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a b s t r a c t 

In recent years, there has been a growing interest in the study of dictionary learning for face recognition. 

Most of the conventional dictionary learning methods focus only on a single resolution, which ignores 

the variability of resolutions of real-world face images. In order to address the above issue, this paper 

proposes a novel multi-resolution dictionary learning method that provides multiple dictionaries each 

being associated with a resolution. Especially, to enhance the robustness of the model, our method adds 

a relatively strong constraint to keep the similarity of representations obtained using different dictionar- 

ies in the training phase. We compare the proposed method to several state-of-the-art dictionary learning 

methods by applying this method to multi-resolution face recognition. The experimental results demon- 

strate that our method outperforms many recently proposed dictionary learning methods. The MATLAB 

codes of the proposed method will be available at http://www.yongxu.org/lunwen.html . 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Dictionary learning, as a vital branch of sparse representation,

as been widely used in various fields of image processing [1,2] ,

uch as image denoising [3] , super-resolution imaging [4] , image

ecognition [5] and object detection [6] . For face recognition, the

onventional dictionary learning method [7,8] mainly contains two

teps. The first step is the representation learning. Given an image,

 dictionary learning model exploits some or all training images to

epresent this image based on a learned dictionary. And the second

tep is to classify the test samples according to the representation

esults. 

Learning a dictionary from the training set for sparse coding

r feature representation has achieved significant improvement in

mage classification and face recognition. Various dictionary learn-

ng methods have been devised. Due to the difficulty of completely

overing the important components of signal representation (e.g.

ommonality, particularity, and disturbance), Lin et al. [8] pro-

osed a novel robust, discriminative and comprehensive dictionary

earning method (RDCDL). They first trained a robust dictionary

n comprehensive training sample diversities which were ex-

racted or generated from facial variations. Then class-shared,

lass-specific and disturbance dictionary atoms were learned

o extract features from different classes. Finally, discriminative
∗ Corresponding author. 
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egularizations and the representation coefficients were used to

mprove the classification capability of the dictionary. To alleviate

he limitation that most existing dictionary learning methods

nly learn a linear dictionary, Hu et al. [9] proposed a nonlinear

ictionary learning (NDL) method, in which a feed-forward neural

etwork was employed to seek hierarchical feature projection

atrices and a dictionary simultaneously. Then, a class-specific

ictionary was obtained to exploit the discriminative information.

ecently, the joint dictionary learning algorithm has been wildly

sed in super-resolution imaging [4] and multispectral change

etection [10] . Yang et al. [4] sought a sparse representation for

mage patches of the low-resolution input, and then utilized the

oefficients of this representation to generate high-resolution out-

uts. Finally, the jointly trained dictionaries for the low-resolution

nd high-resolution image patches obtained a more compact

epresentation and reduced the computational cost substantially.

u et al. [10] designed a joint dictionary composed of two coupled

ictionaries, which could provide adequate descriptive power for

itemporal multispectral images. Joint dictionary learning which

as the capability to combine low-resolution and high-resolution

eature spaces and mining the inner associations between dictio-

aries of different resolutions, provides the theoretical basis for

ur proposed method. 

Recent years we have witnessed an increase in the use of deep

earning in various research domains especially the field of im-

ge and video analysis. Deep learning has received much atten-

ion in the field of image analysis owing to its outstanding perfor-

ance in extracting discriminative features from samples [11,12] .

https://doi.org/10.1016/j.patcog.2019.04.027
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
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mailto:luoxiaoling@stu.hit.edu.cn
mailto:yongxu@ymail.com
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In this branch, deep learning for face recognition is one of the

most representative works. For example, Sun et al. [13] proposed a

hybrid convolutional network (ConvNet)-Restricted Boltzmann Ma-

chine (RBM) model for face recognition. To learn rich identity simi-

larity information, this model concatenates the features of different

face region pairs extracted by different deep ConvNets. However, it

needs a large-scale training set to obtain enough features. In ad-

dition, because of its complex network structure, it consumes a

significant amount of computing resources to keep running. Com-

pared with the methods based on deep learning, conventional

methods are more suitable for the tasks with small-scale databases

and are more efficient in computation. In this work, we mainly fo-

cus on conventional methods for face recognition. 

