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Abstract

Low-rank representation (LRR) has aroused much attention in the community of data mining.
However, it has the following two problems which greatly limit its applications: 1) it cannot
discover the intrinsic structure of data owing to the neglect of the local structure of data; 2) the ob-
tained graph is not the optimal graph for clustering. To solve the above problems and improve the
clustering performance, we propose a novel graph learning method named low-rank representation
with adaptive graph regularization (LRR AGR) in this paper. Firstly, a distance regularization ter-
m and a non-negative constraint are jointly integrated into the framework of LRR, which enables
the method to simultaneously exploit the global and local information of data for graph learning.
Secondly, a novel rank constraint is further introduced to the model, which encourages the learned
graph to have very clear clustering structures, i.e., exactly c connected components for the data
with c clusters. These two approaches are meaningful and beneficial to learn the optimal graph
that discovers the intrinsic structure of data. Finally, an efficient iterative algorithm is provided to
optimize the model. Experimental results on synthetic and real datasets show that the proposed
method can significantly improve the clustering performance.
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1. Introduction

In the fields of machine learning and pattern recognition, data analysis technologies can be
generally divided into three groups in view of whether use the label information during model
training, i.e., supervised learning, unsupervised learning, and semi-supervised learning [13, 51,
43, 50, 45, 30, 55]. With the development of computer devices and internet, unsupervised learning
arouses more and more attention since data are usually very large and their labels are difficult to
be obtained. For example, there are more than 5 billion photos in Flickr and 13.7 PB photos in
Google photo albums. How to automatically manage these large amounts of photos into different
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natural groups is a very challenging problem. As an unsupervised learning method, data cluster-
ing is the most favored technique to deal with this challenge [14, 59]. Data clustering aims at
discovering the natural groups of data without any label information. In the past decades, various
clustering methods have been proposed and can be categorized into two groups: hierarchical clus-
tering and partitional clustering [13]. Single-link, average-link, and complete-link based methods
are the most typical hierarchical clustering methods which produce a set of nested clusters via a
hierarchical tree [33]. However, it is unrealistic to calculate the hierarchical tree for large-scale da-
ta. Compared with hierarchical clustering, partitional clustering can simultaneously partition data
into different groups which are much preferred in researches and applications [53]. In this branch,
the most popular methods are K-means clustering [16], density based clustering [38], and spectral
clustering [35, 52], etc. K-means clustering seeks for a partition that minimizes the within-cluster
distances. Based on the assumption that data points located in a high density region have larg-
er possibility to be a group, density based clustering methods determine the cluster structure by
searching for the connected dense regions of data. Compared with K-means and density based
clustering methods which are usually directly performed on the sample space, spectral clustering
is more flexible since it is performed on a meaningful low dimensional representation derived from
the original data.

Spectral clustering can be regarded as the graph-based clustering since its performance is di-
rectly determined by the obtained graph. A good graph should reveal the intrinsic relationships
among samples. Two popular assumptions are widely used in graph construction:

1) Distance assumption [1]: Samples with small distance should have larger possibility to be
a cluster.

2) Representation assumption [4]: Sample y can be efficiently represented by a linear com-
bination of other samples in dataset X, and those samples from the same subspace with sample y
have more contribution in the representation.

The first assumption usually uses Euclidean distance as the measure metric to construct the
graph. Following the first assumption, ratio cut (Rcut) [8] and normalized cut (Ncut) [42] con-
struct a similarity graph, where all nodes are calculated via Gaussian kernel function. Belkin et
al. learned a k nearest neighbor graph (knn-graph) with k non-zero nodes for each point [42].
Based on the representation assumption, Roweis et al. constructed a local linear embedding graph
(LLE-graph) which first finds k nearest neighbors for each sample and then calculates the lin-
ear representation coefficients of these k nearest neighbors [41]. knn-graph reveals the distance
relationships among nearest neighbor samples while LLE-graph captures the representation rela-
tionships between sample and its nearest neighbor samples. Although the above two graphs are
beneficial to learn a compact low-dimensional representation for clustering, their performances
are sensitive to the neighbor number k. In addition, the above methods are also sensitive to the
presence of noises and outliers. Thus it is urgent to propose a method that can learn a graph
with adaptive neighbors for any data. To this end, sparse subspace clustering (SSC) is proposed
[4]. Compared with LLE-graph, SSC can adaptively and flexibly select few samples via l1 norm
sparisty constraint rather than Euclidean distance to select k samples for graph construction. Be-
sides, SSC can reduce the negative influence of outliers and noises by introducing a sparse error
term into graph learning model. These factors enable SSC to perform better than the LLE-graph
and knn-graph based methods. However, for the case that two samples have same similarity de-
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gree as the represented sample, SSC fails because it will only select one of them for representation
while ignoring another one due to the property of l1 norm [62].

The above graph learning methods including SSC only aim at capturing the local structure of
data while ignoring the global structure. To capture the global structure of data, many methods
have been proposed, among which low-rank representation (LRR) is the most popular [22, 27,
19, 60]. By imposing a low-rank constraint on the representation matrix, LRR jointly learns a
representation graph that can exactly uncover the intrinsic subspace structures. Based on LRR,
Liu et al. further proposed the latent low-rank representation (LatLRR) method to deal with the
insufficient sampling problem and improve the robustness to noise by using the ‘hidden informa-
tion’ of data [23]. However, LRR and LatLRR only capture the global representation structure
while ignoring the local structure of data. Generally, local structure also contains lots of discrim-
inative information [40]. And thus exploiting both two information may be beneficial to find the
true clusters of data. Inspired by this motivation, various extensions of LRR have been proposed
[61, 56]. For example, Zhuang et al. learned a non-negative low-rank and sparse (NNLRS) graph
by jointly introducing the low-rank and sparse constraints to regularize the representation matrix
[61]. Sparse constraint allows the graph learned by NNLRS to capture the local linear representa-
tion structure of data. Besides, many researchers propose to impose the Laplacian regularizer on
the representation matrix to exploit the local information of data, which enforces similar samples
to have similar representations [56, 24, 3].

For data with c clusters, the ideal graph for clustering should better have exactly c connected
components [6, 37]. However, this structure cannot be always guaranteed by the previous graph
learning methods in most cases, especially for data with dependent subspaces [6]. To solve this
problem, some researchers propose to use the clusters information as prior for graph learning
[6, 37]. For example, Feng et al. imposed the rank constraint on the Laplacian matrix of the
representation graph to enforce the learned graph to have exactly c connected components [6].
Reference [37] proves that the optimal graph can be obtained from a fixed graph by simply impos-
ing the rank constraint. Using cluster information as prior for graph learning is reasonable since
data are expected to be exactly divided into c clusters in many cases. Inspired by this motivation, in
this paper, we propose a novel robust graph learning method named low-rank representation with
adaptive graph regularization (LRR AGR) for data clustering. Different from the method proposed
in [37] which learns the ideal graph from a pre-defined graph, LRR AGR seeks to adaptively learn
such ideal graph from data, thus it is possible to obtain the global optimal graph for clustering. D-
ifferent from the methods proposed in [6] and [37] which only capture the global or local structure
of data, LRR AGR integrates the distance regularization into the framework of low-rank repre-
sentation to simultaneously capture the global and local structures of data, which encourages the
obtained graph to discover the intrinsic structure of data. By introducing the regularization of rank
constraint, LRR AGR can adaptively learns a graph with exactly c connected components, which
makes the obtained graph be more suitable for data clustering task. In summary, the proposed
method has the following advantages in comparison with the other methods:

(1) LRR AGR simultaneously exploits the global representation information and local dis-
tance information, which enables LRR AGR to learn the optimal graph that captures the intrinsic
relationships of data.

