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Modified Principal Component Analysis:
An Integration of Multiple Similarity
Subspace Models
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Abstract— We modify the conventional principal component
analysis (PCA) and propose a novel subspace learning frame-
work, modified PCA (MPCA), using multiple similarity measure-
ments. MPCA computes three similarity matrices exploiting the
similarity measurements: 1) mutual information; 2) angle infor-
mation; and 3) Gaussian kernel similarity. We employ the eigen-
vectors of similarity matrices to produce new subspaces, referred
to as similarity subspaces. A new integrated similarity subspace
is then generated using a novel feature selection approach. This
approach needs to construct a kind of vector set, termed weak
machine cell (WMC), which contains an appropriate number of
the eigenvectors spanning the similarity subspaces. Combining
the wrapper method and the forward selection scheme, MPCA
selects a WMC at a time that has a powerful discriminative
capability to classify samples. MPCA is very suitable for the
application scenarios in which the number of the training samples
is less than the data dimensionality. MPCA outperforms the
other state-of-the-art PCA-based methods in terms of both
classification accuracy and clustering result. In addition, MPCA
can be applied to face image reconstruction. MPCA can use
other types of similarity measurements. Extensive experiments
on many popular real-world data sets, such as face databases,
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show that MPCA achieves desirable classification results, as well
as has a powerful capability to represent data.

Index Terms—Feature extraction, modified principal
component analysis (MPCA), similarity measurement, similarity
subspace, weak machine cell (WMC).

I. INTRODUCTION

VER the past few decades, subspace learning methods
Ohave been widely used in face recognition [1] and
other applications. These methods are often closely related
to the feature extraction. In general, subspace learning first
extracts the features from the samples via one or more feature
extractors, e.g., principal component analysis (PCA) [2], linear
discriminant analysis (LDA) [3], and so on. Then, a classifier,
such as the nearest neighbor (NN) classifier, is used to classify
the extracted features. Typical subspace learning methods
include PCA, LDA, local preserving projection (LPP) [4],
and so on.

PCA tries to find a subspace in which the variance is
maximized [4]. The PCA subspace is spanned by the eigen-
vectors corresponding to the leading eigenvalues of the sample
covariance matrix. PCA can be applied to both supervised
and unsupervised learning. It has been used with success in
numerous applications and research areas. Since Turk and
Pentland [2] applied PCA (i.e., the conventional PCA) to face
recognition, various improvements to PCA have been proposed
to enhance its performance or efficiency. In the conventional
PCA (hereafter it is referred to as PCA for simplicity),
the images need to be converted to the vectors. This scheme
may destroy the underlying spatial information within the
images. To address this problem, Yang et al. [5] proposed
a 2-D PCA (2-DPCA) in which the images need not to be
converted to the vectors. 2DPCA is usually more efficient than
PCA, and can be viewed as a special case of the multilinear
PCA [6]. Recently, researchers proposed L1_norm-based PCA,
such as PCA_L1 [7], sparse PCA [8], robust PCA [9], and
2DPCA_L1 (2DPCA based on L1_norm) [10], which are
robust to outliers. Most of the above PCA approaches may
not lead to desirable classification results when they deal with
the real-world nonlinear data. As the nonlinear PCA [1], [11],
kernel PCA (KPCA) [12], and their variants can effectively
capture the nonlinear information, they may provide more
powerful ability to deal with the real-world nonlinear data.
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Fig. 1. Three types of relationship between the representative and the dis-
criminative vectors. (a) Representative vector is parallel to the discriminative
vector. (b) Representative vector is perpendicular to the discriminative vector.
(c) Angle between the representative and the discriminative vectors is a sharp
angle.

Independent component analysis (ICA) [13], probabilistic
PCA (PPCA) [14], half-quadratic PCA [15], and bilinear
PPCA [16] based on the probabilistic similarity measurement
are also viewed as the extensions of PCA.

The goal of LDA is to use a criterion, such as Fisher
criterion, to determine a number of discriminative vectors.
LDA exploits discriminative vectors as transformation axes to
transform samples into a new space, i.e., the LDA subspace.
These vectors maximize the ratio of the between-class distance
to within-class distance in the new space. In 1936, Fisher [3]
first presented the basic idea of LDA. LDA has been one
of the most important learning methods since about 1990s.
Numerous LDA-based approaches and their variants [17]-[20]
had been proposed to resolve different problems encountered
in face recognition and other classification tasks after [21]
proposed Fisherfaces. For example, the approach proposed
by Ref. [17] addressed the well-known small sample size
problem usually encountered in face recognition. In addition,
a local LDA framework we proposed in [20] deals well
with the high-dimensional and large-scale data sets. To cap-
ture the nonlinear information within the real-world data,
Mika et al. [22] presented the kernel Fisher discriminant
analysis. Similar to 2DPCA, 2-D LDA presented in [23] is
able to preserve the spatial structure of data [24]. In addition
to the PCA and LDA subspace learning methods, there are
also other subspace learning methods, such as LPP subspace
[4], [25], probabilistic subspace [26], and random subspace
[27], [28].

Although both PCA and LDA are two major methods
of feature extraction and dimensionality reduction, the goals
of their solutions are different in general. It is well known
that PCA aims to find the most representative vectors, i.e.,
the eigenvectors corresponding to the top eigenvalues of the
sample covariance matrix, whereas LDA tries to seek the
optimal discriminative vectors of the data. In general, when
researchers investigate the PCA-based methods, they usually
focus on the most representative vectors nearly ignoring the
discriminative vectors. On the other hand, when researchers
study the LDA-based methods, they often pay more attention
on extracting the optimal discriminative vectors. Actually,
there exists some relationship between the representative and
the discriminative vectors. To illustrate this relationship, Fig. 1
shows a simple example of a 2-D two-class Gaussian data
distribution. In Fig. 1, the red ellipse represents the first class
and the blue one represents the second class. P1 is the most
representative vector obtained by PCA. Ul is a vector parallel
to the optimal discriminative vector obtained by LDA and both
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lie in the same direction. Obviously, U1 plays the same roles as
the optimal discriminative vector in the classification. We con-
sider three types of relationship between the representative
and the discriminative vectors. Fig. 1(a) shows the first type
of relationship in which the representative vector is parallel
to the discriminative vector, and their directions are identical.
Hence, if we employ the representative vector to classify the
samples, the classification result is the same as that obtained
using the discriminative vector. In this sense, representative
vectors are equivalent to discriminative vectors and they have
the same discriminative capability to classify samples. In other
words, the representative vectors contain as much discrimina-
tive information as the discriminative vectors do.

In contrast, as shown in Fig. 1(b), the second type of
relationship is that the representative vector is perpendicular to
the discriminative vector. The classification results obtained by
employing the representative vector are far worse than those
obtained using the discriminative vector, because the points
projected onto the discriminative vector can be easily separated
into two classes whereas those projected onto the represen-
tative vector are overlapped. In this case, we can conclude
that the representative vectors contain a little discriminative
information and using them can hardly classify the samples
correctly. Fig. 1(c) shows the third type of relationship, which
is a more general case. There exists a sharp angle between the
representative and the discriminative vectors. We can conclude
that if we exploit the representative vectors in Fig. 1(c),
the classification results are better than those obtained using
the representative vectors in Fig. 1(b) but worse than the
classification results obtained using P1 in Fig. 1(a). Similarly,
in Fig. 1(c), if we use the representative vector P2 obtained by
some other PCA method, e.g., PCA_LI [7], the classification
results are better than those obtained using P1 in principle.
Therefore, if we obtain the appropriate representative vectors
like P2, which contain more discriminative information than
P1 does in Fig. 1(c), we can improve the classification results
of PCA without significantly degrading the capability to rep-
resent the data.

