as training set and the rest are used as
test set. These trails are independently performed 100 times, and
the mean classification error (MEAN(CE)%) is reported. Fig. 4
shows this strategy works well on the selected two data sets.
The performance is consistent when each of α and β is selected
from a wide range. Specifically, for Sonar and BC, we respectively
set d¼ ð14Þ � ð#f Þ ¼ ð14Þ � 60¼ 15 and d¼ ð13Þ � ð#f Þ ¼ ð13Þ � 30¼ 10.
Form Fig. 4, we can see that the performance of LSPE is not very
sensitive to α and β in the wide range, when we fix d. However,
the performance is comparatively sensitive to d, when we fix α
and β. Moreover, we also see that, for Sonar, a valley appears when
d¼15. For BC (Fig. 4 (the second row)), there appears a valley
when d¼10. This indicates that the proposed method performs
well under this setting dA ½ð1=5Þ � ð#f Þ; ð1=2Þ � ð#f Þ�. To our
knowledge, previous literature does not propose a very feasible
method to resolve the problem that how to determine the suitable
number of the selected features, and thus, in this experiment, it is
set by experience. For example, Fig. 4 gives the performance of
LSPE versus α or β with the number of the selected features fixed
to 40 and 15 for Sonar and BC, respectively.

6. Conclusion

In this paper, we propose a novel feature selection method, i.e.,
locality and similarity preserving embedding (LSPE) for feature
selection, which unifies embedding learning and feature selection.
We introduce an iterative algorithm to optimize LSPE and theore-
tically show its convergence. LSPE seeks an optimal transformation
matrix by determining the sparse reconstruction coefficient matrix
and transformation matrix simultaneously. The major advantage of
the proposed LSPE method is that the selected features have good
stability by preserving locality and similarity among data points.
Moreover, LSPE trends to select discriminative features because of
the sparsity, which leads LSPE to achieve better performance with
the least amount of features. In the future, we attempt to extend
LSPE to the supervised case for obtaining better performance.
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