Although conventional methods are promising, they still have

some disadvantages. For example, for face recognition, it is difficult

for a conventional dictionary learning method to obtain a reliable

and robust dictionary due to the small-sample-size problem. The

other significant issue is that joint dictionary learning algorithms

can only generate high-resolution face images from low-resolution

face images by super-resolution imaging [4,10] , rather than obtain

the dictionary for multi-resolution face recognition. To address the

above problems, we propose a novel robust multi-resolution dic-

tionary learning method. 

We propose a multi-resolution dictionary learning method,

which uses multi-resolution images to get a robust dictionary. To

demonstrate the robustness of the proposed method, we trained

our model on several multi-resolutions face recognition datasets,

which was constructed by the resolution pyramid method. For each

resolution, we learn one corresponding dictionary, and we concate-

nate them with proper normalization. Besides, we combine the co-

efficient matrix of different dictionaries to form features of differ-

ent resolutions. Experimental results in face recognition tasks show

that our proposed method achieves substantial improvements in

comparison with other dictionary learning methods. 

2. Related works 

In this section, we briefly introduce some related algorithms.

For convenience, we first roughly divide the dictionary learning

algorithms into three types: supervised dictionary learning algo-

rithms, semi-supervised dictionary learning algorithms, and unsu-

pervised dictionary learning algorithms. 

2.1. Supervised dictionary learning algorithms 

Supervised dictionary learning algorithms aim at minimizing

the reconstruction error of training samples based on the con-

straint on labels. As it can make full use of the potential classifi-

cation information in the training samples, it is able to reconstruct

the original data excellently. Mairal et al. [14] added category la-

bels into supervised dictionary learning for extracting the informa-

tion implicit in the data. In order to improve the pattern classifica-

tion performance, the Fisher discrimination criterion was used to

learn a structured dictionary, whose dictionary atoms had corre-

spondence to the class labels [15] . And a Fisher discrimination dic-

tionary learning (FDDL) model based on the Fisher discrimination

criterion was proposed in [16] . Moreover, Wang et al. [17] proposed

a discriminative dictionary learning method for image classifica-

tion and found that global coding classifier (GC) was more effec-

tive when the number of training samples of each class was rela-

tively small, or the learned class-specific dictionaries were small in

size. Zhang et al. [18] proposed the discriminative K-SVD (D-KSVD)

method based on extending K-SVD by appending the classification

error into the objective function. Jiang et al. [19] proposed a la-

bel consistent K-SVD (LC-KSVD), which combined discriminative
parse-code error with the reconstruction error and the classifica-

ion error to form an integral objective function. Cai et al. [20] pro-

osed a support vector guided dictionary learning (SVGDL) model.

ompared with FDDL, SVGDL can automatically allocate suitable

eights to coding vector pairs and adaptively select only a few es-

ential pairs to allocate non-zero weights. 

The supervised dictionary learning method introduces the su-

ervision information of training data into the dictionary learn-

ng process, and the learned dictionary has inherent advantages

n data classification. However, the practical problem is that large-

cale labeled sample data sets are difficult to obtain, which limits

he development of supervised dictionary learning. 

.2. Semi-supervised dictionary learning algorithms 

Compared with labeled data, unlabeled data are more easily

vailable and more numerous. Such advantages have promoted re-

earchers to design semi-supervised dictionary learning algorithms

hat use both unlabeled data and labeled data to generate better

epresentations for classification tasks. As the performance of dic-

ionary learning is mostly limited by the scale of training samples,

hrivastava et al. [21] proposed a discriminative dictionary learning

lgorithm, which exploited both labeled and unlabeled data to ad-

ress the disadvantages of insufficient samples. However, it ignores

he preservation of the local structure, which may affect the clas-

ification accuracy. To adequately address this problem, Behnam

t al. [22] introduced a semi-supervised dictionary learning algo-

ithm with a probabilistic framework, which used the geometric

haracteristics of the marker. In addition, Wang et al. [23] pro-

osed a semi-supervised robust dictionary learning model to au-

omatically optimize the dictionary size and fix the problem of the

ensitivity to noisy and outlier samples. Moreover, Jian and Jung

24] proposed a semi-supervised bi-dictionary learning algorithm

or image classification with smooth representation-based label

ropagation (SRLP). However, a limitation of the semi-supervised

ictionary learning algorithm is its sensitivity to labeled samples. 