This paper focuses mainly on how to improve the classifica-
tion performance of PCA. By borrowing the idea of the graph
embedding methods [29], we modify the conventional PCA
subspace learning and propose a novel PCA-based subspace
learning framework using several similarity measurements.
Our framework can achieve much better classification results
as well as have a powerful ability to represent the data.
We know that each of above mentioned PCA-based subspace
methods is based on only one measurement, i.e., the distance
or probability measurement. Although it is easy to implement
these PCA-based subspace algorithms, the classification results
of them are usually not very good. These subspaces may
not effectively capture the difference between the samples
from different classes. In other words, they may not contain
sufficient discriminative information to separate the samples.

We know that the discriminative information contained in
one subspace is tightly related to the transformation axes
within this subspace. For a classification algorithm, different
subspaces may contain different types of the discrimina-
tive information. To obtain more discriminative information,
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we exploit multiple similarity measurements and compute the
similarity matrices, which are often used in the graph embed-
ding approaches. We use the eigenvectors of the similarity
matrices to produce new subspaces, referred to as similarity
subspaces. Each similarity matrix is associated with one kind
of similarity measurements. The representative vectors of a
similarity subspace (i.e., the vectors spanning this similarity
subspace) might contain some discriminative information. In
theory, the representative vectors of multiple subspaces contain
more discriminative information than those of each of these
subspaces do [30]. Therefore, if we effectively capture the
discriminative information existed in the multiple PCA-based
similarity subspaces, we can obtain desirable classification
results.

Our framework produces PCA-based subspace using three
similarity measurements: 1) the mutual information; 2) angle
information (i.e., cosine distance); and 3) Gaussian kernel
distance measurements. These subspaces contain three types
of information: 1) the mutual information measuring the
information that one variable or sample contains about another
one [31], and accounting for the higher order statistics [32];
2) the cosine distance reflecting the correlation between the
samples; and 3) the Gaussian kernel distance capturing the
nonlinear information within the data. After producing multi-
ple PCA-based subspaces with the three measurements, we
need to resolve the problem of how to effectively capture
the discriminative information existed in these subspaces.
In PCA, 2DPCA, and KPCA, we often select the representative
vectors corresponding to the top eigenvalues to capture the
discriminative information and classify the samples. However,
it is not always that the representative vectors corresponding to
the larger eigenvalues yield the better classification results (for
details, please see Section III-C). In essence, the discriminative
information of a representative vector is directly related to the
classification result yielded by this vector. The high classifica-
tion accuracy yielded by a representative vector implies that
the vector contains much discriminative information, and vice
versa. Hence, we can select the representative vectors based on
the classification results yielded by these vectors rather than
their associated eigenvalues.

Motivated by the weak learning theory [33], we propose
a novel feature selection approach to select the represen-
tative vectors of the three similarity subspaces. We choose
a number of representative vectors potentially yielding high
classification accuracies to construct a representative vector
set and refer to this set as weak machine cell (WMC).
In general, WMC contains more discriminative information
than the single representative vector does. Combining the
wrapper method and the forward selection scheme, we select
one WMC at a time. We integrate the three proposed subspaces
into a new similarity subspace through selecting the WMCs
that may contain the most discriminative information of the
total representative vectors. The classification result yielded
by this integrated similarity subspace would be much better
than that yielded by the other PCA-based subspace learning
methods.

MPCA uses multiple similarity measurements to generate
multiple subspaces. It is essentially a similarity subspace
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learning framework. MPCA has the following ideal properties.
First, unlike the other PCA-based subspace methods that use
only one measurement, MPCA indeed exploits multiple mea-
surements and provides the strong ability to capture sufficient
discriminative information within the data. In addition, it has
a powerful capability to represent the data. Second, MPCA is
very suitable for the application scenarios in which the number
of the training samples is smaller than the dimensionality
of the data. Third, similar to the other PCA-based methods,
MPCA can theoretically be applied to both supervised and
unsupervised learning scenarios. In addition, the similarity
measurements in MPCA can have also other forms, e.g.,
Mahalanobis distance [34]. In short, MPCA provides an in-
depth understanding of the PCA-based methods and a new
way for modifying the traditional PCA method, from the view-
point of graph embedding learning. Extensive experiments
conducted on many popular real-world data sets show that
our framework outperforms the other PCA-based subspace
methods in terms of both classification accuracy and clus-
tering result, and can achieve similar or better performance
in comparison with the state-of-the-art discriminant analysis
algorithms, such as LDA.

The rest of this paper is organized as follows. Section II
reviews the PCA. Section III presents three novel similarity
subspace models and the similarity subspace learning frame-
work. Section IV presents the details of the experimental
results. Section V offers our conclusion.

II. REVIEW OF THE PCA

Since Pearson [35] first invented and defined PCA through
approximating multivariate distributions by lines and planes
in 1901, researchers have defined PCA from different aspects
[36], [37]. Among these definitions, using covariance matrix
of the training samples to define PCA is very popular in
pattern recognition and machine learning community. Next,
we introduce this definition of PCA. Suppose that there are
N centered training samples x; € RMGi=1,2,..., N). The
covariance matrix of the training set is defined by

N
1 1
C=— xl = —xxT 1
N ;xle N (D
where X = [x1,x2,...,xn]. If the dimensionality of the

covariance matrix C is so high (usually M > N) that the
eigen decomposition of C is very difficult or even infeasible,
we need to define a new matrix

D— xTx 2

N
It is easy to prove that two matrices C and D have the
same nonzero eigenvalues denoted by ;i = 1,2,...,r).

We denote the eigenvectors associated with the nonzero eigen-
values of the matrix D by v;(i = 1,2,...,r). Thus, the
eigenvectors corresponding to the nonzero eigenvalues of the
covariance matrix C are

7). 3)
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If PCA is applied to face recognition, then u;(i = 1,2,...,r)
are called eigenfaces [2] and the subspace spanned by
ui(i = 1,2,...,r) is usually called eigenspace. Although
PCA can be implemented by the more efficient method, i.e.,
the singular value decomposition [38], the manner of using
covariance and correlation matrices can be easily modified to
our similarity subspace learning framework, as described in
the following section.

III. SIMILARITY SUBSPACE LEARNING FRAMEWORK

In this section, we first introduce the basic idea of our
MPCA framework. Second, we present three subspace models
that correspond to three similarity measurements, respectively.
Third, using a novel feature selection algorithm, we integrate
these three subspace models into a new PCA-based similarity
subspace framework, i.e., the MPCA framework. Finally, we
give the implementation of our MPCA framework.

A. Basic Idea of Similarity Subspace Framework

Recently, the graph embedding learning methods have
attracted much attention in machine learning community [29].
In graph embedding, the data set is expressed as a graph
with each vertex denoting a data point or sample. Graph
embedding uses one similarity measure to compute a similarity
matrix that is applied to build the learning model. In [29]
and [39], the classical PCA is reformulated as one type of the
graph embedding model. From the definition of the matrix D
in Section II, we know that each entry of the D is the
correlation of pairwise data points. Hence, D can be called the
correlation matrix. According to (3), the eigenvectors of the
covariance matrix can be derived from those of the correlation
matrix. Indeed, the correlation is one type of the similarity
measurement. As a result, the correlation matrix D is a case
of the similarity matrices. Therefore, the model using (2) and
(3) is also one type of the graph embedding learning approach.