(2) By introducing a novel rank constraint, LRR AGR has potential to learn a graph with clear
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clustering structure, which encourages the method to obtain a better performance.
(3) The proposed method has the potential to adaptively select the exact nearest neighbors for

graph construction without manual intervention, which greatly improves the adaptability in the
real-world clustering applications including the case of data with manifold structure.

(4) The obtained graph has good interpretability, in which each element directly reveals the
similarity relationship of the corresponding two samples.

We conduct several experiments on the synthetic and public benchmark datasets to evaluate
the effectiveness of the proposed method. Experimental results show that the proposed method
can significantly improve the clustering performance.

The paper is organized as follows: In section 2, we give a brief review to several related
works. Section 3 presents the proposed method and its optimal solution. Section 4 analyzes
the proposed method from aspects of computational complexity and convergence property, etc.
Section 5 conducts several experiments. Section 6 offers the conclusion of the paper.

2. Related works

In this section we briefly introduce two graph-based clustering methods, i.e., sparse subspace
clustering (SSC) [4] and low-rank representation (LRR) [22] which are the most related methods
to the proposed method.

2.1. Sparse subspace clustering (SSC)
SSC uses the sparse representation technique to adaptively select few samples rather than k

nearest neighbors for graph construction. For a data matrix X = [x1, x2, . . . , xn] ∈ Rm×n with n
samples, SSC attempts to solve the following objective function to obtain the sparse representation
graph for data clustering

min
Z

∥Z∥1 s.t. X = XZ, diag (Z) = 0 (1)

where Z= [z1, z2, . . . , zn] ∈ Rn×n is the sparse representation graph and each column zi is the
representation coefficient vector corresponding to sample xi. ∥·∥1 is the l1 norm constraint and

is calculated as ∥Z∥1 =
n∑
i,j

|zij| [31]. Due to the sparsity selection property of l1 norm, some

elements of each column zi will be forced to zero [54]. diag(Z) = 0 means that the diagonal
elements of matrix Z are enforced to zero. Most importantly, due to the competitiveness property
in joint representation, samples from the same subspace as the sample to be represented are more
possible to be selected for representation. Thus those samples with nonzero representation values
are more possible to be the same cluster as the sample to be represented. This ensures the graph
obtained by SSC to adaptively capture the intrinsic local representation geometric structure of
data.

Caused by the inaccurate data collection techniques, data may be corrupted by noises and
sparse outliers in the real-world applications [15]. To reduce the negative influence of the above
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corruptions, Elhamifar et al. further extended SSC to the following graph learning model [4]

min
Z,E,A

∥Z∥1+λ1∥E∥1 +
λ2

2
∥A∥2F

s.t. X = XZ + E + A, diag (Z) = 0, 1TZ = 1T

(2)

where E denotes the sparse outliers, A is noises. 1 = [1, 1, . . . , 1]T is a column vector with all
elements are 1. ∥ · ∥F is the Frobenius norm and defined as ∥X∥F =

√∑
i,j x

2
i,j [25]. XT denotes

the transposed matrix of X .
After obtaining the representation graph Z, SSC first normalizes each column of Z as zi =

zi/∥zi∥∞, then calculates the similarity graph W = |Z| + |Z|T whose each element wij denotes
the similarity degree between samples xi and xj . Based on similarity graph W, SSC finally utilizes
spectral clustering [6] to achieve the clustering result.

2.2. Low-rank representation (LRR)
Compared with SSC, LRR seeks to jointly learn a representation graph with the lowest rank

for data clustering [22]. The general model of LRR is formulated as

min
Z

rank (Z) s.t. X = XZ (3)

where rank (Z) is the rank of matrix Z. Problem (3) is NP-hard, and difficult to optimize. To
address this issue, many researchers transform the rank minimization problem into the following
nuclear norm based minimization problem [22]

min
Z

∥Z∥∗ s.t. X = XZ (4)

where ∥Z∥∗ is the nuclear norm constraint of matrix Z and is calculated as ∥Z∥∗ =
n∑
i

δi, δi is

the i-th singular value of matrix Z. Similar to SSC, LRR is also extended to the following learning
model for image with noises and gross corruptions

min
Z,E

∥Z∥∗+λ∥E∥p s.t. X = XZ + E (5)

where E is the error term used to model different noises or outliers with different norm constraints
p, such as l1 norm and l2,1 norm, etc.

Problem (5) can be efficiently solved by using the exact or inexact ALM (IALM) algorithm
[21]. After obtaining Z, LRR also calculates similarity graph W like SSC and then applies the
spectral clustering algorithm to segment data into different subspaces.

3. Low-Rank Representation with Adaptive Graph Regularization

As analyzed in the previous section, SSC and LRR only aim at learning the representation
graph that uncovers the representation relationships of samples while ignoring the local distance
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relationships. Besides, the representation coefficients of each sample cannot clearly show the sim-
ilarity degree between samples since many representation values are negative. Therefore, graphs
obtained by these two methods do not have good interpretability and cannot reveal the intrinsic
structure of data. In this paper, we focus on learning a more general graph which holds the follow-
ing properties for clustering:

(1) The obtained graph should capture both local and global structures of data.
(2) All elements of the obtained graph should be non-negative so that they can directly reveal

the similarity degree of samples.
(3) The obtained graph should have exactly connected structures.

3.1. Model of LRR AGR
Recent years, many researches have shown the importance of locality preserving [57, 48, 44,

28, 10, 29]. However, this property is ignored in many LRR based graph learning methods. Al-
though NNLRS [61] uses the sparse constraint of l1 norm to adaptively select few samples for data
representation, it also cannot capture the intrinsic locality structure of data because sparsity does
not necessarily guarantee the locality [48]. To guarantee the locality, in this paper, we introduce a
simple distance constraint and a non-negative constraint rather than the sparsity constraint into the
graph leaning model of LRR as follows

min
Z

n∑
i,j

∥xi − xj∥22 zij + λ1∥Z∥∗ s.t. X = XZ,Z ≥ 0 (6)

where X = [x1, x2, . . . , xn] ∈ Rm×n is the data matrix with n samples, in which each sample is
represented by a column vector. Z ∈ Rn×n is the representation graph needs to be learned, each
element zij denotes the representation coefficient of sample xj in the joint representation with
respect to sample xi. λ1 is a positive penalty parameter. Z ≥ 0 means that all elements of Z
are non-negative. By jointly introducing the two constraints, model (6) holds the following good
properties:

• Introducing the non-negative constraint has several good properties: (1) it avoids the unde-
sired solution, i.e., any two non-nearest neighbor samples are connected by a larger negative
coefficient; (2) the obtained graph directly reveals the similarity degree between samples;
(3) learning a non-negative graph has the potential to obtain a better performance [9].

• The first regularization term, i.e.,
n∑
i,j

∥xi − xj∥22 zij can be viewed as the weighted sparse

regularization when Z is non-negative, which enables the method to adaptively select few
nearest neighbor samples for representation. And thus introducing this constraint can simul-
taneously guarantee the locality and sparsity.

