
Pattern Recognition Letters 128 (2019) 131–136 

Contents lists available at ScienceDirect 

Pattern Recognition Letters 

journal homepage: www.elsevier.com/locate/patrec 

Multiple vector representations of images and robust dictionary 

learning 

Yong Xu 

a , b , ∗, Zhengming Li c , Chunwei Tian 

a , Jian Yang 

d 

a Bio-Computing Research Center, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China 
b Peng Cheng Laboratory, Shenzhen 518055,China 
c Industrial Training Center, Guangdong Polytechnic Normal University, Guangzhou 510665, China 
d School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China 

a r t i c l e i n f o 

Article history: 

Received 22 June 2019 

Revised 20 August 2019 

Accepted 21 August 2019 

Available online 22 August 2019 

Keywords: 

Multiple vector representations 

Dictionary learning 

Image recognition 

a b s t r a c t 

In this paper novel multiple vector representations of images are proposed and a robust dictionary learn- 

ing method is designed. The multiple vector representation scheme enables an image to be observed with 

multiple views. Moreover, multiple vector representations are directly generated from the original image 

via a simple and efficient way whereas multi-view data usually have a high acquiring cost. The proposed 

method applies the same dictionary learning algorithm to the multiple vector representations and de- 

signs a very reasonable weighted logarithmic sum scheme to integrate classification scores of all vector 

representations. Main merits of this work are in the following points. First, it offers a quite novel view- 

point to take insight into representation of objects. It for the first time reveals that rows and columns of 

images can be viewed as two different sequences and pixel arrangements in terms of rows and columns 

of the image allow the object to be observed with two different angles of view. Second, it shows that 

when conventional dictionary learning algorithms are combined with the proposed multiple vector rep- 

resentations and weighted logarithmic sum scheme, very robust and accurate classification results can be 

obtained. This also partially means that diversity of vector representations of the image can be further 

consolidated by matrix decomposition in dictionary learning, so the resultant complementary informa- 

tion can be better exploited. Third, differing from conventional research routines, our study tells us that 

to fully dig and exploit possible representation diversity might be a better way to lead to potential various 

appearance and high classification accuracy of the image. The code of the proposed method is accessible 

at http://www.yongxu.org/lunwen.html . 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Dictionary learning mainly aims at obtaining reliable features

nd brief presentations of samples [5,9,32] . After getting dictio-

aries and features (also called presentation coefficients) from the

riginal samples, we can exploit them for classification, image pro-

essing, retrieval and searing tasks etc [4,21] . Dictionary learning al-

orithms can be categorized into several kinds, such as supervised

nd unsupervised dictionary learning [33] , discriminative and lo-

ality constrained dictionary learning [14,17,40] . For some applica-

ions, it is important to make the dictionary have special structure

r be a modular dictionary [15,16,39] . 

Robust dictionary learning is of significance [24,29,30] . Robust-

ess not only means that the obtained dictionary and features are
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ery effective to resist noise and outliers, but also the algorithm

an bring satisfactory recognition results for pattern classification

asks. For face recognition, a widely studied image classification

roblem, typical examples of noise also include variations and dif-

erence of face images of the same individual caused by changeable

lluminations, facial expressions and poses. To exploit proper con-

traints seems to be a feasible strategy to overcome noise and out-

iers [13,18] . Labels related and atoms associated constraints have

een used for this purpose [17] . 

When applied to image data, the dictionary learning algorithm

hould first transform each image into a vector. Actually, many

ther methods also need to transform each image into a vector

hen dealing with images [12,37] . It is obvious that there may be

ifferent ways to perform the transform. For example, we can con-

atenate the first to last rows in sequence of an image matrix to

ttain a vector. Alternatively, we can concatenate the first to last

olumns of an image matrix to attain another vector. Moreover, for

ictionary learning, because of consequent matrix calculation, even

https://doi.org/10.1016/j.patrec.2019.08.022
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Fig. 1. Flowchart of the proposed method. 

 

 

 

 

 

 

 

 

 

S  

 

 

 

 

 

S  

 

 

 

S  

 

 

 

 

2

 

F  

t  

s  

f

a  

q  

s

 

d  

f  

w  

i  

s  

s  
if the concatenating result of the last to first rows of an image ma-

trix is different from the concatenating result of the first to last

rows. 