For graph embedding, we can exploit various similarity
measures to yield different similarity matrices [29]. These
matrices may generate different types of discriminative and
representative information, since they can yield different trans-
formation axes. If we select some appropriate similarity mea-
surements, we may obtain a number of similarity matrices that
generate more discriminative information than the correlation
matrix D, and have a powerful ability to represent the data.
Therefore, the correlation matrix D can be replaced by other
types of similarity matrix S in many real-world applications.
When the matrix D is replaced by the matrix S, the following
problem will arise: whether there exists a matrix W, referred
to as similarity driven matrix (SDM), which has the same
nonzero eigenvalues as the matrix S. If the matrix W exists,
we can use the eigenvectors of the similarity matrix S to
construct a novel subspace and exploit this subspace to classify
or represent the data. This is similar to the traditional PCA that
performs in the subspace spanned by the eigenvectors of the
covariance matrix C. Fortunately, the theorem we propose,
i.e., Theorem 1, guarantees that there usually exist the Ws.
Thus, for one type of similarity matrix, we can obtain its
corresponding PCA-based learning model.
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Fig. 2. Relationship between the matrices D, C, S, and Ws.

Fig. 2 shows the relationship between the matrices D, C, S,
and Ws. Among these matrices, the matrices C and D have the
same nonzero eigenvalues. The eigenvectors associated with
the nonzero eigenvalues of the matrix C are derived from those
of the matrix D. The matrix S is a similarity matrix and the
matrix D is a case of the matrix S. Similarly, the relationship
between the matrix S and the matrices Ws is the same as that
between the matrices D and C.

In Fig. 2, if we want to compute the eigenvectors cor-
responding to the nonzero eigenvalues of the covariance
matrix C that is very large scale when the samples are
very high dimensional, we can first compute the eigenvectors
associated with the nonzero eigenvalues of the correlation
matrix D. Then, we determine the eigenvectors corresponding
to the nonzero eigenvalues of the matrix C. Similarly, the
matrix C may be viewed as a special instance of the matrices
W that are obtained by the eigenvalues and eigenvectors of
the matrix S. The following theorem describes the relation-
ship between the similarity matrix S and its corresponding
matrices Ws.

Theorem 1: Let X = [x1,x2,...,xNy] where x; €
RM(M > N) denote the centered training set. The nonzero
eigenvalues and their eigenvectors of the similarity matrix S
of size N x N are 4; and a;(i = 1,2,...,r), respectively.
Let f; = Xai/~/2i,(i = 1,2,...,r). If these vectors are
linearly independent, then there exists one or more matrices
Ws of size M x M that have eigenvectors f; corresponding
to A;(i=1,2,...,r), and the Ws are determined by the data
set X.

Proof: Given an arbitrary matrix W of size M x M,

if its nonzero eigenvalues are 1;(i = 1,2,...,r), and its
eigenvectors corresponding to these nonzero eigenvalues are
pii = 1,2,...,r), then we can establish the following
equation systems:
Wpi =Aipi, (=1,2,...,r) 4)

where

wip w2 w1y bi1

wr1 Wy - Wy bin

W= ) ) . ) , Bi=
wp1 WM wpMM bim

Then, we can obtain M equation systems, and the jth
(j=1,2,..., M) one is as follows:

BW;=Y;, (j=12,....,M) (5)
where Y; = (11b1, Aabaj, ..., Arbyj)T
B bi1 b2 biym wj
B2 by byn -+ by w2
=1 .1=1. . . : Wi=1 .
Br b1 b brm Wwim
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According to the assumption, f; € RM(i = 1,2,...,r) are
linearly independent, and rank(B) = rank(BY;) < N < M.
This guarantees that the linear system (5) has infinitely many
solutions. Therefore, it is certain that the Ws satisfying the
conditions in Theorem 1 exist. According to (4) and (5),
the Ws are determined by A; and £;(i = 1,2,...,r), and
Bi = Xa;/+/2;. In addition, a; is obtained by X. Thus, the

Ws are determined by X. [ |
Remark 1: Theorem 1 guarantees the matrices Ws existing
when f;(i = 1,2,...,r) are linearly independent. According

to the theory of the linear algebra, if the number of samples
is greater than their dimensionality, then these samples are
linearly dependent. Otherwise, these samples are very likely to
be linearly independent, particularly when their dimensionality
is far higher than the number of the samples. Notice that in the
real-world applications, such as face recognition, the training
procedure usually uses a small portion of the data set. As a
consequence, the dimensionality of the samples is generally
far higher than the number of the samples, as supposed in
Theorem 1. Therefore, it is reasonable to suppose that the
pi(i = 1,2,...,r) are linearly independent in the high-
dimensional real-world applications. In this case, matrices
Ws always exist. Thus, we can use the similarity subspaces
corresponding to the Ws and perform the feature extraction
and classification.

Like the kernel-based methods in which the nonlinear
mapping is not explicit and needs to be specified by some
kernel function, one instance of the Ws can be obtained by
some implicit computation on the data set X. This instance
is explicitly expressed by its corresponding similarity matrix.
In some cases, the Ws can also be explicitly determined. For
example, the covariance matrix C in PCA can be viewed as
one instance of the Ws and it can be explicitly computed
using (1).

In general, if one type of the similarity measurements is
given, we can therefore determine one type of the SDMs.
As described in Section I, we employ three similarity measure-
ments to compute three types of the similarity matrices. Using
Theorem 1, we can determine three types of the SDMs. The
eigenvectors of each type of SDMs span a similarity subspace.
Thus, we obtain three similarity subspaces.

We believe that the discriminative capability of the com-
bination of the three similarity subspaces is not weaker than
that of one of three similarity subspaces. Thus, if we properly
integrate these three subspaces into a new similarity subspace,
the discriminative capability of this new subspace might also
not be weaker than that of one of three similarity subspaces.
In practice, we observe that the new integrated subspace is
much stronger than one of three similarity subspaces and
other PCA-based subspaces in terms of the discriminative
capability.

B. Similarity Subspace Models

1) Similarity Subspace Model Based on Mutual Informa-
tion: In information theory, entropy and mutual information
are two basic concepts. We first give some definitions about
them [40], [41]. Here, we only consider the discrete situation.
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Definition 1 (Entropy): Given a discrete random variable x,
the entropy H (x) is defined by

H(x) == p(x)log p(x). (6)
X€y
Here, p(x) is the probability density function of random
variable x.
Definition 2 (Joint Entropy): Given a pair of discrete random
variables (x,y) with a joint distribution p(x,y), the joint
entropy H (x, y) is defined by

H(x,y)=—> > plx,y)logp(x,y). @
xey yey
Definition 3 (Mutual Information): Given two random vari-
ables x and y with a joint distribution p(x, y), their marginal
probability functions are p(x) and p(y), respectively. The
mutual information 7 (x, y) is defined by

I(x,y)==>_>" plx,y)log (M) ®)

o p(x)p(y)
In this paper, we use the normalized mutual information [42],
which is defined by
I(x,y)
min(H (x), H(y))'
We use (9) to measure the similarity between two training
samples. Thus, the similarity matrix is defined by

SM = (NI(xi, x;)), (@, j=1,2,...,N).