• Model (6) simultaneously exploits the global and local information of data for graph con-
struction, which encourages the method to learn the optimal graph that captures the intrinsic
structure of data.
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To eliminate the influence of self-representation, we further introduce a constraint that enforce
the diagonal elements of graph to zero as follows:

min
Z

n∑
i,j

∥xi − xj∥22 zij + λ1∥Z∥∗ s.t. X = XZ, diag (Z) = 0, Z ≥ 0 (7)

In the real-world applications, data may be corrupted by noises. To reduce the negative influ-
ence of noises, a sparse error term is introduced as follows

min
Z,E

n∑
i,j

∥xi − xj∥22 zij + λ1∥Z∥∗ + λ2∥E∥1

s.t. X = XZ + E, diag (Z) = 0, Z ≥ 0

(8)

where E denotes the error, λ2 is also a positive penalty parameter.
Although model (8) can simultaneously capture the local and global structures of data, and is

robust to noise to some extent, it is not the best graph for data clustering. This is mainly because
model (8) cannot ensure the obtained graph to have exactly c connected components for data with
c clusters. To learn such ideal graph, references [6, 37] integrate a novel rank constraint into the
graph learning model based on the following theorem.
Theorem 1: Let Z be a non-negative affinity matrix and its Laplcian matrix LZ is defined as
LZ = D −

(
Z + ZT

)/
2, where D is a diagonal matrix and its i-th diagonal element Dii =∑

j (zij + zji)/2. Then multiplicity k of eigenvalue 0 of Laplacian matrix LZ equals to the number
of connected components of affinity matrix Z [47].

Based on Theorem 1, the problem to learn the ideal graph for data with c clusters is trans-
formed into the following optimization problem

min
Z,E

n∑
i,j

∥xi − xj∥22 zij + λ1∥Z∥∗ + λ2∥E∥1

s.t. X = XZ + E, diag (Z) = 0, Z ≥ 0, rank (LZ) = n− c

(9)

To avoid the extreme case that elements of any row of graph Z are all zero, we further introduce
a constraint to enforce the sum of each row of Z to 1. As a result, the final non-negative graph
learning model of the proposed method is as follows

min
Z,E

n∑
i,j

∥xi − xj∥22 zij + λ1∥Z∥∗ + λ2∥E∥1

s.t. X = XZ + E, diag (Z) = 0, Z ≥ 0, rank (LZ) = n− c,
∑

j
zij = 1

(10)

By introducing the novel rank constraint, model (10) can adaptively learn such optimal graph
with exactly c connected components. After obtaining the affine graph, we finally perform nor-

7



malized cut (Ncut) algorithm1 [42] to obtain the clustering results.

3.2. Solution to the LRR AGR
In this section, we mainly present the solution to the proposed graph learning model. As the

Laplacian matrix LZ is positive semi-definite, then all eigenvalues of LZ should be equal to or
greater than 0. Therefore, the optimization problem (10) is equivalent to the following minimiza-
tion problem [37, 36]

min
Z,E

n∑
i,j

∥xi − xj∥22 zij + λ1∥Z∥∗ + λ2∥E∥1 + 2λ3

c∑
i

σi (LZ)

s.t.X = XZ + E, diag (Z) = 0, Z ≥ 0,
∑

j
zij = 1

(11)

where σi (LZ) denotes the i-th smallest eigenvalue of LZ and σi (LZ) ≥ 0. λ3 is a positive penalty
parameter. When λ3 is large enough, the forth term of problem (11) should be enforced to zero.
In this case, the first c smallest eigenvalues of LZ are enforced to zero and thus the rank constraint
rank (LZ) = n− c is satisfied [37, 36].

Problem (11) is still difficult to be directly solved. Thanks to the Theorem proposed by Fan
[5], we can further rewrite problem (11) into the following equivalent optimization problem:

min
Z,E,F

n∑
i,j

∥xi − xj∥22 zij + λ1∥Z∥∗ + λ2∥E∥1 + 2λ3Tr
(
F TLZF

)
s.t. X = XZ + E, diag (Z) = 0, Z ≥ 0,

∑
j
zij = 1, F TF = I

(12)

where F =
[
fT
1 , f

T
2 , . . . , f

T
n

]T ∈ Rn×c, n and c are the number of samples and clusters of data,
respectively. Tr(·) is the trace operator.

Compared with the optimization problem (10), (12) is much easier to be solved by many meth-
ods, such as accelerated proximal gradient (APG) [46] and alternating direction method (ADM)
[11], etc. In view of the efficiency of ADM, we choose it to optimize problem (12). We first
introduce two variables, i.e., S and U , to make (12) separable for optimization as follows

min
Z,S,U,E,F

n∑
i,j

∥xi − xj∥22 sij + λ1∥U∥∗ + λ2∥E∥1 + 2λ3Tr
(
F TLSF

)
s.t. X = XZ + E,Z = S, Z = U, diag (S) = 0, S ≥ 0,

∑
j
sij = 1, F TF = I

(13)

1Code of Ncut is available at: http://www.cis.upenn.edu/ jshi/software/
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Then we rewrite (13) into the following augmented Lagrangian formula [51]

L(Z, S, U,E, F ) =

n∑
i,j

∥xi − xj∥22 sij + λ1∥U∥∗ + λ2∥E∥1 + 2λ3Tr
(
F TLSF

)
+ ⟨C1, X −XZ − E⟩

+ ⟨C2, Z − S⟩+ ⟨C3, Z − U⟩+ µ

2

(
∥X −XZ − E∥2F + ∥Z − S∥2F + ∥Z − U∥2F

)
(14)

where C1, C2, and C3 are Lagrange multipliers, µ is a positive penalty parameter. By alternately
solving each variable of (14) with other variables fixed, we can obtain the solution of all variables
Z, S, U,E, F . The detail solution steps are as follows.

Step 1. Update Z: When variables S, U,E, F are fixed, Z can be obtained by minimizing the
following formula:

L (Z) =

∥∥∥∥X −XZ − E +
C1

µ

∥∥∥∥2

F

+

∥∥∥∥Z − S +
C2

µ

∥∥∥∥2

F

+

∥∥∥∥Z − U +
C3

µ

∥∥∥∥2

F

(15)

By setting the derivative ∂L(Z)/∂Z = 0, we can obtain variable Z as follows

Z =
(
XTX + 2I

)−1 (
XTL1 + L2 + L3

)
(16)

where L1 = X − E + C1

µ
, L2 = S − C2

µ
, and L3 = U − C3

µ
.

Step 2. Update S: Fixing variables Z,U,E, F , we can obtain S by minimizing the following
problem:

min
S

n∑
i,j

∥xi − xj∥22 sij + 2λ3Tr
(
F TLSF

)
+

µ

2

∥∥∥∥Z − S +
C2

µ

∥∥∥∥2

F

s.t. diag (S) = 0, S ≥ 0,
∑

j
sij = 1

(17)

From (17), we have

n∑
i,j

∥xi − xj∥22 sij + λ3

n∑
i,j

∥fi − fj∥22 sij +
µ

2

∥∥∥∥Z − S +
C2

µ

∥∥∥∥2

F

=
n∑
i,j

(
∥xi − xj∥22 + λ3 ∥fi − fj∥22

)
sij +

µ

2

∥∥∥∥Z − S +
C2

µ

∥∥∥∥2

F

=
n∑
i,j

gijsij +
µ

2
∥S −H∥2F

=Tr
(
GTS

)
+

µ

2
∥S −H∥2F

(18)

where each element of G is calculated by gij = ∥xi − xj∥22 + λ3 ∥fi − fj∥22, H = Z + C2

µ
. From

(17) and (18), it is obvious to see that problem (17) is equivalent to solving the following problem

min
si≥0,si1=1,sii=0

∥si − (hi − gi/µ)∥22 (19)
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where si, hi, gi denote the i-th row of S, H , and G, respectively. Problem (19) has a closed form
solution and can be fast solved by an efficient algorithm presented in reference [37].