.3. Unsupervised dictionary learning algorithms 

Unsupervised dictionary learning algorithm aims at minimiz-

ng the reconstruction error of training samples, and it learns the

ictionary without the class information of training samples. The

ptimization goal of unsupervised dictionary learning algorithms

ainly focuses on the reconstruction of original samples and the

parsity of coding. Making the algorithm generate sparse coding

n the learned dictionary can benefit to the reconstruction of the

riginal signal. One of the most well-known unsupervised dictio-

ary learning algorithms is K-SVD [25] , which updates the dictio-

ary atom by atom until satisfying the sparsity condition. As Wang

t al. [26] thought that locality was more essential than sparsity,

hey proposed a locality-constrained linear coding algorithm (LLC)

y using a locality constraint. This method selected similar ba-

is of local image descriptors from sparse representations and ob-

ained a linear combination weight of these basis to reconstruct

ach descriptor. Moreover, Jenatton et al. [27] designed an algo-

ithm to obtain dictionaries embedded in a hierarchy by using a

ree-structured sparsity. According to [28] , obtaining multiple dic-

ionaries is a feasible way to improve the performance of a clas-

ification task. We see that even a simple joint double dictionary

earning procedure can also achieve impressive performance [29] . 

Our proposed method is close to joint dictionary learning algo-

ithms [4,10] , with some differences: on the one hand, as an unsu-

ervised dictionary learning algorithm, it aims at minimizing the

econstruction error of multi-resolution training samples; on the

ther hand, it utilizes more than two dictionaries to represent and
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X

lassify the multi-resolution face images, which directly solve the

roblem of multi-resolution face images recognition. 

. Proposed method 

A basic problem in face recognition is to use a model learned

rom training samples to correctly determine the class of a test

ample. We implement this process with a multi-resolution dic-

ionary learning model. Assume that we have the training set Y =
 Y 1 , . . . , Y i , . . . , Y k ] with k resolutions, where Y i represents the ith

ubset of Y. Y i contains N training samples, in which all images

ave the same resolution. k is the number of resolutions. Specif-

cally, Y i = [ y 1 
i 
, . . . , y s 

i 
, . . . , y N 

i 
] ∈ R 

n ×N is a matrix, and y s 
i 

is corre-

ponding to the training sample s under the ith resolution. Let D =
 D 1 , . . . , D k ] be the dictionary matrix of k resolutions, and D i =
 d 1 

i 
, . . . , d m 

i 
] ∈ R 

n ×m . X = [ x 1 , . . . , x s , . . . , x N ] ∈ R 

m ×N is the coding

oefficient matrix, where x s represents the coefficient of the sth

ample. In addition, we assume the training set of each resolution

ontains all categories. 

.1. Motivations and model of multi-resolution dictionary learning 

Intuitively, images captured by different cameras vary in reso-

utions. Therefore, when the resolution of the image is uncertain,

e are encouraged to train multiple resolution images to ensure

hat this algorithm is capable of adapting various resolutions. We

esign a robust and flexible dictionary learning model to effec-

ively solve the multi-resolution face image recognition problem.

his model produces multiple dictionaries from multiple resolu-

ion training samples, and it enforces that these dictionaries are

ssociated with the same coefficient matrix. All sub training sets

ave the same size and structure. Here, the same structure means

hat the sth ( s = 1 , . . . , N) item in the training set for each reso-

ution has the same label. Moreover, we expect to learn the mul-

iple dictionaries simultaneously, such that the representations of

ll resolutions can be integrated into a framework to promote the

earning of dictionaries. To this end, we propose the following dic-

ionary learning model, 

 

D 1 , . . . , D k , X 〉 = arg min 

D 1 , ... , D k ,X 
‖ 

Y 1 − D 1 X ‖ 

2 
F + · · · + ‖ 

Y k − D k X ‖ 

2 
F 

+ β ‖ 

X ‖ 

2 
F (1) 

here the regularization parameter β can be tuned using a val-

dation set. The β ‖ X‖ 2 
F 

regularization is designed to smooth the

ecision boundary and alleviate the problem of local minimum
Fig. 1. The basic framework o
nd overfitting. Moreover, β ‖ X‖ 2 
F 

is helpful for changing the al-

orithm framework from ill-condition to well-condition when β is

ot equal to 0. 

Besides, we minimize the reconstruction error between the

raining set and the reconstructed set to ensure that the algorithm

s adaptive to multi-resolution training samples. Thus, we can ob-

ain a proper representation for each sample in the training set,

nd a more robust dictionary for each resolution. Particularly, the

btained dictionaries are also suitable for representing images with

nknown resolutions [30] . 