Most of attentions of researchers are paid on seeking good al-

gorithms including representation algorithms and classification al-

gorithms. On the other hand, under the condition of a fixed algo-

rithm, to best exert and exploit the original data to achieve the

best performance is somewhat ignored. For image data, potential

multiple representations directly from raw data of course can pro-

vide different observations of a sample. When the same dictionary

learning algorithm is applied to them, it is quite possible to obtain

better results owing to their complementarity. Multiple represen-

tations are partially similar with the multiple views [8,10,42] , but

only little calculation cost needs to be consumed when multiple

representations directly from raw data are produced. 

In recent years, we have recognized that potential multiple

samples of an original sample are very useful for computer vi-

sion and classification tasks. Typical examples of potential multiple

samples include virtual face samples and synthesized face samples

[27,28,31] . They can help to improve the accuracy of face detection

and the performance of face recognition. Many virtual and syn-

thesized face samples seem to like true faces, though they can be

obtained via simple schemes. For instance, symmetry face images

can possess the symmetrical structure of true faces [38] . Of course,

elaborated algorithms can also be exploited to produce virtual or

synthesized face samples [36] . Both potential multiple samples and

multiple representations can offer more appearance presentations

of raw data. However, they are different because potential multi-

ple samples mean that alternative samples are generated from an

original sample but multiple representations just are arrangement

results of entries of an original sample. 

As we know, for deformable objects, potential multiple samples

are absolutely important, because they provide possible variations

of the original sample. Especially, under the condition that only

few original samples are available for a deformable object, poten-

tial multiple samples will be very helpful for improving the accu-

racy of classification, searching and retrieval. Compared with mul-

tiple samples, multiple representations are easier to produce and

no any algorithm and trick are needed. 

For dictionary learning on images, when the algorithm oper-

ates the data matrix consisting of sample vectors, variety of dif-

ferent arrangement results of an original sample is indeed further

increased. In this sense, we can increase variety of data in a two-

fold way. Firstly, multiple representations generated from the orig-

inal image sample allow an original sample to have different rep-

resentations. Secondly, base on the matrix decomposition result in

dictionary learning, reconstructions of multiple representations of

an image sample might have greater difference than that of the

original multiple representations. Thus, dictionary learning further

enhances the variety of data, so the simultaneous use of the dictio-

nary learning algorithm and multiple representations is beneficial

to correct classification. This point is main motivation of this work.

In this paper, we propose a novel dictionary learning algorithm

for images based on potential multiple representations of images.

In Section 2 , we present the proposed method. In Section 3 , we

show rationales of the proposed method. Section 4 describes the

experimental results. Section 5 offers a brief conclusion. 

2. Proposed method 

2.1. Main steps of the proposed method 

In this section, we first present main steps of the proposed

method as follows. 
Step 1. Multiple representations in the form of vectors are directly

generated from original images. In particular, suppose that

there are t kinds of vector representations of original im-

ages. Each kind of vector representations of original images

is generated using a certain transform scheme. Though we

just set t = 4 in Section 2.2 , it has more possible values and

there are other ways to obtain multiple representations. For

example, converting an original image into a new image

pixel by pixel is also a feasible approach to obtain alter-

native representations [33,35] . 

tep 2. The same dictionary learning algorithm is applied to each

kind of vector representations of original images. In other

words, since there are t kinds of vector representations of

original images, then we have t kinds of training samples

and test samples. As a result, t kinds of features of these

training samples and test samples are generated from the

same dictionary learning algorithm. 

tep 3. The same classification algorithm is respectively used for

the t kinds of features of these training samples and test

samples. And for each kind of features, classification scores

of all test samples with respect to different classes are ob-

tained. 

tep 4. For a test sample, the proposed sum fusion scheme is em-

ployed to add classification scores of this test sample with

respect to the same class. The sum result is referred to as

final score of the test sample with respect to this class. Fi-

nally, the test sample is classified into the class with the

minimum final score. 

The flowchart of the proposed method is shown in Fig. 1 . 

.2. Details of the proposed method 

We provide details of the proposed method in this subsection.

irst of all, for the r − th kind of samples, we denote the i − th

raining sample in the form of vector by y i r and denote the test

ample in the form of vector by p r . Both y i r and p r are generated

rom image matrices. Moreover, for the r − th kind, features of y i r 
nd p r obtained using the dictionary learning algorithm are x i r and

 r , respectively. The dictionary corresponding to the r − th kind of

amples is expressed as D r . 

