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a b s t r a c t 

Integrating the structure prior in modeling has achieved considerable attention in pattern recognition and 

computer vision. Most current state-of-the-art methods (such as low rank representation and structured 

sparsity) search for a structured metric to fit the structure of the estimated variate, which either bear 

high time complexity (e.g., compute singular value decomposition for large-scale matrices), or cannot ef- 

fectively exploit structure information of a matrix variate. In this work, we introduce a nesting-structured 

nuclear norm to characterize the matrix variate with structure prior and provide a unified framework 

for solving nesting-structured nuclear norm minimization (NSNM) problem by resorting to an improved 

sub-gradient method. This not only takes local and global structures of the matrix variate into joint con- 

sideration, but also enjoys the lower time complexity than traditional nuclear norm minimization. The 

revealed statistical meaning explains the rationality of the proposed method. Moreover, we apply NSNM 

to matrix regression and completion problems, respectively. The extensive experiments for face recogni- 

tion and large-scale matrix completion clearly demonstrate the superiority of NSNM over some existing 

methods. 

© 2019 Elsevier Ltd. All rights reserved. 

1

 

t  

o  

o  

o  

n  

s

 

v  

i  

l  

i  

s  

L  

n  

i  

i  

c  

t  

g  

[  

b  

n  

t  

s  

t  

t  

s  

r  

Y  

c  

t  

i

 

r  

v  

h

0

. Introduction 

In the past few years, incorporating structured priors in statis-

ical model has become a popular technique for coping with vari-

us estimation tasks since it can provide a natural characterization

ver the relationships between data. As the successful applications

f this view, low rank minimization has shown great potential in

umerous fields such as machine learning, signal processing and

o on. 

It is known that using low rank function to constrain a matrix

ariate can capture its global structure, which leads to the increas-

ng interest in matrix completion and subspace segmentation prob-

em since the intrinsic dimensionality of high-dimensional data

s in fact much smaller, i.e., they often lie in low dimensional

tructures. The most representative models around this view are

ow Rank Representation (LRR) [1] and Robust Principle Compo-

ent Analysis (RPCA) [2] . Their common characteristic is regard-

ng samples to be correlated, but the stretching of each sample

nevitably destroys its spatial structure. In fact, there also exist
∗ Corresponding author. 
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orrelations between pixels of a single sample in some applica-

ions. Taking advantage of this fact, nuclear norm based matrix re-

ression (NMR) [3] and Nuclear Norm-Based 2-DPCA (N-2-DPCA)

4] integrated the relationships of pixels in the error images caused

y the spatially contiguous variations into modeling for face recog-

ition, which is carried out by virtue of low rank assumption of

he error matrix. Chen et al. [5] and Luo et al. [6] considered the

imilar problem from the viewpoint of the dependent matrix dis-

ribution. Subsequently, Luo et al. [7] and Luo et al. [8] further ex-

ended the above models resorting to Schatten p-norm and tree

tructure, respectively. In addition, Xu et al. [9] exploited the low-

ank structure of the multi-label predictor in multi-label learning.

an et al. [10] used Maximum-Margin Matrix Factorization to ac-

omplish collaborative prediction of rating data by emphasizing

he low-rank structure of the desired data. For more related stud-

es on rank function minimization, please see [11–14] . 

The promising results in the above work demonstrate that low

ank can effectively characterize the global structure of a matrix

ariate, but the local structure for a matrix variate also exists and

s very crucial for the face recognition problem. For instance, the

ace images of 120 individuals from AR database are resized to

5 × 30. For each individual, a clean face image and a face image

ith sunglasses are chosen (as shown on the left side of Fig. 1 ).