Step 3. Update F : When Z, S, U,E are fixed, F can be obtained by solving the following
minimization problem:

F = argmin
F

Tr
(
F TLSF

)
s.t. F TF = I, F ∈ Rn×c (20)

where LS is the Laplacian matrix of S. Problem (20) can be simply solved via eigenvalue decom-
position and its solution is the set of c eigenvectors corresponding to the first c smallest eigenvalues
of LS .

Step 4. Update U : U can be achieved by solving the following problem with variables
Z, S,E, F fixed

U = argmin
U

λ1∥U∥∗ +
µ

2

∥∥∥∥Z − U +
C3

µ

∥∥∥∥2

F

(21)

Then U is obtained as follows by using the singular value thresholding (SVT) operator [23]

U = Θλ1/µ

(
Z +

C3

µ

)
(22)

where Θ denotes the SVT operator.
Step 5. Update E: E is obtained by solving the following minimization problem

E = argmin
E

λ2∥E∥1 +
µ

2

∥∥∥∥X −XZ − E +
C1

µ

∥∥∥∥2

F

(23)

E has the following closed solution

E = Ωλ2/µ (X −XZ + C1/µ) (24)

where Ω is the shrinkage operator [21].
Step 6. Update C1, C2, C3, µ: Lagrange multipliers C1, C2, C3, and penalty parameter µ are

respectively updated by using the following formulas:

C1 = C1 + µ(X −XZ − E) (25)

C2 = C2 + µ (Z − S) (26)

C3 = C3 + µ (Z − U) (27)

µ = min(ρµ, µmax) (28)

where ρ and µmax are constants.
The proposed optimization approach is summarized in Algorithm 1. After obtaining similarity

graph Z, we further use Ncut to achieve the final clustering result.
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Algorithm 1 LRR AGR (solving (11))
Input: Data X; parameters λ1, λ2, λ3; cluster number c.
Initialization: Constructing the k nearest neighbor graph as the initial matrix of Z; U = Z,
S = Z; using (21) to calculate the initial matrix of F ; C1 = C2 = C3 = 0, E = 0, µ = 0.01,
ρ = 1.2, µmax = 108.
while not converged do

1. Update Z by using (16).
2. Update S by solving (19).
3. Update F by solving (20).
4. Update U by using (22).
5. Update E by using (24).
6. Update C1, C2, C3, µ by using (25), (26), (27), and (28), respectively.

end while
Output: Z, S, U,E, F

4. Analysis of the proposed method

4.1. Computation complexity and convergence analysis
For LRR AGR listed in Algorithm 1, the most computational costs are the inverse operation,

eigen-decomposition, and singular value thresholding (SVT) in steps 1, 3, and 4, respectively.
For a matrix with the size of n × n, the computational complexities of inverse operation, eigen-
decomposition, and SVT are O (n3), O (n2c) and O (n3), respectively, where c is the number of the
selected eigenvectors. Thus the computational complexities of step 1, step 3, and step 4 are about
O(n3), O (n2c), and O (n3), respectively. Note that we do not take into account the basic matrix
operations, such as matrix addition, subtraction, and multiplication. Considering that the inverse
operation of

(
XTX + 2I

)−1 in step 1 can be pre-computed and utilized in all iteration steps, thus
the total computational complexity of the proposed method is about O (n3 + τ (n2c+ n3)), where
τ is the iteration number.

From the above analyses, we can find that step 4 has the highest computational complexity in
algorithm 1, which needs O (n3) to implement the SVT operation. This may limit the applications
to the data with large amounts of samples. In fact, the major computational cost in SVT operation
is the singular value decomposition (SVD). One of the widely used approaches to improve the
efficiency of step 4 is to exploit the partial SVD via PROPACK [17], which has the computational
complexity of O (rn2), where r is the rank of matrix (Z + C3/µ). However, when rank r > n/5,
the computational cost of using PROPACK is usually much higher than computing the full SVD
[2]. To address this issue, we can exploit a more efficient approach proposed in [2] to improve the
efficiency of step 4, which mainly contains the following three steps:

(1) Denote Y = Z + C3/µ, then obtain a unitary matrix W and a symmetric nonnegative
definite matrix Q via the polar decomposition Y = WQ;

(2) Project matrix Q into a 2-norm ball by optimizing problem Pλ1/µ (Q) := argmin
∥X∥2≤λ1/µ

∥X −Q∥F ;
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(3) Obtain matrix U as U = Y −WPλ1/µ (Q).
Compared with the full SVD and partial SVD, this approach can be fast computed by the basic

linear algebra subroutine (BLAS) without calculating the singular value decomposition, and thus
can greatly improve the efficiency of the proposed method in large scale datasets.

As presented in the previous section, we utilize the ADM-style method to iteratively achieve
the solution. In [22, 21], the convergence property of ADM with two blocks has been proved.
However, it is unrealistic to prove the strong convergence for the method with five blocks. In
this section, we use some experiments to prove the convergence property of the proposed method.
Fig.1 shows the objective function value and clustering accuracy with respect to the number of
iterations. It should be noted that the objective function value of the proposed method is calculated

as Obj = (
n∑
i,j

∥xi − xj∥22 zij + λ1∥Z∥∗ + λ2∥E∥1 + ∥X −XZ − E∥2F )/∥X∥F . From Fig.1, it

is obvious to see that the objective function value decreases sharply in the first few steps and
then tends to be smooth. Meanwhile, the clustering accuracy increases till the peak point and
then also tends to smooth. It should be pointed out that owing to the sensitivity of K-means to
the initialization, the clustering accuracy presented in Fig.1(b) has small fluctuations. This case is
acceptable. Above analyses and Fig.1 indicate that after a few iteration steps, the proposed method
can converge to the local optimal solution.
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Figure 1: Objective function values and clustering accuracy versus the number of iteration of
the proposed method on the COIL20 and Umist datasets, in which all classes of each dataset are
selected in the experiments.

4.2. Connections to other methods
In this section, we mainly analyze the connections among the proposed method and some re-

lated methods, such as LRR [22], SSC [4], NNLRS [61], CAN [37], low-rank matrix factorization
with adaptive graph regularizer (LRMF AGR) [26], graph regularized compact LRR (GCLRR)
[3], and Laplacian regularized LRR (LapLRR) [24].

(1) Connections to LRR, SSC, and NNLRS: Based on the representation assumption presented
in the introduction, SSC and LRR respectively use the sparsity technique and low-rank constrain-
t to learn a graph that captures the structure information of data. However, these two methods
only preserve one type of structures of data, in which SSC only captures the local representation
structure while LRR only preserves the global representation structure of data. This indicates that
graphs learned by SSC and LRR cannot reveal the intrinsic structure of data. In addition, elements
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of graphs obtained by these two methods only denote the representation contribution of two sam-
ples. In other words, it cannot demonstrate the probability of two samples to be in the same cluster.
Thus graphs obtained by SSC and LRR do not have good interpretability. Compared with LRR
and SSC, NNLRS solves the above problems by learning a non-negative graph with properties of
sparsity and low-rank. NNLRS can be viewed as a more general method which integrates LRR
and SSC into a joint learning framework. However, NNLRS only focuses on the representation
structure while ignoring the nearest neighbor structure of data. To solve the above problems, we
integrate a distance regularization term instead of the sparsity constraint into the graph learning
model of LRR. The distance regularization term encourages the nearest neighbor samples to have
larger representation weight in the joint representation. Compared with NNLRS which only p-
reserves the sparsity property to select few samples for representation, the proposed method can
simultaneously preserve sparsity and locality by using the distance regularization term [48]. In
addition, another difference compared with NNLRS is that LRR AGR imposes a novel rank con-
straint on the graph. By introducing the rank constraint, LRR AGR can adaptively learn an ideal
graph with clear connected structures, which is beneficial to obtain a better clustering performance.
Both distance regularization constraint and rank constraint are useful and encourage LRR AGR
to obtain the optimal graph. Several experiments in the following section also demonstrate the
effectiveness of the proposed method.