NI(x, y) =

©)

(10)

The nonzero eigenvalues and their eigenvectors of the similar-
ity matrix SM are A"’ and a;?l (j=1,2,...,q), respectively.
Then, the similarity subspace based on mutual information is
spanned by the following vectors:
Xo'
Bl =—=%, (j=12,...

4y

. q) (1)

where the data set X is vector based. That is, the data set is
expressed as the vectors. This first similarity subspace model
is referred to as MPCA model 1 (MPCA1).

2) Similarity Subspace Model Based on Cosine Distance:
In the second similarity subspace model, we use cosine
distance to measure the similarity between the data points.

The similarity matrix is defined by
SC = (cos(xi, xj)), (i,j=1,2,...,N) 12)

where cos(x;, x;) denotes the cosine distance between two

data points x; and x;, i.e., cos(x;, x;) = xiij/(||x,-|| lx .
We assume that the nonzero eigenvalues and their eigenvectors
of the similarity matrix SC are Aj and a; (I = 1,2,...,5),

respectively. Then, the similarity subspace based on cosine
distance is spanned by the following vectors:

pe = Xaj

VA
where the data set X is also vector based. This similarity
subspace model is referred to as MPCA model 2 (MPCA2).
Note that if the sample vectors are normalized, or they have

unit L2 norm, the MPCA2 reduces to PCA. In addition, PCA
can be viewed as a special case of MPCA2.

(=1,2,...,5) (13)
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3) Similarity Subspace Model Based on Kernel Distance:
With the similar idea, we use the Gaussian kernel distance, i.e.,
Gaussian kernel function, to measure the similarity between
the data points in the third model. The similarity matrix is
defined by

K= (k(xi,x;)), (,j=1,2,...,N)

where k(x;,x;) denotes the Gaussian kernel distance
between two data points x; and x;, ie., k(x;,x;) =
exp(—|lx;i — x; I2/20%), where ¢ is the kernel parameter
needed to be specified in practice. Similarly, we assume that
the nonzero eigenvalues and their eigenvectors of the similarity
matrix SK are i’,‘l and a’,ﬁ (h=1,2,...,1), respectively. Then,
the similarity subspace based on the kernel distance is spanned
by the following vectors:

(14)

Xok
k h
ﬁh = s

k
'lh

15)

where the data set X is also vector based. This similarity
subspace model is referred to as MPCA model 3 (MPCA3).

Among three similarity measures, the mutual information
accounts for the higher order statistics, which can be applied
to the nonlinear transformations [32], whereas the correlation
used in the traditional PCA accounts for the second-order
statistics, which is suitable for learning the linear separable
data [31]. The proposed MPCA1 model using the mutual
information is more suitable for dealing with the nonlinear data
sets than the traditional PCA in principle. The cosine distance
between samples is an extension of the correlation between
samples. Compared with the traditional PCA, one of our
proposed models, i.e., MPCA2, which uses the cosine distance
between samples as the similarity measure, may be suitable for
more applications. We know that the Gaussian kernel distance
is nonlinear and can capture the nonlinear information within
the data set. This similarity measure is very suitable for dealing
with the nonlinear data sets. The proposed three similarity
subspaces can produce three types of transformation axes.
They may contain complementary discriminative information
to some extent. For the above reasons, we select these three
similarity measurements. From the point of view of graph
embedding learning, the above MPCA models correspond to
three graph embedding learning models, respectively.

Next, we will investigate the discriminative information
contained in the above three similarity subspaces and the
eigenspace in the traditional PCA. The discriminative infor-
mation contained in a subspace is tightly related to the
classification accuracy yielded by this subspace in a classi-
fication algorithm (e.g., the NN classifier). If one subspace
can achieve higher classification accuracy, then it contains
more discriminative information, and vice versa. Given an
eigenspace E, suppose there exist the vectors eg, ez, ..., e in
E yielding the highest classification accuracy D(ey, €2, . . ., €])
in a classification algorithm. We define D(ey, ez, ..., ¢;) as the
discriminative information contained in the space E, which is
denoted by Dg(Dg = D(ey,ea,...,e)). Similarly, let Dg
be the discriminative information contained in the similarity
subspace spanned by (11), (13), and (15). That is, Dy is the
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highest classification accuracy yielded by the vectors in the
above similarity subspaces in a classification algorithm. Thus,
we have the following theorem.

Theorem 2: If three similarity matrices SM, SC, and SK
have more than N linearly independent eigenvectors, then
Dg > Dg, in a classification algorithm.

Proof: Suppose that three similarity matrices SM, SC, and
SK have more than N linearly independent eigenvectors, and
N eigenvectors denoted by &1, &, ..., ¢y are chosen. Hence,
according to the basic linear algebra theory, each eigenvector
of D defined by (2), a;j(i = 1,2,...,r), can be linearly
represented by &1, &, ..., En. That is

a;i = pié1+ p2& + -+ pnén

where p; € R(i = 1,2,..., N).Since {1, &, ..., ¢y are a part
of the eigenvectors of three similarity matrices SM SC, and
SK, denoted by A = (a;",...,agl,af,...,a al,... k)
each a; can be linearly represented by A. That is

O —Zmlal +-- “erqa +Zc1051+ +cha

+Zk1a1+ +Zk1a, szja +ZZCl“l+szh“h
j=1 =1 h=1

According to Theorem 1

Bi = Xai /N 20

j=1 =1
t k yLs
ah h
+ D zinX—-
A’,; Vi

Let
ij:ij\/ MiJhieR, (j=1,2,...,9)
z;,=zcz,/ /\/_GR (=1,2,...,5)
and
Z;chZZkh\/iﬁ/\/TieR, (h=1,2,...,1.
Then, we have
q s t
Bi = szjﬁ}" + chlﬁlc + szhﬂllf'
Jj=1 I=1 h=1

Therefore, we can conclude that each eigenvector of C in (1)
can be linearly represented by

= (B, BB BB B

Hence, the eigenspace is a subset of the similarity subspace
spanned by B. Then, the vectors eg, e2, ..., ¢; can be found in
this similarity subspace. In a classification algorithm, we can
always choose the vector set containing ej,es, ..., e; that
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yields the classification accuracy D, such that D, > Dg.
According to the definition of Dg, we have Dg > D,. Thus,
Ds > Drg. [ |

Although Dg may include features that are not only valid
but also harmful for discrimination, using the proposed WMC
can select valid features among them. Thus, Dg can achieve a
higher performance than Dg. Theorem 2 justifies that three
similarity subspaces contain more (at least not less than)
discriminative information than the PCA subspace. In other
words, the proposed three subspaces can lead to higher clas-
sification accuracy than the PCA subspace in a classification
algorithm. In theory, if we orthogonalize the bases in three
similarity subspaces, then we can obtain a new subspace that is
equivalent to the above three subspaces. That is, each vector in
the above three subspaces can be obtained in the new subspace,
and vice versa. Therefore, the classification accuracy yielded
by the new subspace is the same as that yielded by the three
similarity subspaces in a classification algorithm. From the
new subspace, we can select an appropriate feature set, which
contains the most discriminative information using WMC, and
obtain the integrated MPCA subspace. Thus, this integrated
MPCA subspace contains more discriminative information
than the conventional PCA subspace. That is, MPCA can lead
to better classification performance than PCA. Next, we will
integrate the proposed three similarity subspaces into the new
subspace, i.e., MPCA, via feature selection.