https://doi.org/10.1016/j.patcog.2019.02.011
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2019.02.011&domain=pdf
mailto:csjyang@njust.edu.cn
https://doi.org/10.1016/j.patcog.2019.02.011
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Fig. 1. (a) The illustration for showing the local correlation of the pixel-errors, where the right image is the correlation map of pixels in the red box area of the left error 

image; (b) The illustration for showing correlation of blocks, where the right image is the correlation map of nuclear norm of blocks (i.e., pixels in matrix B) in left error 

image. 
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Thus, 120 noise images caused by sunglasses are generated. Each

noise image is partitioned into 9 × 6 blocks and the size of each

block is 5 × 5. To describe the local correlation structure, we focus

on the local block of each error image. Firstly, a certain block in the

error image is chosen and marked as the red box. The correlation

map of pixels in this block is presented in Fig. 1 (a). It is clear that

most pixels in red box are highly correlated. And this trend will

become more evident with the narrowing of red box area. Next,

we further investigate the relationships between blocks. Note that

the structured attribute of nuclear norm, we attempt to use nu-

clear norm to measure each block, i.e., nuclear norm of each block

is calculated to represent the corresponding block. Using the nu-

clear norm of each local block as an element and keeping their

relative position, we can form a new matrix B , which to some ex-

tent reflects the global structure of the original error image. As a

result, 120 random matrices of dimensions 9 × 6 are acquired. The

correlation map of elements in B is shown in Fig. 1 (b). It is found

from Fig. 1 (b) that these blocks are also correlated. By the above

analysis, there is no doubt that both local structure and structure

among local blocks in an error image exist and the local structure fac-

tually plays a dominant role . Accordingly, how to merge these useful

structure information into a unified framework to realize the per-

formance promotion turns into a valuable and challenging issue. 

It is worth noting that some methods mentioned above, includ-

ing LRR, RPCA and NMR, replace rank function with its tightest

convex surrogate over the unit spectral norm ball, namely nuclear

norm, to facilitate the design of algorithm. They suffer from the

high computational cost to compute the singular value decompo-

sition (SVD) in each iteration, especially for the large-scale ma-

trix. Therefore, reducing the time complexity in SVD is extremely

helpful for speeding up the algorithm. Toward this end, Lu et al.

[15] presented a fast SVD method for multilevel block Hankel ma-

trices. They used Lanczos process to reduce the MBH matrix into

a bidiagonal or tridiagonal matrix and the SVD is implemented
n the reduced matrix using the twisted factorization method.

ajumdar et al. [16] decreased the complexity by computing a

holesky decomposition instead of SVD. Cai et al. [17] computed

he singular value thresholding (SVT) for a given matrix without

VD, which is carried out by two steps, namely, the polar decom-

osition step and the projection step done by Newton’s method.

h et al. [18] proposed a fast approximate SVT method by exploit-

ng the property of iterative NNM procedures, which avoids the di-

ect computation of SVD. The interested reader is referred to [19–

1] for more techniques about the approximated SVD. These ways

o some extend decrease the computation complexity in the tra-

itional nuclear norm minimization. Nonetheless, they either fo-

us on the specific cases, or are only the approximation of SVD,

hich may be far away from the essential attributes of nuclear

orm characterizing the structure, leading to an impractical result. 

On the basis of the above analysis, this paper will establish

 nesting structure for a matrix and use it to induce a nesting-

tructured nuclear norm minimization model. This not only takes

ocal and global structures of a matrix variate into joint consider-

tion, but also affords the lower time complexity than traditional

uclear norm minimization. Specifically speaking, we partition an

riginal matrix A 

1 into several blocks. Differing from the structured

parsity inducing norm [22–25] , which stretches each block into

 vector and uses L 2 or L ∞ 

norm to constrain it, here we keep

he original matrix form of each block and use nuclear norm to

irectly characterize it. Due to the structure attribute of nuclear

orm, this can exploit effectively the structure of each block which

an be viewed as the local structure of the matrix A 

1 . As the ex-

eriment in Fig. 1 (b), we can obtain an external matrix A 

2 , each

lement of which coincides with the nuclear norm of the corre-

ponding block in A 

1 . Such a process is repeated continually. We

ventually obtain a matrix A 

k which only includes an element. Ob-

iously, each matrix A 

l , where l = 1 , . . . , k , possesses the smaller

ize than the original matrix A 

l . Then, the nuclear norm is acted
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Fig. 2. An example for explaining nesting structure. 
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Table 1 

Various types of norms induced by nesting structure. 