(2) Connections to CAN: CAN exploits the distance relationships of samples to adaptively
learn a graph Z with exactly c connected components as follows [36]:

min
Z

n∑
i,j

(
∥xi − xj∥22 zij + γz2

ij

)
s.t. ∀i, zTi 1 = 1, 0 ≤ zi ≤ 1, rank (LZ) = n− c

(29)

where zi ∈ Rn×1 is a column vector, 1 ∈ Rn×1 is a column vector with all elements are 1, γ is the
regularization parameter. LZ = D − ZT+Z

2
is the Laplacian matrix, where D is a diagonal matrix

and its i-th element is calculated as Dii =
∑

j (zij + zji)/2.
From (10) and (29), if we replace the nuclear norm constraint with the l2 norm and delete

the self-representation constraint, then LRR AGR degrades to CAN. So CAN can be viewed as a
special case of LRR AGR to some extent. In the real-world applications, samples always distribute
in the nonlinear manifold [41]. In this case, CAN fails because Euclidean distance cannot reveal
the intrinsic similarity relationships of samples in the nonlinear manifold. To tackle this bottleneck,
we introduce a low-rank representation constraint to capture this nonlinear intrinsic structure of
data. Therefore, the proposed method is a more general model than CAN in dealing with the
linear and nonlinear cases. In addition, Euclidean distance is sensitive to the corruption of noise,
which indicates that CAN fails to capture the intrinsic structure hidden behind noisy data. While
the proposed method has the potential to learn a latent clear graph by introducing the low-rank
representation and utilizing a sparse error term to compensate noises, which guarantees the method
to achieve a better performance than CAN.

Fig.2 shows the graphs obtained by SSC, LRR, NNLRS, CAN, and the proposed method on
the subset of COIL20 dataset, respectively. Clustering accuracies corresponding to these graphs
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are shown in Table 4. It is obvious to see that there are many ‘messy points’ in the first three graphs
respectively obtained by SSC, LRR, and NNLRS, which confuse the intrinsic subspace structure
of graph and thus lead to an unsatisfactory clustering performance. Compared with LRR, SSC, and
NNLRS, graphs obtained by CAN and the proposed method do not have any redundant ‘scatter
point’ and have very clear connected structures which are partitioned by three gaps marked by
‘white ellipse’. This indicates that using the cluster information as prior knowledge is beneficial to
adaptively learn a graph with ideal cluster structure so as to obtain a better clustering performance.

(a) SSC

140

150

140 150

(b) LRR

130

140

150

160

130 140 150 160

(c) NNLRS

140

145

150

155

140 150

(d) CAN

140

145

150

140 145 150

(e) LRR AGR

Figure 2: Graphs obtained by SSC, LRR, NNLRS, CAN, and the proposed method, respectively.
Note: (1) In this experiments, images of the first four classes of the COIL20 dataset are selected.
(2) For the last four graphs, the local area marked by the ‘ellipse’ is amplified and the correspond-
ing amplified sub-image is pointed by the direction of ‘arrow’.

(3) Connections to LRMF AGR, GCLRR, and LapLRR. The learning models of the three
methods are respectively expressed as follows:

LRMF AGR : min
U,V,Z

∥∥X − UV T
∥∥2

F
+λ1Tr

(
V TLZV

)
+∥X −XZ∥2F+λ2 ∥Z∥2F+λ3∥Z∥1 (30)

GCLRR : min
W,H,E

∥Z∥∗ + λ1∥E∥2,1 + λ2Tr
(
ZLZT

)
s.t.X = XWZ + E,W TW = I (31)
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LapLRR : min
Z≥0

1

2
∥X −XZ∥2F + λ1∥Z∥∗ +

λ2

2
Tr

(
ZLZT

)
(32)

where LZ denotes the Laplacian matrix of graph Z, L is the Laplacian matrix of the pre-constructed
nearest neighbor graph. We can find that the above three methods and the proposed method all
exploit the graph regularizer to improve their performances. To summarize the proposed learning
model in (10) and the above three models, we can obtain that: 1) LRMF AGR is obviously differ-
ent because it seeks to learn a more compact clustering indictor matrix with low-dimension, while
other three methods focus on finding the intrinsic graph of data for clustering. 2) LRMF AGR
only captures the local information of data while ignoring the global structure of data. Compared
with LRMF AGR, the other methods all simultaneously take into account the global and local
structures of data, which is beneficial to obtain a better performance. 3) GCLRR and LapLRR use
the same Laplacian term to exploit the local information of data. Both of two methods expect the
similar samples to have similar representation vectors. One of shortcomings of the two methods
is that they are sensitive to the selection of the nearest neighbor numbers [26]. Different from G-
CLRR and LapLRR, the proposed method uses a unique approach to exploit the local information
of data, which expects the nearest samples to have more contributions in the joint representation.
From the learning model (10), we can find that the proposed method does not need to set the num-
ber of nearest neighbors. Moreover, by introducing the rank constraint, the proposed method has
the potential to learn the graph with clear cluster structure while the other methods cannot, which
further enables the proposed method to perform better than GCLRR and LapLRR.

5. Experiments and Analysis

In this section, we conduct several experiments on both synthetic dataset and real benchmark
datasets, to evaluate the proposed method. Then we make a discussion for the LRR AGR method.
All experiments are performed on the software Matlab 2015b and Windows 10 system, hard-
ware Intel Core i7-4790 CPU and 16GB ram. The code of the proposed method is available at:
http://www.yongxu.org/lunwen.html.

Following related clustering methods are compared with the proposed method:
(1) K-means clustering method
(2) Ratio cut (Rcut) clustering method [41]
(3) Normalized cut (Ncut) clustering method2 [42]
(4) Sparse subspace clustering (SSC) method3 [41]
(5) LRR clustering method4 [22]
(6) LatLRR clustering method [23]
(7) Non-negative low-rank and sparse (NNLRS) graph based clustering method [61]
(8) Laplacian regularized LRR (LapLRR) [24]
(9) Non-negative sparse hyper-Laplacian regularized LRR (NSHLRR)5 [56]

2Code of Ncut is available at: http://www.cis.upenn.edu/ jshi/software/
3Code of SSC is available at: http://www.vision.jhu.edu/code/
4Code of LRR is available at: http://www.cis.pku.edu.cn/faculty/vision/zlin/zlin.htm
5Code of NSHLRR is available at: https://www.researchgate.net/profile/Ming_Yin3