C. Subspace Integration Using Feature Selection

In this section, we present the subspace integration via a
novel random feature selection algorithm. First, we give the
motivation of our feature selection algorithm. Second, we
introduce how to construct the WMCs in the proposed novel
feature selection. Finally, we give the integration procedure
and the implementation of MPCA.

1) Motivation of Feature Selection Scheme in MPCA:
After obtaining the three similarity subspaces, we need to
integrate these subspaces into a new similarity subspace via
feature selection [43]. In the feature selection, we choose
those representative vectors that can effectively capture the
difference between the samples from different classes (in other
words, they contain sufficient discriminative information) from
three MPCA models. There are a great number of feature
selection algorithms in the literature that can be roughly
grouped into three categories: 1) filters [42]; 2) wrappers [44];
and 3) hybrid algorithms [45]. The filters usually select the
features without needing the classifier performance, whereas
the wrappers need the classifier performance to select the
features. The hybrid approaches are usually the combination
of the filter and wrapper approaches [45].

Although it is not difficult to implement the filter
approaches, the selected features are not directly related to
the classification performance. Note that in the PCA-based
methods, we use the representative vectors as the features.
Actually, it is not always that the features corresponding to
the larger eigenvalues yield the better classification results
in PCA. Fig. 3 shows an example of this case and shows
the classification results yielded by individual features on two
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Fig. 3. Classification results yielded by individual features in PCA. (a) AR
face data set has 120 individuals. For each individual, the first five samples
are used for training and the rest are used for testing. (b) ORL face data set
has 40 individuals. For each individual, the first five samples are used for
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popular face data sets: the AR and the ORL data sets [46], [47].
In Fig. 3, the classification accuracy tends to be low when
the eigenvalues are small (the eigenvalues are descending).
However, this case does not always hold. For example, in
Fig. 3(b), the classification accuracy yielded by the feature
associated with the 10th eigenvalue is only 1.5%, whereas the
classification accuracy yielded by the one corresponding to the
11th eigenvalue is 5.5%. There are many such cases in Fig. 3.
Moreover, since our similarity subspace learning framework
involves three similarity subspaces, it is impossible to select
the features directly using the eigenvalues. On the other hand,
the wrapper approach is directly related to the classification
results. MPCA uses this approach to determine those features
that yield the high classification accuracy, i.e., they contain
relatively much discriminative information for classification.

The feature searching technique is the sequential forward
selection [48]. We select a number of features at a time (many
other wrapper algorithms usually select only one feature at a
time, e.g., the algorithm in [44]). In the selection process,
we first orthogonalize all the features of three similarity
subspaces. From the point of view of probability theory, the
classification accuracy obtained by a feature can be viewed
as the probability of the event that each test sample can
be correctly classified exploiting this feature [33]. Note that
the features are orthogonal and a feature does not affect the
performance obtained by the other features. In this sense, we
assume that the individual features tend to be independent
identically distributed.

According to Fig. 3, the classification accuracy obtained by
each feature is low. As shown in this figure, for the ORL data
set, the highest accuracy is 11.5%, and for the AR data set,
the highest accuracy is only 2.78%. Actually, for most large-
scale data sets, such as AR and Carnegie Mellon University
(CMU)-PIE [49], the classification accuracies obtained by
individual features of most subspace methods are usually low.
Indeed, if we select the features one by one in the wrapper
approach, the selection efficiency will be very low. In addition,
this selection scheme may not guarantee to obtain the desirable
classification results. On the other hand, if we select too many
features at a time, it is very difficult to obtain the desirable
classification results. In this paper, we select the features by
constructing the WMC that contains an appropriate number of
features.

In general, the classification result yielded by simulta-
neously using those features that contain relatively much
discriminative information (i.e., the classification accuracy
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WMC;

Fig. 4.  WMC construction process.

yielded by each of these features is higher than some value,
say, 0.5% in this paper) is often better than that yielded
using each of these features. The WMC construction is to
automatically select such features for each WMC containing
sufficient discriminative information, and try to make the
discriminative information within each WMC equal. Thus, we
can conveniently and automatically determine the final features
to perform learning using such WMCs. In the usual random
feature selection algorithms, one of the key problems is how
to determine an appropriate number of the features n. at a
time. It can be addressed well in our construction of WMC.
Our method does not need to know n. in advance.

2) Construction of WMC: Our proposed feature selection is
a random approach. It contains two steps. The first step is to
select an appropriate number of features to construct WMC.
The second step is to employ a wrapper method to select the
constructed WMC.

Fig. 4 shows the construction process of a WMC. For a
feature f; that is a leaf in Fig. 4, if the classification accuracy
obtained by f; on a data set is p;, we can say that the
probability of the event that this feature correctly classifies
a given test sample is p;. Given a feature set F containing n.
features, if it has at least one feature that can correctly classify
a test sample, then we consider that F roughly correctly
classifies this test sample. Due to the above assumption that
the features tend to be independent identically distributed, we
can define the probability of the event that F roughly correctly
classifies the test sample as

ne
Pum =1-[]1=pp) (16)
i=1
where Pyp, is referred to as pseudo recognition rate (PRR) of
the set F. Particularly, when all the probabilities p; are equal,
i.e., all of them are p, then

Pym =1—(1— p)'.

If n. is fixed, the actual classification result tends to be better
when Py, becomes higher.

To construct the WMCs, we set a PRR for each WMC to be
some value, which is slightly greater than a threshold T, say,
0.5. This is inspired by the basic idea of the typical boosting
algorithms [50], [51]. If the classification accuracy yielded by
a feature is greater than 7', then we consider this feature is a
WMC. Thus, the number of features in this WMC is one. For
other features whose corresponding classification accuracies
are less than 7, we construct the WMCs based on the bottom-
up technique, as shown in Fig. 4. First of all, the classification

A7)
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Algorithm 1 Construction of WMC

L.Input: classification accuracies C = {c,,"*,c, }
yielded by the features f;(i=1, ..., n).

2. Initialization: sort the elements in C' in ascending
order. W= {}, T=0.5.

3.1f ¢; 27, then
W= f,. W=W+W},C=C—{c}.
4. Group the elements of C into the parts:
P = (ChssCy )5 (k=1,0005),
5. For each part p, , specify some value p to substitute
for all elements in this part.

1) Use (17) to determine 7, .

2) Repeat: randomly select 7, values (C}cl IR C}mc )
from the part, use their corresponding features to
construct a WMC, denoted by W :
W=W+W} pe=pe-(ConsCy,)
Till the number of values in this part | pk| < n,.
6. Randomly assign the remaining features in each part

into the final WMCs, and return the WMC set V.

accuracies {cy, ..., ¢} yielded by these features are sorted in
ascending order. Then, we group these accuracy values into
a number of parts. The values of each part belong to some
interval. For example, there are 12 accuracy values: 0.01, 0.01,
0.02, 0.05, 0.05, 0.06, 0.1, 0.1, 0.12, 0.15, 0.16, and 0.22.
They can be grouped into three parts: 1) (0.01, 0.01, 0.02,
0.05, 0.05); 2) (0.06, 0.1, 0.1, 0.12, 0.15); and 3) (0.16, 0.22).
The values of these parts belong to three interval (0, 0.05],
(0.05, 0.15], and (0.15, 0.22], respectively.