σ l p, q ‖ · ‖ ex ‖ · ‖ in w ij �( A ) 

σ1 = 1 , 

σl = 0( l � = 1 ) 

/ ‖ · ‖ ∗ / / ‖ A ‖ ∗
‖ · ‖ 1 ‖ A ‖ 1 
‖ · ‖ F ‖ A ‖ F 

σ2 � = 0 , 

σl = 0( l � = 2 ) 
p ≥ 1 , 

q ≥ 1 

‖ · ‖ 1 ‖ · ‖ 2 w ij > 0 group sparsity norm 

σ l ≥ 0 ‖ · ‖ ∗ ‖ · ‖ ∗ ‖ A ‖ ∗, w i j , ∗, σl 
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1 When k = 1, �( A ) strictly defines a norm that satisfies the three norm condi- 

tions, while it defines a quasi-norm when k > 1 (the detailed proof is seen in supple- 

mental materials). Because the mathematical formulations and derivations in this 

paper equally apply to both norm and quasi-norm, we do not differentiate these 

two concepts for notation brevity. 
n each external matrix A 

l to further exploit the structure of the

riginal matrix A 

1 , which produces the nesting-structured nuclear

orm . Using nuclear norm to characterize these external matrices

actually captures the global structure of the original matrix variate

ince it incorporates all local structures into modeling. We estab-

ish a unified framework for nesting-structured nuclear norm mini-

ization by developing an improved Sub-gradient method to solve

he proposed model. This adds a popular accelerated scheme and a

orcing descent technique into the traditional sub-gradient to sta-

ilize and speed up the iterative process. Unlike the traditional nu-

lear norm minimization models, which compute the SVD on the

riginal matrix, the proposed approach only needs to implement

VD on some generated small-scale matrices. Under a matrix vari-

te distribution, the statistical meaning of the proposed framework

s provided by seeking its maximum a posteriori probability esti-

ation solution. Additionally, the essence of the proposed distri-

ution for characterizing some structural variates is also revealed.

he proposed method is applied on matrix regression and comple-

ion, respectively. A series of experiments on face recognition and

arge-scale matrix completion show the advantages of our method

ver some existing methods. 

otations. Throughout this paper, the bold capital and bold low-

rcase symbols are used to represent matrices and vectors, respec-

ively. tr ( X ) denotes trace of a matrix X and exp ( · ) represents the

xponential function. If a square matrix X is positive semi-definite,

e denote it by X ≥ 0 . ‖ X ‖ 1 denotes L 1 -norm of the matrix X . ‖ X ‖ F 
enotes Frobenius norm of the matrix X , which is equal to the L 2 -

orm of Vec( X ) (i.e., ‖ Vec( X ) ‖ 2 ), where Vec( �) is an operator con-

erting a matrix into a vector. ∂ h (B ) 
∂ x i 

denotes the partial derivative

f matrix function h 

(B ) associated with x i . 

The remainder of this paper is organized as follows: in the

ext section we first give the definition of nesting-structured nu-

lear norm and present a nesting-structured nuclear norm mini-

ization framework, which is solved by an improved sub-gradient

ethod. Then, the statistical meaning and rationality of the pro-

osed method are investigated in Section 3 . The proposed frame-

ork is applied to matrix regression and matrix completion in

ection 4 . The convergence and complexity analysis for the pro-

osed algorithm are presented in Section 5 , and some experimen-

al results are reported in Section 6 . Section 7 contains the conclu-

ions. 

. Nesting-structured nuclear norm minimization 

In this section, we first introduce a nesting matrix structure and

ake use of it to induce a nesting-structured nuclear norm. Then,

 nesting-structured matrix minimization model is presented and

n improved sub-gradient is developed to solve it. 