15



(10) Clustering with adaptive neighbors (CAN)6 [36]
(11) Constraint Laplacian rank (CLR) clustering method [37]
Among the above compared methods, K-means is directly performed on the original features

while the others are performed on different graphs learned from data. In the experiments, Rcut
and Ncut are performed on the adjacency graph constructed by Gaussian kernel [11]. SSC, LRR,
LatLRR, NNLRS, LapLRR, and NSHLRR perform the spectral clustering (SC) [35] on the ob-
tained graphs for data clustering. Compared with all above methods, CAN and CLR directly use
the obtained similarity graph to partition data rather than use the SC method. In addition, CAN and
CLR use the cluster number as prior for clustering. Considering that the above methods are sen-
sitive to the parameters to some extent, we perform these algorithms with a wide parameter range
and report their best results for fair comparison. For example, for methods like Rcut and Ncut,
we select the nearest neighbor number of k from a candidate domain of {3, 5, 7, 11, 13, 15, 20, 25}
and select the scale value of Gaussian kernel from a candidate domain of {1, 3, ..., 23} to construct
different adjacency graphs for data clustering and then report the best clustering result. For CAN,
we utilize the method proposed by the authors to construct the initial graph for data clustering
[37]. It should be noted that the above methods except CAN and CLR all use K-means to segment
data into respective groups. So we perform K-means 10 times and report the mean values for fair
comparison in terms of the sensitivity of K-means to the initialization.

5.1. Evaluation metrics
In this paper, we adopt two metrics, i.e., clustering accuracy (Acc) and normalized mutual

information (NMI) [12] to evaluate the clustering performance of different algorithms. For a
dataset X = [x1, x2, . . . , xn] ∈ Rm×n with n samples, Acc is calculated as follows

Acc =

∑n
i=1 δ (map (ri) , yi)

n
(33)

where ri and yi denote the cluster label obtained by the clustering algorithm and the true label
of sample xi, respectively. Permutation mapping function map (·) is used to map each prediction
cluster label ri to the equivalent label according to the distribution of the true label [56]. Function
δ (x, y) equals one under the condition of x = y and equals zero otherwise.

After obtaining the predicted cluster label R, NMI is defined as follows [56]

NMI (R, Y ) =
MI (R, Y )

max (H (R) , H (Y ))
(34)

where Y is the true label of data, H (R) and H (Y ) are the entropy of labels R and Y, respectively.
Mutual information MI (·) is calculated as follows

MI (R, Y ) =
∑
s∈R

∑
t∈Y

p (s, t)log2

(
p (s, t)

p (s) p (t)

)
(35)

6Codes of CAN and CLR are available at: http://www.escience.cn/people/fpnie/index.html
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Table 1: Clustering mean Accs (%) and NMIs (%) and their standard deviations of different meth-
ods on the two-moon synthetic dataset. Note: bold numbers denote the best results.

Method ACC NMI
K-means 51.50±0.00 0.08±0.00

Rcut 58.89±3.45 2.99±1.76
Ncut 58.50±0.00 2.89±1.75
SSC 67.00±0.00 8.51±0.00
LRR 67.00±0.00 8.51±0.00

LatLRR 67.00±0.00 8.51±0.00
NNLRS 67.00±0.00 15.65±0.00
LapLRR 59.50±0.26 2.47±0.14
NSHLRR 67.00±0.00 8.51±0.00

CAN 64.00 48.00
CLR 60.00 20.50

LRR AGR 90.85±0.34 60.68±0.70

where p (s, t) denotes the joint probability distribution of s and t, p (s) and p (t) are the marginal
probability of s and t, respectively. The maximum and minimum value of Acc and NMI are 1
and 0, respectively. Generally, the larger the value of Acc or NMI is, the better the clustering
performance is.

5.2. Experiments on synthetic dataset
In this section, we choose the two-moon synthetic dataset to measure the clustering perfor-

mance of the proposed method. Fig.3(a) shows the two-moon dataset which has two natural
clusters of data distributed in the moon shape. Fig.3(b) and Fig.3(c) show the clustering results
obtained by LRR and the proposed method, respectively. We can find that the proposed method
significantly outperforms LRR on this dataset. In addition, we also compare the clustering Acc
and NMI with the other methods and show the clustering results in Table 1. It is obvious to see that
the proposed method obtains the best performance in comparison with the other methods, where
the clustering Acc of the proposed method is 23% higher than the second best methods, i.e., SSC,
LRR, LatLRR, NNLRS, and NSHLRR. Moreover, Table 1 also indicates that only preserving the
nearest neighbor structure or representation structure cannot well describe the intrinsic distribution
of data and thus cannot obtain satisfactory clustering performance.

5.3. Experiments on real datasets
In this section, we conduct experiments on some real datasets, including four non-image

datasets from UCI machine learning repository [20] and six image datasets, to further prove the
effectiveness of the proposed method. Table 2 shows the description of the used datasets. The
Extended Yale B (YaleB) [20] face dataset contains 2414 images provided by 38 persons under
different illumination conditions. The original AR face dataset [32] contains over 4000 frontal
face images corresponding to 126 people under different facial expressions, illumination condi-
tions, and occlusions by sun glasses and scarf. We choose a subset of AR dataset with 3120
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Figure 3: Results of LRR and LRR AGR on the two-moon synthetic dataset.

Table 2: Description of datasets.

Dataset No. of instances Dimensions Classes
YaleB [7] 2414 1024 38
AR [32] 3120 2000 120

Umist [39] 575 2576 20
LFW [18] 1251 1024 86

MSRA 1799 256 12
COIL20 [34] 1440 1024 20

Cars [20] 392 8 3
Vehicle [20] 846 18 4
Isolet [20] 1560 617 2
Yeast [20] 1484 8 10

images from 120 individuals to evaluate different clustering methods. The Umist face dataset7

[39] contains 575 images from 20 volunteers. Images of each class have different poses from
profile to frontal views. The Labeled Faces in the Wild (LFW) face dataset [18] contains more
than 13000 images collected from the web. In the experiments, we use a subset of LFW which
contains 1251 face images from 86 people for the comparison of different methods [49]. The
Columbia Object Image Library (COIL20) dataset8 [34] is an object dataset which is composed
of 1440 gray-scale images of 20 classes. We use the processed images without background and
resize all images to the size of 32× 32. MSRA, Cars, Vehicle, Isolet, and Yeast datasets are avail-
able at http://www.escience.cn/people/fpnie/papers.html, in which MSRA is a face dataset and the
others are non-image datasets from UCI machine learning repository [20]. For YaleB, COIL20,
and Umist datasets, we conduct a series of experiments with a range of first c sub-clusters which
are selected from these datasets for the comparison of different methods. For the remaining seven
datasets, all samples are chosen to perform experiments.

Table 3-Table 6 show the clustering mean Accs (%) of different methods on the above real-
world datasets. The clustering mean NMIs of these methods are shown in Fig.4. From the experi-
mental results, we can obtain the following conclusions:

(1) For the five image datasets and Isolet dataset which have large dimension of features, the
proposed method significantly outperforms the other methods in comparison of Acc and NMI.
We can also find that on the YaleB and Umist datasets, the proposed method performs much

7The Umist dataset is available at: http://cs.nyu.edu/ roweis/data.html
8The COIL20 dataset is available at: http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
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better than the other methods in all cases. For example, on the YaleB dataset in Table 3, the pro-
posed method achieves more than 4.5% average scores of Acc in comparison with the second best
method NNLRS. While on the remaining three non-image datasets which have limited features
per sample, the proposed method achieves the comparative clustering Acc with the other methods.
This indicates that more features are beneficial for the proposed method to capture the intrinsic
structure of data so as to improve the clustering performance.