From the point of view of the discriminant analysis, we
consider that those individual features yielding nearly equal
classification accuracies have almost same discriminative
information. For simplicity, we view that classification accu-
racies obtained by these individual features are also same and
assume that they are all p,,. If we specify Pyn, in (17), n. can
be therefore computed as

ne = [togfi=|

where [x] is the smallest integer whose value is larger than
x. As discussed above, Py is set to 0.5. For a part, we
randomly select n. values from it, and use their corresponding
features to construct a WMC. Then, we delete these selected
n. values from this part. This procedure repeats till the number
of the values in this part is less than n.. If there are remaining
accuracy values in a part, we randomly assign the features
corresponding to these values to all of the final WMCs.
Algorithm 1 describes the WMC construction procedure.
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Algorithm 2 Procedure of WMC Selection
w=Ww} (i=12,..,n, )
S=¢; €=le-4; oa=0, and na =0,

a W, , W=W-Ww, ;

1. Initialization:

2. Randomly select

S=8S+W,

3. Let ca(S) be the classification accuracy yielded by
S, and |W| denote the number of the WMCs in 7;
While (na - oa > 0) and ([W]>1)

oa = na,
fori=1: |W|
S; =S8+ W,; compute the ca(S;) ;
end
j=arg(miax ca(S,));S =8+ W
W=W-=W,;na=ca(S)- &;

end
4. Return S;

Algorithm 3 MPCA Framework

1. Input the  centered
x, e RM(i=1,2,..,N),

training  samples:

2. Compute MPCA 1 model using (6)-(11);

3. Compute MPCA 2 model using (12)-(13);

4. Compute MPCA 3 model using (14)-(15);

5. Orthogonalize all the features in the three models ;

6. Compute the classification accuracy yielded by
each orthogonalized feature and construct the
WMCs.

7. Adopt Algorithm 2 to determine the WMCs

8. Use the determined WMCs to classify test
samples.

3) Subspace Integration and the MPCA Framework: Before
subspace integration, we need to determine the WMCs to
classify the test samples. Note that although the PRRs of the
WDMCs are nearly same, i.e., all of them should slightly greater
than the specified threshold 7', the discriminative capabilities
of the WMCs may be different. Therefore, we need to select
those WMCs that have higher discriminative capabilities, i.e.,
contain more discriminative information. As mentioned earlier,
since the wrapper method is directly related to the discrimina-
tive capability of the features, we combine this method with
sequential forward selection to determine the WMCs.

Algorithm 2 gives the pseudocodes to select the WMCs
(assume that the number of the total WMCs is n,,). Since
we select WMCs in a random manner, if we randomly select
them several times, the selecting results are usually different.
We can take the WMCs that yield the highest classification
accuracy as the best WMCs. Algorithm 3 describes our MPCA
framework.
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Note that MPCA is integrated by three PCA-based models:
1) MPCAT1; 2) MPCA2; and 3) MPCA3. MPCA is derived
from three similarity measures, and is performed in the orig-
inal input space like the traditional PCA. In concept, KPCA
is performed in the high-dimensional feature space usually
induced by a nonlinear mapping, which is often defined by
one type of the kernel functions. Hence, the feature extractions
of these two methods are different.

IV. EXPERIMENTAL RESULT

In this section, we have conducted the experiments to
evaluate the effectiveness of the proposed method. The
first two experiments are conducted on two widely used
real-world face data sets: 1) the AR and 2) CMU-PIE data
sets, respectively. The goal of these experiments is to show
the discriminative capability of MPCA. The third experiment is
also conducted on these two data sets to show the effectiveness
of our feature selection method. The fourth experiment is
conducted on the Georgia Tech (GT) face data set to show
the unsupervised learning ability of MPCA [47]. The fifth
experiment is conducted on the ORL face data set. The goal
of this experiment is to show the representative capability of
MPCA. Finally, we study the roles of the individual similarity
subspaces in classification. In the first three experiments,
the classifier we used is the NN classifier based on the
Euclidean distance (L2 norm). When constructing the WMCs,
we empirically use 0.03 to substitute for each accuracy value
in the interval (0, 0.05], 0.1 for the interval (0.05, 0.15], 0.2 for
the interval (0.15, 0.25], 0.3 for the interval (0.25, 0.35], and
0.4 for the interval (0.35, 0.5]. The parameters used in the
other algorithms are the best ones we obtain via parameter
tuning through fivefold cross validation.

For fair comparison, we implemented 19 algorithms in
the first two experiments. They are the typical NN classifier
in the original space, IDPCA_L2 (i.e., PCA) [2], 2DPCA_L2
(the 2DPCA based on L2 norm) [5], KPCA [11], IDPCA_LI1
(the PCA based on L1 norm) [7], 2DPCA_L1 [10], ICA [13],
LPP [4], LDA [21], [52], kernel LDA (KLDA) [22], [53], sub-
class discriminant analysis (SDA) [18], feature extraction algo-
rithm based on ICA (ICA-FX) [54], maximum margin criterion
(MMC) [55], null LDA (NLDA) [17], Chernoff LDA (CLDA)
[56], and our four algorithms: 1) MPCAI1; 2) MPCA2;
3) MPCA3; and 4) MPCA framework that integrates three
MPCA models. In KPCA, KLDA, and MPCA3, we used the
Gaussian kernel function.

A. Experiment on the AR Face Data Set

The first experiment is conducted on a large data set, the
AR face data set. It contains over 4000 color face images
of 126 individuals [5], [52]. We used the face images of
120 individuals and each individual has 26 images. All the
images are cropped with dimension 50 x 40 pixels and
converted to gray scale. For each individual, N (= 9, 10, 11,
12, 13) images are randomly selected for training (yielding
five training subsets), and the rest are used for testing.

Let dis denote the distance between the first training sample
of the first individual and the first training sample of the
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second individual. The kernel function parameters of KPCA
and MPCA3 are equal and they are set to 400 * dis, and the
kernel parameter of KLDA is set to 0.003 * dis. In LPP, we
need to set the local parameter ¢ to determine the number of
NNs of a sample and it is set to 0.1 * d, where d is the mean
of the distance between two arbitrary samples in the training
set. Since the features in three similarity subspaces may not be
orthogonal, we orthogonalize them when constructing WMCs.
This is also conducted in the second experiment.

We randomly ran each algorithm 10 times on each training
subset. For the MPCA framework, since the WMC construc-
tion is random, to obtain the classification result as optimal as
possible, we randomly ran the WMC construction procedure
10 times and selected the best WMCs in terms of the classifi-
cation accuracy in each run of MPCA. In the WMC selection,
we need a supervised learning procedure to choose the final
WMCs. We randomly divided each training subset into two
equal parts. One is used for training, and the other one is a
validation set, which is used to determine the WMCs. We take
the training subset N = 9 as an example. The number of
training samples in this subset is 1080. It is randomly divided
into two equal parts. That is, the part for training contains
540 samples, and the validation set also contains 540 samples.
In addition, we conducted the same selection procedures in the
second experiment.

For each algorithm, Table I reports the best classification
results on five training subsets. In this table, the bold italics
highlight the best classification result on each training subset.
According to Table I, our three models MPCA1, MPCA2, and
MPCA3 are comparable with many other PCA-based methods
in terms of the classification accuracy. As shown in Table I,
the classification results of MPCA are significantly better than
those of the other PCA-based algorithms. In addition, MPCA
can achieve similar or better performance in comparison
with the state-of-the-art supervised algorithms ICA-FX, MMC,
NLDA, CLDA, LDA, KLDA, and SDA. That is, from Table I,
we can see that when N = 11, 12, and 13, the classification
results of MPCA are better than those of ICA-FX, MMC,
NLDA, CLDA, LDA, KLDA, and SDA. The main reason
of good classification performances of MPCA may be that
three similarity subspaces defined in our approach contain
sufficient discriminative information. Meanwhile, our feature
selection based on WMC plays an important role to effectively
capture the discriminative information contained in these three
subspaces.