.1. Nesting-structured nuclear norm 

Partition an original matrix A = A 

1 ∈ R n ×m into p × q sub-

atrices as shown in Fig. 2 . Here each sub-matrix A 

1 
i j 

∈ R p i ×q j ,

here i = 1 , . . . , p, j = 1 , . . . , q, 
∑ p 

i =1 
p i = n, and 

∑ q 
i =1 

q i = m. Given

 matrix norm ‖ · ‖ in and calculate a 2 
i j 

= w 

1 
i j 
‖ A 

1 
i j 
‖ in , where w 

1 
i j 
> 0

s the weight of ‖ A 

1 
i j 
‖ in . Thereby we can obtain a new matrix A 

2 .
uch a process is repeated sequentially. Ultimately, the matrix A 

k 

s generated. We call the procedure from A 

1 to A 

k as Nesting Struc-

ure with depth k . As the illustration in Fig. 1 (a), we use nuclear

orm to constrain each A 

l 
i j 

(i.e., the sum of singular values of A 

l 
i j 

,

hich is denoted by ‖ A 

l 
i j 
‖ ∗), where l = 1 , . . . , k , to exploit fully

he structure of the block A 

l 
i j 

, that is to say, ‖ · ‖ in = ‖ · ‖ ∗. Mean-

hile, according to the observation in Fig. 1 (b), we employ nuclear

orm to act on each A 

l to exploit the global structure of A . De-

ote �(A ) = 

∑ k 
l=1 σl ‖ A 

l ‖ ∗= ‖ A ‖ ∗, w i j , ∗, σl 
, where σ l > 0, then �( A )

s called as nesting-structured nuclear norm 

1 with regard to A . 

It is easy to see that the nesting-structured nuclear norm not

nly captures the pixel-level structure of a matrix variate, but also

onsiders the block-level structure , while other norms such as nu-

lear norm or structured sparsity inducing norm cannot do these.

hroughout this paper, we only consider the second layer in this paper

or the convenience, i.e., σ 2 � = 0 but σl = 0( l � = 2 ) . 

emark 1. In the framework of nesting structure, some other

hoices can be acted on ‖ · ‖ ex and ‖ · ‖ in , which induces various

ypes of norms as summarized in Table 1 . 

.2. Nesting-structured nuclear norm minimization 

In this subsection, we propose a nesting-structured nuclear

orm minimization (NSNM for short) model as follows: 

in 

X 
‖ 

f ( X ) ‖ ∗, w i j , ∗, σl 
+ ρg ( X ) . (1) 

here f (X ) : R n ×m → R n ×m is an affine function with regard to X ,
 (X ) : R n ×m → R is a general matrix function (note that g (X ) may

e non-smooth), and the parameter ρ > 0 is a tradeoff between the

wo items (i.e., ‖ f(X ) ‖ ∗, w i j , ∗, σl 
and 

g (X ) ). Meanwhile, it is also as-

umed that f( X ) or g (X ) includes the observation D . Since nuclear

orm is a special case of nesting-structured nuclear norm, model

1) factually generalizes the unconstrained versions of the general

uclear norm minimization problems [1–14] . Owing to the non-

moothness of g (X ) , some gradient based methods (e.g., SDM [26] ,

PG [27] ) cannot be used to solve (1) (since the convergence can-

ot be guaranteed). As for ADMM, we need to convert (1) into the

ollowing constrained version: 

in 

X , E 
‖ 

E ‖ ∗, w i j , ∗, σl 
+ ρg ( X ) , s . t . E = f ( X ) . (2)
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Algorithm 1 NSNM by the improved sub-gradient method. 

Input: data matrix D (or other known matrices), and parameter ρ . 