Our solution mainly focuses on the minimization of the recon-

truction error, and we minimize the expression in Eq. (1) itera-

ively. First, we fix D 1 , . . . , D k and calculate the best coefficient ma-

rix X . Then, we update the dictionaries D 1 , . . . , D k respectively, by

xing coefficient matrix X . For example, when we update D 1 ac-

ording to the objective function we will fix D 2 , . . . , D k and X . By

ptimizing each variable iteratively, we can obtain the optimal so-

ution on the face recognition task. The framework of the method

s illustrated in Fig. 1 . 

In this paper, we use resolution pyramid methods to gener-

te multi-resolution training samples and apply them to the pro-

osed algorithm. In the following section, we describe the solu-

ion for the objective function in detail. During training, X will

e computed first by Eq. (2) using initialized D 1 , . . . , D k , and then

 1 , . . . , D k are updated using Eq. (3) . X and D 1 , . . . , D k are updated

lternately in the above way until the end condition is satisfied. 

.2. Solution of multi-resolution dictionary learning model 

Generally, there are two different ways to learn and optimize

he dictionary. On the one hand, like K-SVD, the algorithm updates

ictionary atom by atom. On the other hand, in some algorithms,

uch as MOD [31] , the learned dictionary is updated as a whole.

n our algorithm, we update the whole dictionary at once. When

e update one variable, we fix the others. As a result, the objec-

ive function of our proposed algorithm framework has an approx-

mately optimal solution. We present the procedure to obtain the

olution of objective function as follows. 

We should first initialize the dictionaries D 1 , . . . , D i , . . . , D k . In

his paper, we initialize dictionaries one by one. For the training

amples with the ith resolution, we employ PCA for each class

nd then concatenate all the outputs (i.e., dictionary atoms learned

rom each class) to form the initialized D i . We update coefficient

atrix X using Eq. (2) , if we fix D 1 , . . . , D k . 

 = 

(
D 

T 
1 D 1 + . . . + D 

T 
k D k + βI 

)−1 (
D 

T 
1 Y 1 + . . . + D 

T 
k Y k 

)
(2) 
f the proposed method. 
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Algorithm 1 

Algorithm of the proposed method. 

Task: Find the best dictionaries to represent the data samples y s 
i 

( i = 1 , . . . , k, s = 1 , . . . , N ) , b y solving 

〈 D 1 , . . . , D k , X 〉 = arg min 
D 1 , ... , D k , X 

‖ Y 1 − D 1 X ‖ 2 F + · · · + ‖ Y k − D k X ‖ 2 F + β‖ X‖ 2 F . 

Input: Y 1 , . . . , Y k , β
Initialization: Initialize the dictionaries D 1 , . . . , D k for multi-resolution training sets using PCA. 

Do until convergence: 

Update coefficient matrix X : 

X = ( D T 1 D 1 + . . . + D T 
k 

D k + βI ) −1 ( D T 1 Y 1 + . . . + D T 
k 

Y k ) . 

Update dictionaries: For dictionary i , update it by 

D i = ( Y i X 
T ) ( X X T ) −1 . 

End do 

Output: D 1 , . . . , D k , X 
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β is a positive constant much less than 1 even close to zero,

and I is an identity matrix. 

We can obtain dictionaries D 1 , . . . , D i , . . . , D k , if we fix coef-

ficient matrix X . When updating D i , all the other dictionaries are

fixed. Then the formula of optimizing D i can be written as: 

D i = 

(
Y i X 

T 
)(

X X 

T 
)−1 

(3)

From these two steps above, the dictionaries D 1 , . . . , D k and co-

efficient matrix X can be updated alternately, and we should repeat

these steps until convergence. Finally, we will obtain the optimal

D 1 , . . . , D k , and X . Algorithm 1 gives a more detailed description of

these steps. 

3.3. The classification procedure 

When D 1 , . . . , D k are available, a testing sample can be classi-

fied via coding it over these dictionaries. Based on the employed

dictionaries, the difference of coefficients can be utilized for the

classification task. We can find coefficients for a given testing sam-

ple y by solving the following problem. 

x test _ 1 = 

(
D 

T 
1 D 1 

)−1 
D 

T 
1 y, . . . , x test _ k = 

(
D 

T 
k D k 

)−1 
D 

T 
k y. (4)

The difference between y and the sth training sample is defin-

ing by 

dis t s = ‖ 

x test _ 1 − x s ‖ 

+ · · · + ‖ 

x test _ k − x s ‖ 

(5)

where x test _ 1 , . . . , x test _ k denote the coefficients of y and they are

represented by dictionaries D 1 , . . . , D k respectively. In addition,

x s denotes the coefficient of the sth training sample on multi-

resolution dictionary, which is the sth column of X . 