B. Experiment on the CMU PIE Face Data Set

The second experiment is conducted on the CMU PIE
face data set containing 68 individuals. Each individual has
images captured under 13 different poses and 43 different
illumination conditions and with four different expressions
[49], [57]. We use one near-frontal pose C05 in which all the
images are under different illuminations and expressions. The
data subset CO5 contains 68 individuals and each individual
has 49 images. Each image is manually aligned and cropped.
The size of each image is 64 x 64 [58]. For each individual,
N (=5, 10, 15, 20) images are randomly selected for training,
and the rest are used for testing.
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Fig. 5. Classification results of three feature selection approaches. (a) Result
on the AR data set. (b) Result on the CMU PIE data set.

We implemented 19 algorithms that are the same as ones
used in the first experiment. The kernel function parameters
of KPCA and MPCA3 are set to 1000 * dis defined in the
first experiment, and the kernel parameter of KLDA is set
to 0.1 * dis. In LPP, the local parameter is set to 0.1 * d
that is also defined in the first experiment. Similarly, we
randomly ran each algorithm 10 times on each training subset
and randomly ran the WMC construction procedure 10 times
in each run of MPCA. For each algorithm, Table II reports
the best classification results on four training subsets. Like
Table I, the bold italics highlight the best classification result
on each training subset. From Table II, we find that MPCA
significantly outperforms the other PCA-based algorithms.
In addition, MPCA can achieve similar or better performance
than the state-of-the-art supervised algorithms ICA-FX, MMC,
NLDA, CLDA, LDA, KLDA, and SDA. In addition, three
models MPCA1, MPCA2, and MPCA3 are comparable with
many other PCA-based methods in terms of the classification
accuracy.

C. Feature Selection Experiment

In this experiment, we have conducted the experiment on the
AR and CMU PIE data sets to demonstrate the effectiveness
of our feature selection approach. For comparison, we have
implemented two other feature selection methods. One is
the filter method, and the other is the wrapper method. In
the filter method, we compute Fisher criterion J of each
feature v. That is, J = v! Sp0/(vS,,v), where S, and S,,
are the between-class and within-class matrices, respectively
[20]. Then, like LDA using the eigenvectors associated with
the first eigvenvalues, we select the features corresponding
to the first largest J. This method is denoted by FISH. The
wrapper method we use is genetic algorithm (GA) [59]. After
obtaining three similarity subspaces, we randomly ran FISH
and GA feature selection algorithms 10 times on each training
subset used in the first and second experiments. Fig. 5 shows
the best results of three methods (FISH, GA, and our WMC).

In GA feature selection, there are two important parameters
needing to be set. They are generation (i.e., the number of
the iterations) G and the number of the individuals 7 in
each population, in which an individual shows a feature set
(for details, please refer to [59]). Here, G is set to 100, and
T is set to 50. Note that if we use larger G and T, e.g.,
G = 300 and T = 300, that can lead to slightly better
classification performance in theory (improve about 1% in
our experiment), the computational cost of GA is very high.
From Fig. 5, we can observe that FISH is worse than WMC
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TABLE I
CLASSIFICATION ACCURACIES (MEAN &= STD-DEV PERCENT)
ON THE AR DATA SET

Algorithms N=9 N=10 N=11 N=12 N=13
NN 72.99+1.14 75.44+0.87  77.39+£0.74  79.01+0.78  80.76+1.17
1DPCA L2 73.0+1.14 75.48+0.85  77.43+0.73  79.02+0.77  80.81+£1.14
2DPCA L2 73.02+1.13 75.45+0.86  77.43£0.73  79.05+£0.79  80.81«£1.15
KPCA 72.99+1.15 75.47+£0.86  77.43+£0.73  79.02+0.77  80.79+1.15
1DPCA L1 72.97+1.16 75.46+0.87  77.43£0.74  79.03+£0.79  80.81«£1.15
2DPCA L1 73.24+1.36 75.49+0.92  77.94+£0.58  79.04+0.80  80.92+1.02
ICA 73.35+1.32 75.85+0.79  77.52+0.58  78.81+0.73  80.46+1.10
LPP 77.07+2.34 80.51£1.96  82.47+1.49  83.89+£1.14  86.42+1.60
MPCA1 73.0£1.15 75.42+0.85 77.46£0.72  79.03+£0.80  80.81«£1.15
MPCA2 72.99+1.14 75.47+£0.86  77.44+£0.72  79.02+0.78  80.81+£1.13
MPCA3 73.01+1.15 75.47+£0.86  77.44+£0.72  79.02+0.78  80.80+1.14
ICA-FX 89.24+0.24 90.27+0.65  90.60£0.89  91.49+0.42  91.86+0.95
MMC 85.94+1.14 87.90+0.71  89.2840.79  90.35+1.13  91.26+0.85
NLDA 92.49+0.64 93.18+0.63  92.80+0.79  92.98+0.65  92.42+1.09
CLDA 87.05+1.53 89.51£0.95  90.84+0.87  91.92+0.94  92.50+0.88
LDA 91.62+0.82 91.45+0.51  90.88+1.0 90.80+0.53  90.61£1.05
KLDA 92.0£1.06 92.11+1.04  91.57£1.75  93.29+1.83  93.16+3.17
SDA 92.0+0.83 92.14+£0.60  92.66+£0.77  92.56+1.03  93.35£1.25
MPCA 91.42+0.85 92.204+0.53  92.84+0.38  93.39+0.67  94.12+0.85
TABLE 1I
CLASSIFICATION ACCURACIES (MEAN £ STD-DEV PERCENT)
ON THE PIE DATA SET

Algorithms N=5 N=10 N=15 N=20

NN 49.36+091  69.36x1.45 81.01£1.08  86.95+1.18

IDPCA L2 49.30+0.95 69.33+1.45  81.03£1.09  86.96+1.18

2DPCA L2 49.36+0.92  69.33x1.45  81.0£1.07 86.92+1.19

KPCA 49.2940.94  69.33+1.45 81.02£1.09  86.96+1.18

IDPCA L1 49.15£1.12  68.92+1.32  80.82+1.04  86.95+1.20

2DPCA L1 4937092  69.34+1.43  81.0£1.08 86.96+1.18

ICA 49.23+0.89  69.44+1.38  81.19+1.11 87.12+1.10

LPP 71.28+1.28  80.82+1.21 83.02+0.93  82.99+1.54

MPCA1 49.35+£0.93  69.35+1.46  81.03£1.08  86.96*1.17

MPCA2 49.32+0.92  69.35£1.45  81.04£1.09  86.96+1.17

MPCA3 49.29+0.94  69.33x1.45 81.02£1.09  86.96+1.18

ICA-FX 63.32+£1.80  82.99+0.65 90.07+1.52  92.50+1.03

MMC 76.16£1.37  86.88+0.75  91.89+1.09  94.17+0.63

NLDA 82.71+1.26  89.77+£0.96  93.11+0.98  94.16+0.65

CLDA 74.69£1.83  86.23£0.69  91.15+1.16  94.10+0.83

LDA 81.47+1.62  88.74+1.03  92.49+1.13  93.60+0.60

KLDA 89.59+1.01  91.29+3.84 93.34+2.64  92.90+2.52

SDA 84.67x1.74  89.39+1.32  92.24+1.16  94.22+0.46

MPCA 82.15£0.45  89.53+0.94  93.49+0.80  95.38+0.56

and GA. Our WMC outperforms GA. In addition, WMC is
more efficient than GA here. We take PIE data set as an
example. We perform WMC and GA feature selection on the
first subset of CMU PIE (i.e., N = 5 in the second experiment)
one time. Running GA feature selection spends 1197.31 s,
whereas WMC needs only 15.94 s (we have performed GA
and WMC on an I7 3.4-GHz Windows 7 machine with 16 GB
of memory).