Initialize: V 0 = 0 , X 0 = 0 , Y 0 = 0 , θ0 = 1 

While not convergence do 

Step 1. Y t+1 = V t − μt W 

t , where W 

t ∈ ∂ ‖ J ( V t ) ‖ ∗, w i j , ∗, σl 
, 

Step 2. X t+1 = { Y t+1 , J ( Y t+1 ) ≤ J ( X t ) , 

X t , otherwise , 

Step 3. θ t+1 = 

1+ 
√ 

1+4 ( θ t ) 
2 

2 
, 

Step 4. V t+1 = X t+1 + ( θ
t −1 

θ t+1 )( X 
t+1 − X t ) . 

End while 

Output: Optimal regression coefficient vector X t+1 . 
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However, it is difficult to obtain a closed-form solution for the

key sub-problem with regard to nesting-structured nuclear norm.

Compared with the above two methods, sub-gradient based meth-

ods are easier to implement due to its relaxed conditions. 

2.3. The proposed algorithm 

Sub-gradient method [28] was originally developed by Shor in

the 1970s, the core iteration of which can be considered as a

generalization of gradient method for non-differentiable function.

There have been many studies focusing on this method. Specif-

ically, Boyd et al. [29] analyzed the convergence of sub-gradient

method for different types of step size rules. Nedic and Ozdaglar

[30] investigated sub-gradient method for computing the sad-

dle points of a convex-concave function. Nesterov and Shikhman

[31] developed a quasi-monotone sub-gradient method, which

guarantees the best possible rate of convergence for the whole se-

quence of test points. 

As we know, the concept of proximal operator plays the central

role in proximal gradient methods. Analogously, Rockafellar et al.

introduced proximal map for a non-convex (even non-smooth)

function in [32] . Along this line, Bolte et al. [33] established a

proximal alternating linearized minimization (PALM) algorithm for

non-convex and non-smooth minimization problems and derived

a new and simple globally convergent algorithm for solving the

sparse nonnegative matrix factorization problem. Afterward, Cruz

et al. [34] presented a variant of the proximal forward-backward

splitting iteration for solving the non-smooth problem. 

The main advantage of sub-gradient based methods is the

wider application than some existing methods. In this paper, we

will apply the above proposed methods to solving the model (1) .

And yet, sub-gradient based methods give the slow convergence,

that is, it only achieves an optimal convergence rate: O (1/ t 1/2 ) un-

der the certain conditions. In addition, it is not a descent method.

Thus, it is desired to integrate some accelerated schemes or de-

scent strategy in design of algorithms to speed up the convergence

and stabilize the iterative trend. To this end, a stochastic sub-

gradient mirror-descent method with weighted iterate-averaging

[35] is investigated and its per-iterate convergence rate is also an-

alyzed. Surprisingly, by suitably choosing the step size values, one

can obtain the rate of the order 1/ t for strongly convex functions.

Coincidentally, Neumaier [36] proposed a fast sub-gradient algo-

rithm with optimal complexity both for the general non-smooth

case and for the strongly convex case. 

Zhang et al. [37] recently presented Rapidly Accelerated Prox-

imal Gradient (RAPID) method for convex minimization. They in-

troduced a simple line search step after each proximal gradient

step in Accelerated Proximal Gradient (APG). A series of exper-

iments showed the advantages of RAPID over APG. But for nu-

clear norm minimization, it still faces two SVD for the large-

scale matrix due to the computation of auxiliary parameter. As

mentioned before, RAPID or APG cannot be applied on problem

(1) since both ‖ f(X ) ‖ ∗, w i j , ∗, σl 
and g (X ) are non-differentiable. And

yet, we are able to merge their accelerated schemes into the orig-

inal sub-gradient method, which induces an improved gradient

method. Denoting J (X ) = ‖ f(X ) ‖ ∗, w i j , ∗, σl 
+ ρg (X ) , the detailed iter-

ation procedure of the improved gradient method is summarized

in Algorithm 1 . 