(2) From Table 3 and Table 5, we can find that the proposed method performs much better
than CLR and CAN which also use the cluster number as prior for graph learning. Especially
on the YaleB dataset with 38 clusters, the proposed method achieves more than 45% average Acc
scores in comparison with CLR and CAN. This observation indicates that the global representation
structure contains useful information for data clustering.

(3) In Table 4 and Table 5, compared with Rcut, Ncut, and CAN which all use the nearest
neighbor information for graph learning, CAN and the proposed method perform better than Rcut
and Ncut in most cases. This indicates that using the cluster number information as prior knowl-
edge is beneficial to learn a more robust graph that better captures the intrinsic structure of data so
as to improve the clustering performance.

(4) From Table 4, we can find that the clustering Accs of Rcut, Ncut, CAN, and CLR, are
much higher than those of SSC, LRR and LatLRR. Compared with SSC, LRR, and LatLRR,
which only capture the representation structure of data, other methods utilize the local nearest
neighbor information of data for clustering. This indicates that the local distance relationships of
data are also very useful and contain sufficient discriminability for data clustering in some cases.

(5) From Fig.4, we can find that, all the other methods perform much better than the con-
ventional K-means in most cases. This phenomenon demonstrates that it is not a good choice to
exploit the original data directly for data clustering because it contains many redundant features
even noises. Most importantly, it is obvious to see that the proposed method achieves the highest
NMIs in all datasets, which proves the effectiveness of the proposed method for data clustering
tasks. Since all methods except the K-means exploit the similar clustering approach based on their
obtained graphs, thus the good performance verifies that the proposed method can learn a more
discriminative and reasonable graph from data.

(6) From Fig.4 and Tables 4 and 5, we can find that LapLRR and NSHLRR obtain better per-
formance than LRR. LapLRR and NSHLRR mainly introduce the similar Laplacian term to LRR
for graph learning. Thus the experimental results prove that introducing the Laplacian term has the
potential to improve the clustering performance. However, from the results in Table 3, the perfor-
mance of LapLRR is worse than the conventional LRR on the YaleB dataset, which indicates that
the Laplacian term plays an opposite role in guiding the graph learning. The above experimen-
tal results demonstrate that the Laplacian regularized approach of LRR is really sensitive to the
pre-constructed nearest neighbor graph. While from the experimental results of Accs and NMIs
shown in the above tables and Fig.4, we can find that the proposed method obtains consistently
better performance than LapLRR and NSHLRR. This proves that the distance constraint of the
proposed method is more effective than the Laplacian term in discovering the intrinsic relation-
ships of data.

From the above analyses, we commonly obtain that both local and global information of data
are useful in data clustering. Employing both local structure and global structure of data encour-
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Table 3: Clustering mean Accs (%) of different methods on the YaleB dataset. Note: bold numbers
denote the best results.

Classes K-means Rcut Ncut SSC LRR LatLRR NNLRS LapLRR NSHLRR CAN CLR LRR AGR
2 50.85 94.53 94.53 100 78.13 96.88 99.21 99.22 99.22 98.44 98.44 100
8 18.91 50.03 50.30 88.31 83.79 83.20 89.77 83.67 84.05 54.10 51.37 99.61

14 15.95 54.33 54.60 78.71 89.46 82.06 93.41 77.64 83.24 49.77 47.73 96.76
20 12.11 55.09 55.89 76.84 90.44 80.10 92.03 76.55 86.78 46.67 45.25 94.19
26 11.35 56.14 56.70 76.89 87.39 74.79 90.73 75.10 80.47 48.54 39.79 94.05
32 10.76 51.44 51.46 76.12 80.65 77.18 85.49 81.23 83.96 46.70 39.85 92.82
38 9.39 48.77 49.42 73.89 70.34 78.88 82.41 77.29 80.54 42.88 36.99 87.04

Avg. 18.47 58.62 58.99 81.54 82.89 81.87 90.44 81.87 85.47 55.30 51.35 94.92

Table 4: Clustering mean Accs (%) of different methods on the COIL20 dataset. Note: bold
numbers denote the best results.

Classes K-means Rcut Ncut SSC LRR LatLRR NNLRS LapLRR NSHLRR CAN CLR LRR AGR
4 62.15 86.46 82.64 62.50 96.53 91.32 98.61 96.53 98.37 100 100 100
6 48.36 91.68 92.05 62.70 64.12 67.59 83.80 81.90 85.48 100 100 100
8 43.66 86.88 86.96 77.26 70.83 65.28 80.56 74.31 78.24 100 100 100

10 46.06 83.82 86.04 67.11 68.47 68.22 84.17 75.01 80.17 100 100 100
12 53.41 83.16 81.70 79.98 62.99 66.81 84.03 78.54 83.65 100 100 100
14 56.81 83.01 81.97 74.01 66.36 75.00 86.31 78.98 80.24 100 100 100
16 60.83 82.35 79.81 75.28 69.33 71.25 83.41 77.95 81.87 100 100 100
18 64.96 81.09 82.62 75.53 66.54 67.18 85.26 80.94 83.74 94.29 100 100
20 57.67 76.49 77.83 77.92 66.39 65.64 80.31 75.01 81.48 90.14 87.36 97.31

Avg. 54.88 83.88 83.51 72.48 70.17 69.76 85.16 79.91 83.69 98.27 98.60 99.70

Table 5: Clustering mean Accs (%) of different methods on the Umist dataset. Note: bold numbers
denote the best results.

Classes K-means Rcut Ncut SSC LRR LatLRR NNLRS LapLRR NSHLRR CAN CLR LRR AGR
4 47.97 66.34 67.05 60.16 61.79 51.55 73.17 84.55 88.62 90.24 78.86 91.71
6 52.91 73.37 73.57 70.35 68.02 50.12 73.26 82.56 88.90 93.02 84.88 93.02
8 48.45 74.70 76.90 67.42 70.47 60.37 76.26 86.85 80.69 94.37 84.51 94.37

10 44.57 68.63 68.58 71.70 74.60 70.04 75.66 77.64 78.53 82.26 77.74 83.47
12 44.66 69.27 69.37 67.00 64.87 68.77 82.88 69.78 72.22 80.18 77.48 87.39
14 41.52 69.85 69.46 71.67 60.18 69.56 81.23 73.56 79.35 84.32 76.86 86.12
16 39.84 60.57 61.37 65.97 54.63 64.75 73.78 65.74 71.35 77.42 72.81 77.51
18 38.78 61.34 62.00 67.30 55.90 61.34 78.59 65.40 68.73 70.59 69.87 80.45
20 41.58 62.33 62.57 63.48 56.28 61.04 74.63 65.78 66.15 73.74 70.26 81.65

Avg. 44.48 67.38 67.87 67.23 62.97 61.95 76.61 74.65 77.17 82.90 77.03 86.19

ages the model to learn the optimal graph that uncovers the intrinsic geometric structure of data.
In particular, using the cluster number as a prior knowledge makes the obtained graph have ideal
connected structure which is more suitable for the clustering task. With the integration of above
factors, the proposed method achieves better performance than the other methods.