D. Clustering

To show the clustering ability of the vectors that yield the
MPCA model, we conducted the experiment on the GT face

data set. The GT data set contains 50 subjects with 15 images
per subject and characterizes several variations such as pose,
expression, and illumination [47]. All the images are cropped
and resized to a resolution of 60 x 50 pixels.

In the experiment, we implemented the state-of-the-art clus-
tering algorithms including the traditional K-means algorithm
[60] and the spectral clustering algorithms. The basic idea of
the spectral clustering methods is to cluster points using eigen-
vectors of matrices derived from the data [61]. In this sense,
the algorithm PCA + K-means, that is, K-means clustering
in the principal component subspace [62], is one type of the
spectral algorithms. For comparison, we implemented our four
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clustering algorithms: 1) MPCA1 + K-means; 2) MPCA2 +
K-means; 3) MPCA3 + K-means; and 4) MPCA +
K-means. In the proposed MPCA + K-means algorithm, we
first computed three vector sets, respectively, yielding the
MPCAL1, MPCA2, and MPCA3 subspaces. Then, the vectors
in these three sets are orthogonalized to yield a new sub-
space, denoted by MPCA subspace. Finally, we performed the
K-means in the MPCA subspace. All the algorithms used the
class centers as the initial cluster centroid positions. We evalu-
ated the clustering performance using the clustering accuracy,
which is computed by exploiting the known class labels. We
report the highest clustering accuracy of each algorithm, as
shown in Fig. 6. We can observe from this figure, our proposed
algorithms are better than the typical clustering algorithms.

E. Face Reconstruction

In this experiment, we applied our method to face recon-
struction problems to show the representative capability of
vectors (i.e., extracted features) in the MPCA implementation.
The experiment is conducted on the ORL face data set [47],
[57]. Since MPCA is a 1DPCA-based algorithm, for the
purpose of fair comparison, we implemented MPCA and the
other IDPCA-based algorithms: IDPCA_L2 and 1DPCA_LI.
We use the method in [7] to compute the average reconstruc-
tion error (ARE) of the 1DPCA based algorithms as follows:

are(m)lD—lZ Zw]w Xi
i=1 2
Here, n is the number of the total images in the ORL data
set (n = 400), x; is the ith 1-D face image expressed as a
vector, w; is the ith extracted feature, and m is the number of
features used in the reconstruction.

(18)
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Fig. 8. Original images (in the ORL data set) and reconstructed images. The
first column shows the three original images and the second to fourth columns
(from left to right) are the images reconstructed by tMPCA, 1DPCA-L1, and
1DPCA_L2, respectively.
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Fig. 9. Components of the optimal features. (a) Ratios on subsets of the AR
data set. (b) Average ratio on the AR data set. (c) Ratios on subsets of the
PIE data set. (d) Average ratio on the PIE data set.

For the IDPCA_L2 and 1DPCA_L1 algorithms, we used
first 300 extracted features to reconstruct the images. In addi-
tion, after orthogonalizing the features of all the three similar-
ity subspaces, we exploit the first 300 orthogonalized features
to reconstruct the images in our method. Here, we call this
method as tMPCA reconstruction method. Fig. 7 shows the
ARE of the above reconstruction algorithms on the ORL data
set. From this figure, we can observe that tMPCA is the best
algorithm among three 1DPCA-based algorithms. Fig. 8 shows
three original images randomly drawn from the ORL data set
and their reconstructed images generated by the above three
PCA-based reconstruction algorithms. In this figure, the first
column shows the three original images and the second to
fourth columns (from left to right) are the images reconstructed
by tMPCA, 1DPCA-LI1, and 1DPCA_L2, respectively. The
main reason for powerful reconstruction ability of the pro-
posed approach may be that it can effectively find the most
representative feature vectors from three similarity subspaces.

E. Similarity Subspaces in Classification

As demonstrated in Section IV-E, the orthogonalized fea-
tures drawn from the three similarity subspaces have the
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powerful capability to represent the data. Moreover, from these
features, MPCA can select a number of powerful features that
can effectively capture the difference between the samples
from different classes. We employ these selected features to
classify the samples and achieve very desirable classification
results shown in the first two experiments. Actually, if we use
more similarity measurements to produce the similarity sub-
spaces, we can obtain more representative features. Therefore,
we can select more powerful features and achieve better classi-
fication results. In other words, more similarity subspaces may
lead to better classification results. Each similarity subspace
can make a contribution to the classification task. Fig. 9 shows
an example of this case in our experiments.

For the AR and PIE data sets, we randomly ran MPCA
10 times on the subsets that are the same as the ones in the first
two experiments. We can obtain the optimal features achieving
the best classification results on these subsets. Among these
features, we count the number of the features from each
similarity subspace. In Fig. 9(a) and (c), we report the ratio
of the number of features from each subspace to the total
number of the optimal features on each subset. Fig. 9(b) and
(d) show the average ratios on the AR and PIE data sets,
respectively. From Fig. 9, we observe that the optimal features
contain the features from all the three similarity subspaces.
This shows that all of these subspaces make a contribution
to the classification tasks, although they play different roles
in classification. For example, for the AR data set, MPCA3
obtains the highest average ratio of 35%, which shows that
the subspace generated by MPCA3 plays more important role
than two other subspaces.

V. CONCLUSION

In this paper, we investigated the relationship between the
representative and the discriminative vectors of the data, and
modified the PCA algorithm to a novel similarity subspace
learning framework MPCA by borrowing the idea of the graph
embedding learning. MPCA integrates three subspaces based
on the similarity measurements of mutual information, angle
information (cosine distance), and kernel distance through a
novel feature selection scheme. This scheme based on the
weak learning theory can effectively capture sufficient discrim-
inative information. MPCA can achieve desirable classification
and clustering results, as well as have a relatively powerful
capability to represent the data, as demonstrated in Section IV.

Our MPCA framework is very well suited to learn the high-
dimensional data in the case where the scale of training data
set is small. Particularly, if each feature vector or transforma-
tion axis in the similarity subspaces yields low classification
accuracy in a classification algorithm, e.g., the NN classifier,
our proposed algorithm MPCA can significantly improve
the classification performance of the PCA-based algorithm.
The three MPCA models can be applied to both supervised
and unsupervised learning scenarios. Among these models,
MPCAL can also be referred to as mutual information PCA
that is a novel type of PCA-based method.

The proposed method provides an in-depth understanding
of the PCA-based methods, and a new way for modifying

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 25, NO. 8, AUGUST 2014

the traditional PCA method from the viewpoint of graph
embedding learning. The idea of the proposed MPCA can
be applied to the other feature extraction approaches. Our
similarity subspaces can be replaced by other types of sim-
ilarity subspaces. Moreover, we can combine the proposed
three MPCA models and other linear subspace models, such
as LDA, in practice. Our future work is to apply the idea of
MPCA to the other linear subspace approaches.
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