3. The statistical meaning of the proposed model 

In this section, we first analyze the statistical meaning of model

(1) from the viewpoint of maximum likelihood estimation (MLE)

using a matrix distribution, then account for the essence of the

proposed distribution for characterizing the structural matrix vari-

ate. 
.1. The derivation of model (1) by MLE 

For the convenience of investigation, let A 

1 = f(X ) in model (1) .

ccording to the definition of nesting-structured nuclear norm in

ection 2.1 , we can obtain a new matrix A 

2 denoted by B as shown

ig. 2 . In addition, f( X ) is assumed to include the observation D

e. g, f(X ) = D − r(X ) , where r( X ): R l × m → R l × m is a matrix map-

ing). According to the results in [6] , the matrix variate B can be

ssumed to has a distribution of 

 ( B | M , �, �, C ) = C exp 

(
− 1 

2 
tr 

(
( B − M ) 

T �( B − M ) �
)1 / 2 

)
, (3)

here C the positive proportionality constant. Notice that each el-

ment of B corresponds to each block of A 

1 and A 

1 = f(X ) , then

 can be regarded as the matrix function associated with X . Then,

3) can be rewritten as 

 ( D | X , M , �, �, C ) = C exp 

(
− 1 

2 
tr 

(
( B − M ) 

T �( B − M ) �
)1 / 2 

)
, 

(4)

here M ∈ R n × m , �∈ R n × n , �∈ R m × m and �, �≥ 0 . 

Meanwhile, the prior for the variate X is assumed to be: 

 ( X | ν) = c exp ( −g ( X ) /ν) . (5)

here ν > 0 denotes the hyper-parameters associated with the

rior of X and c is the positive proportionality constant. Thus, the

osterior distribution for X can be written as 

 (X | M , �, �, C, ν) ∝ P (D | X , M , �, �, C) P ( X | ν) . (6)

Taking the negative logarithm of Eq. (6) and omitting some con-

tant terms, we can achieve the maximum posterior estimation of

 by 

 = arg min 

X 

tr 
(
( B − M ) 

T �( B − M ) �
)1 / 2 + ρg ( X ) . (7)

here ρ = 2 ν . 

Here, for the convenience, � and � are set as identity matrices,

nd M is chosen as a zero matrix, then (7) will be simplified as 

 = arg min 

X 

tr 
(
B 

T B 

)1 / 2 + ρg ( X ) . (8)

Considering tr ( B 

T B ) 1 / 2 = ‖ B ‖ ∗ and B = A 

2 then (8) ultimately

ecomes (1) . 

.2. Why use the distribution (3) ? 

In the following, the rationality of the proposed distribution

3) will be analyzed. Considering that B is the matrix function as-

ociated with X and connecting (3) , the distribution of X can be

oncisely express as 

 ( X ) = C exp 

(
− 1 

2 
tr 

(
B 

T B 

)1 / 2 
)
. (9)

Let L = ( B 

T B ) −1 / 2 , then (9) can be equivalently written as 

 ( X ) = C exp 

(
− 1 

2 
tr 

((
B L 1 / 2 

)T (
B L 1 / 2 

)))
, (10)



L. Luo, J. Yang and Y. Zhang et al. / Pattern Recognition 91 (2019) 147–161 151 

Fig. 3. Correlation map of elements in BL 1/2 which corresponds to Fig. 1 (b). 

Fig. 4. (a) Original image, (b) recovered image, (c) noise image A 1 . 
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Denote Z = B L 1 / 2 , then we have 

 ( Z ) = C exp 

(
− 1 

2 
tr 

(
Z 

T Z 

))
, (11) 

Thus, using the distribution (9) to characterize matrix variate X

s equivalent to assuming that the induced matrix variate Z = B L 1 / 2 

ollows independent Gaussian distribution (11) . In the following, it

s verified that matrix variate Z actually follows independent Gaus-

ian distribution. 