The following texts interpret Step 1. Let image matrices to pro-

uce y i r and p r be Y i r and P r are respectively. y i r and p r produced in

our ways. Thus, there are four kinds of samples in total. The first

ay respectively concatenates the first to last rows in sequence of

mage matrices Y i r and P r to obtain y i r and p r . The second way re-

pectively concatenates the last to first rows in sequence of the

ame image matrices to obtain y i r and p r . The third way respec-
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ively concatenates the first to last columns in sequence of the

ame image matrices to obtain y i r and p r . The fourth way respec-

ively concatenate the last to first columns in sequence of the same

mage matrices to obtain y i r and p r . 

In Step 3, the scores are obtained using the classification algo-

ithm in the following way. Let label matrix of the training sam-

les be L . The j − th row, i.e. row vector L j of L , represents the

lass label of the j − th training sample. If the j − th training sam-

le belongs to the k − th class, then only the k − th entry of L j 
s 1 and all other entries are zeroes. For a kind of samples, fea-

ures of all the samples form matrix X . Suppose that matrix W can

pproximately transform X into L , then we have model XW = L .

e require that W has a minimal norm, so we have a solution of

 = ( X T X + γ I ) −1 X T L ,where γ is a small positive constant. For test

ample q r , we calculate its desired label via l r = q r W . Then we de-

ote the score of the test sample with respect to the g − th class

y d 
g 
r = || l r − label g || . label g is the class label of the g − th class, in

hich only the g − th entry is 1 and all other entries are zero. 

In Step 4, the formula of the sum fusion scheme is scor e g =
 k 
r=1 w r log(d 

g 
r ) . log(d 

g 
r ) denotes the natural logarithm of d 

g 
r . If h =

rg min 

g 
scor e g , then the test sample is classified to the h − th class.

 r is calculated as follows. We sort d 1 r ... d C r in the ascending order

nd write down the sorting result as e 1 r ... e C r , then w r is defined as

 

1 
r - e 2 r . 

. Rationale of the proposed method 

The proposed method finds a way to fully exploit representa-

ion diversity of original data for dictionary learning, whereas al-

ost all other dictionary learning methods just try the best to ex-

rt performance of the method itself based on single representa-

ion of original data. 

Our main motivation is that because the appearance of an ob-

ect is reflected by data, different data indeed provide different ap-

earances for us. When image matrices are transformed into vec-

ors, different transform ways indeed lead to different vector rep-

esentations. In other words, one image will produce multiple rep-

esentations for the object, and these presentations can be under-

tood as different observations of the same object. In this sense, si-

ultaneous use of these multiple representations allows informa-

ion of the object to be better exploited. 

The matrix decomposition implemented by the dictionary

earning algorithm further enforces difference of multiple rep-

esentations of the object. Specifically, since a dictionary learn-

ng algorithm decomposes sample matrix P into dictionary ma-

rix D and feature matrix X and the multiplication result of D

nd X approaches P , the difference in different D and X usu-

lly is greater than the difference in different P . Intuitively,

| Y || ≈ || DX || ≤ || D ||| · | X || partially implies that after matrix decom-

osition the data may have greater range of norm, which means

reater difference in data. 

The proposed multiple vector representations are partly simi-

ar with multi-view data, as both of them enables different aspects
Table 1 

Average accuracy(%) on the Yale B face database. 

Number of atoms 38 76 114 152

KSVD 55.2 68.0 75.1 80.

Improvement to KSVD 58.1 72.4 80.1 84.

DSVD 52.4 68.3 76.4 80.

Improvement to DSVD 54.1 72.9 81.5 85.

LC-KSVD 55.3 69.3 77.9 81.

Improvement to LC-KSVD 55.4 72.9 80.5 83.

FDDL 45.7 70.2 78.5 83.

Improvement to FDDL 50.0 71.6 80.9 85.
f an individual to be observed. However, multi-view data need

igher cost of data collection, but multiple vector representations

o not and are directly obtained from original images. From an-

ther viewpoint, if we review different rows of an image matrix

uccessively comes in terms of time, then we can concatenate all

ows to form a vector representation. Alternatively, if we review

ifferent columns of an image matrix successively comes, then we

an concatenate all columns to form another vector representation.

hese two vector representations are not only different, but also

ave respective physical meaning in representing the image. 