In addition, we conduct a significance test to better show the statistical significance of the pro-
posed method in comparison with the other methods [58, 19]. Table 7 listed p-values of mean
clustering Accs between LRR AGR and the other methods on the YaleB dataset, where the sig-
nificance level is set as 0.05. When the estimated p-value is lower than 0.05, the performance
difference between the two compared methods is statistically significant. From Table 7, it is ob-
vious to see that the performance differences of the mean clustering Accs between the proposed
method and all the other methods are statistically significant in all cases. These experimental
results also verify the effectiveness of the proposed method in data clustering.
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Table 6: Clustering mean Accs (%) of different methods on remaining real datasets. Note: bold
numbers denote the best results.

Classes K-means Rcut Ncut SSC LRR LatLRR NNLRS LapLRR NSHLRR CAN CLR LRR AGR
AR 31.19 48.39 48.52 64.73 56.37 57.14 66.25 65.19 65.75 40.10 42.47 66.74

LFW 22.18 23.79 24.03 29.29 23.81 25.08 27.52 27.49 27.98 17.75 18.79 29.47
MSRA 50.70 57.42 57.42 60.98 63.79 60.57 65.78 62.89 63.41 59.14 59.14 66.08

Cars 54.59 63.01 63.11 62.00 62.50 67.96 68.36 64.09 62.34 68.42 67.86 68.11
Vehicle 45.86 46.53 46.64 44.92 45.75 46.57 46.95 45.89 45.98 46.81 45.39 47.24
Isolet 56.60 59.30 59.30 55.13 59.55 52.44 61.62 59.49 58.11 59.23 59.23 62.67
Yeast 31.79 34.42 34.67 39.34 36.93 37.40 42.19 37.42 40.74 50.47 45.89 50.13

Table 7: p-values of mean clustering Accs between LRR AGR and other methods on the YaleB
dataset. The asterisk ‘*’ represents that the difference between the two methods is statistically
significant when p = 0.05.

Methods 2 8 14 20 26 32 38
K-means 1.0× 10−18∗ 8.1× 10−20∗ 3.4× 10−19∗ 5.7× 10−20∗ 1.3× 10−18∗ 8.3× 10−21∗ 5.1× 10−20∗

Rcut 0∗ 7.6× 10−14∗ 2.9× 10−12∗ 1.3× 10−11∗ 5.6× 10−12∗ 7.6× 10−13∗ 8.4× 10−13∗

Ncut 0∗ 8.1× 10−15∗ 1.2× 10−12∗ 4.5× 10−13∗ 7.8× 10−12∗ 1.1× 10−15∗ 8.2× 10−13∗

SSC – 2.7× 10−14∗ 2.5× 10−11∗ 2.1× 10−7∗ 5.3× 10−11∗ 6.6× 10−12∗ 2.5× 10−10∗

LRR 0∗ 0∗ 0∗ 3.9× 10−13∗ 8.1× 10−11∗ 1.4× 10−10∗ 3.3× 10−11∗

LatLRR 0∗ 0∗ 6.3× 10−11∗ 4.9× 10−11∗ 4.2× 10−10∗ 2.1× 10−8∗ 6.4× 10−7∗

NNLRS 0∗ 1.1× 10−14∗ 2.3× 10−4∗ 3.3× 10−5∗ 0.008∗ 1.7× 10−7∗ 1.7× 10−7∗

LapLRR 0∗ 3.7× 10−15∗ 7.6× 10−14∗ 4.7× 10−13∗ 2.5× 10−14∗ 2.9× 10−11∗ 1.1× 10−9∗

NSHLRR 0∗ 2.8× 10−16∗ 1.7× 10−14∗ 5.8× 10−13∗ 1.7× 10−14∗ 2.5× 10−10∗ 1.9× 10−10∗

CAN 0∗ 0∗ 2.1× 10−26∗ 0∗ 1.9× 10−24∗ 3.3× 10−24∗ 2.2× 10−17∗

CLR 0∗ 0∗ 1.4× 10−26∗ 0∗ 4.0× 10−25∗ 9.6× 10−25∗ 7.1× 10−18∗

5.4. Parameter sensitivity and selection
In this section, we use some experiments to show the sensitivity of parameters to the clustering

Acc of the proposed method. From the objective function of (12), we can find that there are
three regularization parameters, i.e., λ1, λ2, and λ3 needed to be set in advance. Parameters λ1,
λ2, and λ3 respectively balance the importance of low-rank constraint term, error term, and rank
constraint. Generally, the larger the parameter value is, the more importance or impact of the
corresponding term is. To demonstrate the effects of these three parameters for data clustering, we
first define a candidate parameter range set of {10−5, 10−4, 10−3, 10−2, 10−1, 1, 101, 102} for these
three parameters and then perform the proposed method with different combinations of parameters
for data clustering. We first fixed parameters λ1 and λ2, and then perform the proposed method
with different values of parameter λ3 to show the influence of λ3 to the clustering Acc. From
Fig.5 (a) and Fig.6 (a), it is obvious to see that the clustering Acc is insensitive to parameter
λ3 when λ3 ≤ 0.01. This is mainly because if parameter λ3 is too large, the corresponding rank
constraint term will play the dominant role in the graph learning while ignoring the local and global
structure preservation. In this case, although the obtained graph still has c connected components,
it cannot reveal the intrinsic structure of data. In the experiments, we can select a small value
in the range of {10−5, 10−4, 10−3} for parameter λ1. Fig.5 (b) and Fig.6 (b) show the clustering
Acc versus different values of parameters λ1 and λ2 when parameter λ3 is fixed. As can be seen
from Fig.5 (b) and Fig.6 (b), the clustering Acc is sensitive to parameter λ2 to some extent and the
best clustering result can be obtained when parameters λ1 and λ2 are in a feasible range. This is
mainly because a very large or very small parameter λ2 leads to a small error or large error that
cannot well compensate the sparse noise of data. In this case, the model cannot learn the intrinsic
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(a) NMI of different methods on the YaleB dataset
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(b) NMI of different methods on the COIL20 dataset
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(c) NMI of different methods on the Umist datasets
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Figure 4: Mean NMIs (%) of different methods on benchmark datasets.

similarity graph for data clustering. Thus in the experiments, we can select the two parameters in
the candidate range of {10−3, 10−2, 10−1} according to the degree of noise corruptions of data.

As far as we know, it is still an open problem to adaptively select these optimal parameters for
different datasets. In the experiments, we first fix parameter λ3 since this parameter is insensitive
to the clustering Acc, and then perform the method to find the optimal λ1 and λ2 in a candidate
domain where the optimal parameters may exist. Then by similar strategy, we fix parameters
λ1 and λ2 to find the optimal value of parameter λ3 in a candidate domain. Finally, the optimal
combination of these parameters can be obtained in the 3D candidate space which is composed of
three candidate domains of parameters.

6. Conclusion

In this paper, we propose a novel graph learning method to learn a non-negative graph with
clear connected structures for data clustering. In particular, a distance regularization term is in-
tegrated into the conventional low-rank representation model to exploit the local information of
data for graph construction. To make the graph have an ideal cluster structure, a rank constraint is
introduced to the graph learning model. Meanwhile, by introducing a non-negative constraint, the
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Figure 5: Clustering Acc (%) versus different values of (a) parameter λ3, (b) parameters λ1 and λ2

on the YaleB dataset.
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Figure 6: Clustering Acc (%) versus different values of (a) parameter λ3, (b) parameters λ1 and λ2

on the COIL20 dataset.
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interpretability of the graph is greatly improved. Compared with the other methods, graph obtained
by the proposed method not only captures the local and global intrinsic structure information of
data, but also has exactly connected components for data clustering. Extensive experiments on
both synthetic and real datasets show the effectiveness of the proposed method for data clustering.
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