Firstly, it is shown that L 1 / 2 can alleviate the correlation be-

ween pixels of random matrix variate B . Based on the experi-

ental setting in Fig. 1 (b), 100 new matrices with dimensions of

4 × 21 (each image is denoted by B ) are generated. Now multi-

lying B by L 1 / 2 , one obtains 100 random matrices Z = BL 1 / 2 . The

orrelation map of elements in Z is shown in Fig. 3 , from which
Fig. 5. The empirical distributions and the fitted di
e can see that the correlations of pixels in Z are weaker than B and

he elements in Z become independent approximately. 

Next, we show that Z = BL 1 / 2 approximately follows matrix

ariate Gaussian distribution. Fig. 4 shows an original image (size

s 450 × 300) with scarf and slight illumination, and one can de-

ompose (a) into the recovered term (b) and noise term (c) which

s denoted by A 

1 . Using the similar strategy in the previous exper-

ment, A 

1 is partition into 30 × 20 blocks, where each block owns

 size of 15 × 15. Thereby a new matrix B is obtained, each ele-

ent of which consists with the nuclear norm of the correspond-

ng block. Fig. 5 (a) delineates B fitted by different distributions.

ne can see that Gaussian and Laplacian distributions are far away

rom empirical distribution. Fig. 5 (b) shows the fitted distributions

ith regard to BL 1 / 2 by different models. Compared with B , the em-

irical distribution of BL 1 / 2 more approaches Gaussian distribution. 

The above analysis reveals that the induced matrix variate Z =
L 1 / 2 approximately follows matrix variate Gaussian distribution 

nd pixels in Z can be considered to be approximately indepen-

ent. Thus, the effect of matrix L 1 / 2 is indeed to alleviate the cor-

elations between pixels in matrix B and make the matrix variate

 approximately Gaussian. It leads to that the distribution (11) is

easonable for depicting the matrix variate Z since it provides an

ptimal characterization for Gaussian data. Back to the distribution

9) , it is evident that using it to constrain B is closer to the real dis-

ribution of B than other distributions. This explains the rationality

f model ( 1 ) from the statistical viewpoint. It is also noteworthy that

he above analysis focuses on the matrix B , which represents the

lobal structure of the original matrix A 

1 . As for the local struc-

ures of A 

1 , the similar results can be obtained. 

. Two applications of NSNM 

In this Section, we apply the proposed method to matrix re-

ression and completion, respectively. 

.1. Nesting-structured nuclear norm based matrix regression 

For face recognition, given a dictionary M = { M 1 , M 2 , . . . , M n },

here M i ∈ R n × m ( i = 1 , . . . , n ) is a 2D image matrix. Then, we can

se the dictionary M to represent a test image D ( ∈ R n × m ) linearly

s follows: 

 = x 1 M 1 + x 2 M 2 + , . . . , + x n M n + E , (12)

here { x 1 , x 2 , . . . , x n } is a set of representation coefficients,

 1 M 1 + x 2 M 2 + , . . . , + x n M n is the reconstructed image and E is

he representation residual. By defining the linear mapping
stributions of the induced image B and BL 1/2 . 
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Table 2 

The Schemes for Characterizing Residual Term in Some Existing Methods. 

SRC CRC LRC RLRC RSC CESR SSRC [25] NMR NL 1 R [6] 

L 1 or L 2 norm L 2 norm Robust M-estimator Structures sparsity induced norm Nuclear norm Nuclear-L 1 norm 
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(  
from R n to R n × m : M 

(x ) = x 1 M 1 + x 2 M 2 + , . . . , + x n M n , where x =
[ x 1 , x 2 , . . . , x n ] 

T . Then, the formula (12) can be expressed as 

D = M 

(x ) + E . (13)

Eq. (13) can be viewed as the general linear regression model. 