In the classification task, the labels of all training examples are

known. If the difference between y and the rth training sample is

smallest, the rth training sample and y are considered to belong to

the same category. Based on Eq. (5) , the classification function is:

R = arg min 

s 
{ dis t s } , s = 1 . . . N (6)

and then the label of the Rth training sample is assigned to y . 

4. Experimental results and analysis 

In order to well show the advantage of our proposed method,

we compare it with conventional methods like K-SVD [25] , D-KSVD

[18] , LC-KSVD [19] , SRC [32] , and DLSPC [17] . To further demon-

strate the effectiveness of multi-dictionary learning, we also com-

pare it with the methods based on deep learning. We evaluate our

model by virtue of several public face recognition datasets, includ-

ing the Extended Yale B face database [33] , the ORL face database

[34] , the AR face database [35] , the CMU PIE face database (PIE)

[36] and the Labeled Faces in the Wild database (LFW) [37] . 
.1. Experimental setting 

In this section, we give the experimental details. First of all, to

rain the multi-resolution dictionary learning model, we construct

everal multi-resolution datasets. Specifically, we adopt the resolu-

ion pyramid method to reduce the resolution of the original sam-

les. For instance, before training model by using the Extended

ale B face database (64 × 64 pixels), we first divide the whole

ataset into a training set and a test set in the 1:1 ratio, and then

e convert them to multi-resolution datasets respectively. For the

raining set, we reduce the resolution of all the images in the orig-

nal training set to 32 × 32 pixels and 16 × 16 pixels respectively.

or the test set, we split the test samples of each class into three

qual pieces, and then we convert samples of two of them into

2 × 32 pixels and 16 × 16 pixels. In other words, the test samples

ave three different resolutions. 

Similar to the converting process on the Extended Yale B face

atabase, we build multi-resolution datasets on the other bench-

ark datasets. In this paper, the count of resolution types is 3,

nd the parameter β is set to 0.0 0 01. PCA is using to initialize the

ultiple dictionaries in our method. We train distinct dictionaries

or each resolution and integrate them through the learned coeffi-

ients matrix X . Therefore, the model can predict the category of

est sample straightly, without considering the resolution of it. Be-

ides, we repeatedly train our proposed algorithm and the bench-

ark methods 10 times for each database and then calculate the

verage recognition rates and the average computational time for

lassifying a test sample. 

.2. Compared with conventional methods 

.2.1. Experimental results on the Extended Yale B face database 

The Extended Yale B face database is captured from 38 indi-

iduals under various lighting conditions, contains 2414 front face

mages. The resolutions of samples in the processed Extended Yale

 face database are 64 × 64, 32 × 32 and 16 × 16. Examples with

ifferent resolutions are shown in Fig. 2 . For each person, we ran-

omly select 32 images to form the training set and use the re-

aining samples as the test set. Empirical results and average test-

ng time are shown in Table 1 . 

Besides, to further verify the advantage of the proposed

ethod, we compare it with the baseline methods with a various

umber of atoms (76, 114, …, 266). Experimental results are shown

n Fig. 3 , and it is obvious to see that our method outperforms the

thers. 

.2.2. Experimental results on the ORL face database 

The ORL dataset is captured from 40 persons, and each per-

on provides ten face images. Some images are taken at different

imes, and some are different with varying lighting, facial expres-

ions (opening or closing eyes, smiling or not smiling), and facial

etails (glasses or no glasses). The resolution of original images is
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Fig. 2. Sample images from the Extended Yale B face database. (a) Sample images with size of 64 × 64 pixels; (b) Sample images with size of 32 × 32 pixels; (c) Sample 

images with size of 16 × 16 pixels. 

Fig. 3. The average recognition rates with different numbers of atoms on the Extended Yale B face database. 

Table 1 

The average recognition rates and computational time 

for classifying a test sample of different methods on 

the Extended Yale B face database. 