The proposed sum fusion scheme is reasonable owing to the

ollowing factors. First, to take the result of the second minimum

f scores minus the smallest score as the weight is proper. The

core in this paper means dissimilarity. Since we exploit the small-

st score to determine the classification label of a test sample. the

maller, the smallest score the greater, the probability of the clas-

ification decision being correct. Moreover, if the second minimum

f scores is much greater than the smallest score, the classification

ecision also has a high confidence. This point has been partially

xplained in [34] . An approach was also used for confidence mea-

ures in identity varication [2] . Second, the logarithm of the score

ot only keeps the numerical order of the scores, but also enlarges

he difference of small scores [25] . As a result, in the sum fusion,

he dominant role of small scores can be kept, which is beneficial

o obtain correct classification. For example, if there are two origi-

al scores, 0.2 and 0. 1, the difference value is 0.1. However, log (0.2)

nd log (0.1) are equal to -1.6094 and -2.3026, respectively, so the

ifference value becomes 0.6932, much greater than the original

ifference value i.e. 0.1. 

Besides the approach to arrange entries of a raw sample to

orm alternative representations, researchers can also view features

earned from the raw data as new representations. For example,

he binary descriptions can be used as effective new representa-

ions [6,20] . The features can be produced with a specific con-

traint [6] and also may lead to good classification performance

7,19,20] 

A little flaw of the proposed method is that it has a higher com-

utational cost than that of the conventional dictionary learning

lgorithm. In particular, because there are four kinds of representa-

ions, the computational cost of the proposed method is four times

hat of the conventional dictionary learning algorithm. 

. Experiments 

In order to show the performance of our proposed algorithm,

e implement the proposed algorithm on the K-SVD [1] , D-KSVD

41] , LC-KSVD [14] and FDDL [40] algorithm, and denote them as

he improvement to K-SVD, improvement to D-KSVD, improvement

o LC-KSVD and improvement to FDDL. Moreover, the Extended

ale B face database [11] , the PIE face database [26] , the AR face

atabase [22] and COIL 20 [23] are used in this experiment. Each

lgorithm is carried out ten times and the average accuracy is re-

orted. For every algorithm, we obtain its optimal parameter val-

es via the grid search scheme (e.g., Table 1 ). 
 190 228 266 304 342 380 

2 82.9 85.3 86.2 83.6 52.6 88.7 

0 86.5 87.9 88.3 87.0 63.8 88.9 

9 84.1 85.8 87.4 87.1 85.5 81.3 

0 87.2 88.5 89.2 88.9 88.2 87.1 

5 84.0 85.6 86.6 87.9 88.4 87.2 

9 85.9 87.0 87.5 87.9 87.9 87.5 

1 85.2 86.3 87.0 87.1 87.4 87.4 

7 88.4 89.9 90.6 91.1 91.2 90.7 
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Table 2 

Average accuracy(%) on the PIE face database. 

Number of atoms 68 136 204 272 340 

KSVD 63.7 68.1 71.4 74.9 77.2 

Improvement to KSVD 68.4 75.4 78.6 81.2 82.4 

DSVD 63.8 68.3 73.1 75.3 77.7 

Improvement to DSVD 69.2 77.7 81.1 82.5 83.4 

LC-KSVD 62.8 73.0 72.6 74.3 76.4 

Improvement to LC-KSVD 67.9 79.3 77.7 76.5 75.5 

FDDL 47.6 69.9 75.5 78.5 80.1 

Improvement to FDDL 57.2 76.5 81.4 82.9 83.8 

Fig. 2. Some examples images of the Extended Yale B face database. 

Fig. 3. Some examples images of the PIE face. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Some examples images of the AR face. 
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4.1. Experiments on the Extended Yale B face database 

The Extended Yale B face database consists of 2,414 front-face

images of 38 people and these images were captured under var-

ious illumination conditions and expressions. Each person has 59

to 64 images and each image is converted into the size of 32 × 32

pixels. Some face images from this database are shown in Fig. 2 .

10 images of each person are randomly chosen as training samples

and the remaining images are exploited for testing. For the K-SVD

and D-KSVD algorithms, the number of atoms varies from 38 to

380 with an interval of 38. For the FDDL algorithm, the number of

atoms of each class sub-dictionary changes from 1 to 10. 

4.2. Experiments on the PIE face database 

The PIE face database consists of 41,368 front-face images of 68

persons, and the face images of each person were captured under

13 different poses, 43 different illumination conditions, and 4 dif-

ferent facial expressions. Several sample images from the PIE face

database are shown in Fig. 3 . Following [3] , we choose the five

near-frontal poses (C05, C07, C09, C27, C29) of each subject and
Table 3 

Average accuracy(%) on the AR face database. 

Number of atoms 120 240 360 480

KSVD 85.3 89.9 93.1 94.