Algorithm Recognition rates (%) Time(s) 

KSVD [25] 72.69 ± 0.67 1e-5 

D-KSVD [18] 74.88 ± 1.60 7e-6 

LC-KSVD1 [19] 74.95 ± 1.44 1.4e-5 

LC-KSVD2 [19] 76.70 ± 1.64 1.5e-5 

DLSPC(GC) [17] 77.59 ± 0.78 0.048 

SRC [32] 81.85 ± 1.12 2.590 

Our method 88.58 ± 1.53 0.045 

6  

c  

e  

r  

r  

t

 

K  

(  

F

4

 

d  

s  

Table 2 

The average recognition rates and computational time 

for classifying a test sample of different methods on 

the ORL face database. 

Algorithm Recognition rates (%) Time(s) 

KSVD [25] 89.15 ± 2.14 1e-5 

D-KSVD [18] 87.45 ± 2.73 1.6e-5 

LC-KSVD1 [19] 87.45 ± 1.83 8e-6 

LC-KSVD2 [19] 88.85 ± 2.61 2.4e-5 

DLSPC(GC) [17] 84.60 ± 2.98 0.013 

SRC [32] 90.01 ± 1.96 0.073 

Our method 92.15 ± 1.51 0.020 
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s  
4 × 64 pixels, and we employ the resolution pyramid method to

onvert them into 32 × 32 and 16 × 16 images. Fig. 4 shows differ-

nt resolution images converted from the ORL face database. We

andomly select 5 face images of each person for training and the

est of them for testing. The average recognition rates and compu-

ational time of different methods are presented in Table 2 . 

We also compare the average recognition rates of KSVD, D-

 SVD, LC-K SVD, DLSPC, and SRC with different numbers of atoms

80, 120, 160, 200). The experimental results are presented in

ig. 5 . 

.2.3. Experimental results on the PIE face database 

In this section, we evaluate our method on the PIE face

atabase. The PIE face database contains the face images of 68 per-

ons, and it captures each person’s facial images in 13 different
oses, 43 different illumination conditions and 4 different facial

xpressions. We choose face images from pose 05, which including

8 individuals and total 3332 images. Original images are normal-

zed to the size of 64 × 64 pixels, and then they are converted into

2 × 32 pixels and 16 × 16 pixels. We show the samples of different

esolutions in Fig. 6 . 

We randomly select 25 images of each person for training and

he remaining samples for testing. The average recognition rates

nd the computational time are shown in Table 3 . Experimental

esults of different recognition methods on PIE face database with

ifferent numbers of atoms (408, 476, …, 748) are shown in Fig. 7 .

.2.4. Experimental results on the AR face database 

The AR face database is composed of face images of 126 per-

ons including 70 males and 56 Females, and each person has
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Fig. 4. Sample images from the ORL face database. (a) Sample images with size of 64 × 64 pixels; (b) Sample images with size of 32 × 32 pixels; (c) Sample images with size 

of 16 × 16 pixels. 

Fig. 5. The average recognition rates with different numbers of atoms on the ORL face database. 

Fig. 6. Sample images from the PIE face database. (a) Sample images with size of 64 × 64 pixels; (b) Sample images with size of 32 × 32 pixels; (c) Sample images with size 

of 16 × 16 pixels. 

Table 3 

The average recognition rates and computational time 

for classifying a test sample of different methods on 

the PIE face database. 

Algorithm Recognition rates (%) Time(s) 

KSVD [25] 67.03 ± 1.02 1e-5 

D-KSVD [18] 60.52 ± 1.07 1.5e-5 

LC-KSVD1 [19] 67.02 ± 0.90 2.4e-6 

LC-KSVD2 [19] 67.74 ± 0.85 1.9e-5 

DLSPC(GC) [17] 63.31 ± 1.67 0.031 

SRC [32] 70.66 ± 1.15 2.086 

Our method 95.81 ± 0.50 0.027 

2  

l  

t  

g  

t  

e  

r  

5  

d  

F  

A

6 face images. These images vary in illumination conditions (left

ight on, right light on or all side lights on), facial expression (neu-

ral expression, smile, anger or scream) and dresses (wearing sun-

lasses or wearing a scarf). In our experiment, we use a subset of

he database consisting of 120 persons and total 3120 images. For

ach person, we randomly select 13 images for training and the

emaining ones for testing. Each original face image is resized to

0 × 40 pixels, and then use the resolution pyramid method to re-

uce the resolution of the images to 25 × 20 and 12 × 10 pixels.

ig. 8 show these three types of resolution images based on the
R face database. 
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Fig. 7. The average recognition rates with different numbers of atoms on the PIE face database. 