Improvement to KSVD 91.0 94.8 96.4 97.

DSVD 82.8 89.5 92.0 93.

Improvement to DSVD 90.2 94.3 95.5 96.

LC-KSVD 86.8 90.2 92.7 93.

Improvement to LC-KSVD 88.7 92.3 94.0 94.

FDDL 83.4 91.4 92.2 93.

Improvement to FDDL 86.6 94.1 95.4 95.
se all the images under different illumination conditions and fa-

ial expressions. Thus we obtain 170 images for each individual.

very image is normalized to the size of 32 × 32. We randomly se-

ect ten images of each person as training samples and use the

emaining samples as test samples. The average recognition rates

re reported in Table 2 . 

.3. Experiments on the AR face database 

The AR face database contains more than 4,0 0 0 images of 126

ersons, which were captured in two sessions. Each person has 26

ace images, and each face image is captured under various lighting

onditions. Following [33] , a subset of the AR face database is used,

hich consists of 3,120 images from 120 persons (65 men and 55

omen). The size of the AR images is 40 × 50. The images of one

erson from the AR face database are shown in Fig. 4 . 

We randomly select 10 face images of each person as training

amples and the rest sixteen images of each person are used for

esting. The average recognition rates are given in Table 3 . 

.4. Experiments on the COIL 20 database 

The COIL20 dataset includes different views of 20 objects un-

er different lighting conditions. Following [3] , each image is re-

ized to 32 × 32 pixels and the challenge of this dataset is eval-

ated on alternative viewpoints. Several sample images from the

OIL20 database are shown in Fig. 5 . 

We randomly select 10 images per object as training samples

nd the remaining images are treated as test samples. The experi-

ent results are shown in Table 4 . 
 600 720 840 960 1080 1200 

3 95.2 96.0 96.4 96.1 79.8 97.2 

0 97.3 97.6 97.6 97.4 80.1 97.2 

6 94.6 95.4 96.2 96.0 93.1 96.7 

3 96.6 97.0 97.3 97.2 96.1 97.1 

7 94.5 94.9 95.4 95.4 95.8 92.4 

5 94.7 94.8 94.9 94.9 94.8 93.4 

1 93.5 93.9 93.9 93.9 93.9 93.9 

9 96.0 96.2 96.4 96.4 96.5 96.1 
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Table 4 

Average accuracy(%) on the COIL 20 face database. 

Number of atoms 40 60 80 100 120 140 160 180 200 

KSVD 82.5 85.5 87.2 88.0 88.4 89.0 89.5 84.7 89.0 

Improvement to KSVD 84.0 86.8 88.2 89.1 89.3 89.5 89.8 90.3 89.0 

DSVD 84.3 85.6 86.9 87.5 88.5 89.1 88.7 87.0 84.1 

Improvement to DSVD 84.6 86.8 88.0 89.0 89.6 90.0 90.0 89.9 89.0 

LC-KSVD 84.7 87.8 88.3 88.7 89.2 89.1 89.1 88.9 89.4 

Improvement to LC-KSVD 85.3 88.9 89.7 90.2 90.5 90.6 90.5 90.8 90.5 

FDDL 84.5 87.8 88.2 89.2 89.9 89.9 90.2 90.6 91.1 

Improvement to FDDL 80.5 86.5 89.1 89.1 91.1 91.3 91.7 91.9 91.8 

Fig. 5. Some example images of the COIL20 database. 
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. Conclusions 

In this paper, we propose multi-view-like multiple vector rep-

esentations for images and design a robust dictionary learning

ethod on basis of them. The multiple vector representations are

irectly generated from the original image and enable an image

o be observed with different angles of view. As the multiple vec-

or representations offer complementary information to represent

he object, the simultaneous use of them is very useful. The ra-

ionale of integration of multiple vector representations can be

lso explained by viewing different concatenations of all rows and

olumns of an image as different time sequences. Moreover, the

roposed weighted logarithmic sum scheme to integrate classifi-

ation scores of all vector representations is very reasonable. Be-

ause of these factors, when the same dictionary learning algo-

ithm is applied to the proposed multiple vector representations,

obust and accurate classification results can be obtained. Our idea

nd method also provide a good research routine for other prob-

ems, demonstrating that to take attention on in-depth digging of

mage data is worthy of doing. In our opinion, matrix factoriza-

ion algorithms for pattern representation and classification might

e improved by a similar idea, because they also decompose a ma-

rix into multiplication of two new matrices, being partially similar

ith dictionary learning. 
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