Fig. 8. Sample images from the AR face database. (a) Sample images with size of 

50 × 40 pixels; (b) Sample images with size of 25 × 20 pixels; (c) Sample images 

with size of 12 × 10 pixels. 

Table 4 

The average recognition rates and computational time 

for classifying a test sample of different methods on 

the AR face database. 

Algorithm Recognition rates (%) Time(s) 

KSVD [25] 69.99 ± 1.08 3e-5 

D-KSVD [18] 65.17 ± 1.11 1e-5 

LC-KSVD1 [19] 74.58 ± 1.40 2.2e-5 

LC-KSVD2 [19] 75.30 ± 1.24 2.1e-5 

DLSPC(GC) [17] 68.38 ± 1.15 0.013 

SRC [32] 78.18 ± 1.45 0.802 

Our method 82.19 ± 1.54 0.031 
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Table 5 

The average recognition rates and computational time 

for classifying a test sample of different methods on 

the LFW face database. 

Algorithm Recognition rates (%) Time(s) 

KSVD [25] 11.08 ± 1.43 1e-5 

D-KSVD [18] 7.70 ± 0.98 1.1e-5 

LC-KSVD1 [19] 9.86 ± 0.88 1.8e-5 

LC-KSVD2 [19] 11.54 ± 1.19 1.9e-5 

DLSPC(GC) [17] 9.47 ± 0.61 0.072 

SRC [32] 14.79 ± 1.21 0.158 

Our method 16.63 ± 0.63 0.062 
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R  
While training, each dictionary is trained with shared param-

ters but different size. And we compare the average recognition

ates on different numbers of dictionary atoms in a range of (240,

60, …, 840). Empirical results and recognizing time for one test

ample are summarized in Table 4 . 

.2.5. Experimental results on the LFW face database 

The LFW database contains more than 13,0 0 0 images of faces

ollected in an unconstrained environment, and they are labeled

ith the names of different individuals. LFW is more challenging

han the above databases since it includes various uncontrolled

ariations of pose and misalignment, etc. Following the experiment

etting in [38] , we use a cropped version (LFW crop) of a subset in

he LFW database, which contains 158 subjects with 10 images per

erson. Each face image only retains the center portion of the im-

ge and almost all of the background is omitted. The training set

ollects 5 images from the face images of each subject randomly
nd the test set contains the remaining ones. We resize each orig-

nal face image to 32 × 32 pixels and then convert it into 16 × 16

nd 8 × 8 pixels via the resolution pyramid method. Fig. 10 show

he images generated from LFW face database with three types of

esolutions. 

Similar to the experiments in the above databases, we trained

he model on the different number of atoms in a range of (158,

16, …, 790). Experimental results on the LFW dataset are shown

n Table 5 . Table 5 indicates that our method outperforms the

 SVD, D-K SVD, LC-K SVD, DLSPC, and SRC under the condition that

he computational time is within the acceptable range. 

.3. Compared with deep learning methods 

Recently, due to the competitive ability of representation and

eature extraction, Convolutional Neural Networks (CNNs) have

een widely used in many image processing tasks, especially in

ace recognition [12,13,39] . In this section, we employ several CNN

ased models (AlexNet [40] , VGG [41] , ResNet [42] ) for compari-

on. As we all know, the training process of deep learning meth-

ds requires large-scale dataset. However, the scale of our bench-

ark databases is small. Therefore, to objectively compare the

erformance of deep learning methods with our proposed method,

e trained them in two ways: without pre-training and with pre-

raining. Experimental results are shown in Table 6 . 

From the experimental results, we can see that deep learning

ased methods pre-trained on ImageNet [43] achieve better per-

ormance than methods without pre-training. The reason is that

t is difficult for deep learning methods to obtain optimal param-

ter in the small-scale dataset. In addition, although pre-trained

esNet18 outperforms the proposed method on the Extended Yale
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Table 6 

The average recognition rates of different deep learning methods on the Extended Yale B, ORL, 

PIE, AR, and LFW face database. 

Algorithm Extended Yale B ORL PIE AR LFW 

AlexNet 7.85% 2.50% 6.74% 5.51% 0.63% 

VGG16 78.55% 5.50% 66.73% 77.12% 1.90% 

ResNet18 86.48% 84.00% 69.00% 86.60% 15.19% 

AlexNet with pre-training 51.84% 64.50% 46.08% 53.46% 6.84% 

VGG16 with pre-training 82.97% 79.50% 69.00% 86.35% 8.61% 

ResNet18 with pre-training 92.07% 92.00% 71.81% 90.38% 19.49% 

Our method 88.58% 92.15% 95.81% 82.192% 16.63% 

Fig. 9. The average recognition rates with different numbers of atoms on the AR face database. 

Fig. 10. Sample images from the LFW face database. (a) Sample images with size 

of 32 × 32 pixels; (b) Sample images with size of 16 × 16 pixels; (c) Sample images 

with size of 8 × 8 pixels. 
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B, AR, and LFW databases, our proposed method achieves better

results on the ORL and PIE databases. And it should be mentioned

that our proposed method is more flexible and needs less comput-

ing resource. 

4.4. Experimental analysis 

From the above experiments, we have the following observa-

tions. 

1) Our proposed method is suitable for face recognition tasks. In

spites of the data sets we used contain different illumination

conditions, facial expressions, poses and dresses, our method

can still achieve satisfactory performance. 

2) When we use the same training samples and test samples on

different methods, Tables 1–5 and Figs. 3, 5, 7, 9 , and 11 show

that the proposed method is superior to K-SVD, D-KSVD, LC-

KSVD, DLSPC, SRC and achieves a better performance in almost
all cases. It demonstrates that dictionaries obtained from the

proposed method are stronger and more robust than the dic-

tionaries of other state-of-art approaches. 

3) From Figs. 3, 5, 7, 9 , and 11 , we can see that our pro-

posed method always achieves a higher average recognition

rate despite the number of dictionary atom. It indicates that

the proposed method has better ability to reconstruct multi-

resolution images, even if the obtained dictionaries have a

small size. Therefore, the proposed method is able to effi-

ciently reduce the computational data redundancy and running

time. 

4) The proposed method achieves better performance than KSVD

and D-KSVD. It mainly because these atom-by-atomic optimiza-

tion methods do not consider the overall dictionary optimiza-

tion, and their obtained solutions are only the local optimal so-

lutions in a certain sense. Our proposed method updates the

dictionary as a whole, which can alleviate the above problems

to some extent. 

5) Tables 1–5 show that, within the acceptable range of computa-

tional time, our proposed method requires more computational

time than KSVD, D-KSVD, and LC-KSVD, but our recognition ac-

curacy is far better than theirs. SRC and DLSPC always have

higher accuracy than KSVD, D-KSVD, and LC-KSVD, but our pro-

posed method takes shorter computational time than SRC and

DLSPC. Overall, our proposed method has the best comprehen-

sive performance among the above algorithms. 

6) From Table 6 , we can see that the pre-trained deep learning

methods usually outperform our method. In this sense, deep

learning methods have advantages in accuracy. However, our

method is computationally more efficient than deep learning

methods. Moreover, our method is suitable for both small-scale
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Fig. 11. The average recognition rates with different numbers of atoms on the LFW face database. 
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and large-scale datasets, but deep learning methods usually de-

pend on large-scale datasets to achieve good and stable perfor-

mance. 

. Conclusion 

In this paper, we propose a novel multi-resolution dictionary

earning method for face recognition. As far as we know, no simi-

ar algorithm has been proposed for dictionary learning. It is well

nown that when images are captured by different cameras, the

btained images usually have different resolutions. Moreover, the

esolution of the images used for training of dictionary learning

irectly influence the performance. However, previous dictionary

earning algorithms always exploit images of the same resolution

or training. As a consequence, the obtained dictionary and fea-

ures of the samples is not very suitable for the real case where the

amples have different resolutions. Compared to previous dictio-

ary learning algorithms, our proposed method not only provides

ictionaries that associated with each resolution, but also adds a

elatively strong constraint to keep the similarity of the represen-

ations obtained using different dictionaries in the training phase.

herefore, the learned dictionaries of the proposed algorithm are

obust to different resolutions and not sensitive to noise. Though

his work is focused on only dictionary learning, the proposed idea

nd scheme of multi-resolution learning might be also feasible for

ther kinds of methods. In the future, we will explore the issue to

xtend them to other methods. 
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