Let f (x ) = D − M 

(x ) and 

g (x ) = ‖ x ‖ 1 in problem (1) , then we

can obtain a nesting-structured nuclear norm based matrix regres-

sion (Nesting-NMR) with L 1 regularization as follows: 

min 

x 
‖ 

D − M 

(x ) ‖ ∗, w i j , ∗, σl 
+ ρ‖ 

x ‖ 1 . (14)

Compared with some recent methods, such as CRC [38] , SRC

[39] , LRC [40] and the scheme proposed in [41] , there exist three

significant advantages for model (14) . Firstly, CRC, SRC and LRC

need to stretch the error matrix into a vector in advance. It is un-

reasonable evidently for some structural noise caused by illumina-

tion, occlusion or real disguises due to the correlations between

pixels. Our method directly considers the matrix form of error

term: D − M 

(x ) and does not change the location of each element

in error matrix, thus, the spatial structure in error image is preserved .

Secondly, these existing methods generally use vector-level norm,

such as L 1 or L 2 -norm, to constrain residual term. From the statis-

tical meaning, L 1 or L 2 -norm provides an optimal characterization

for some data following independent Laplace or Gaussian distribu-

tion. As shown in Fig. 5 (a), the distributions of some practical noise

will be extremely complicated, thus, independent Laplace or Gaus-

sian distribution cannot characterize perfectly them. Compare with

these known distributions, the proposed distribution ( 3 ) is closer to

the real distribution of some structural noise . Finally, NMR also em-

phasizes the global structural information of noise, but it overlooks

the local structure. Our method takes local and global structures of

residual term into joint consideration , thus, it exploits the spatial

structure more effectively than NMR. 

Remark 2. It should be noted that RLRC [42] , RSC [43] and CESR

[44] use robust M-estimator to fit some practical noise, but they

are still dependent of the independent identically distributed hy-

pothesis, which does not consist with some real- world noise on

account of correlations between pixels. Although SSRC [25] at-

tempts to embed the tree structure into noise and use mixed (L 1 ,

L 2 ) or (L 1 , L ∞ 

) norm characterize the spatially contiguous noise,

these two norms only exploit the sparsity attribute among groups

and the spatial structure information (as shown in Fig. 1 (b)) caused

by different groups is still neglected. For clarity, we list some ex-

isting approaches for characterizing residual term in Table 2 . 

To use Algorithm 1 to solve model (14) , we first need to cal-

culate the sub-gradient of the first part ‖ D − M 

(x ) ‖ ∗, w i j , ∗, σl 
with

regard to x in the objective (14) . Let A = D − M 

(x ) , 

B = 

⎛ 

⎜ ⎜ ⎝ 

b 11 b 12 . . . b 1 q 
b 21 b 22 . . . b 2 q 

. . . 
. . . 

. . . 
. . . 

b p1 b p2 . . . b pq 

⎞ 

⎟ ⎟ ⎠ 

, 

and h 

(B ) = ‖ B ‖ ∗, where each b 
i j 

= w i j ‖ A 

i j 
‖ ∗ (as shown in Fig. 2 ).

According to the chain rule, we can compute the partial derivative

of h 

(B ) associated with x i as follows: 

∂ h 

( B ) 

∂ x i 
= T r 

[ (
∂ h 

( B ) 

∂B 

)T 
∂B 

∂ x i 

] 

, (15)
Let P �Q 

T is the singular value decomposition of the matrix B ,

hen we have P Q 

T ∈ ∂ ‖ B ‖ ∗ = ∂h(B ) . Meanwhile, 

∂B 

∂x 

= 

⎛ 

⎜ ⎜ ⎜ ⎝ 

∂ b 11 

∂x 

∂b 12 

∂x 
. . . 

∂b 1 q 
∂x 

∂b 21 

∂x 

∂b 22 

∂x 
. . . 

∂b 2 q 
∂x 

. . . 
. . . 

. . . 
. . . 

∂b p1 

∂x 

∂b p2 

∂x 
. . . 

∂b pq 

∂x 

⎞ 

⎟ ⎟ ⎟ ⎠ 

. 

For each A ij , we assume its SVD is P ij �ij Q ij 
T , where P 

i j 
∈

 

p 
i j 

×r 
i j , �

i j 
∈ R 

r i j ×r i j , Q 

i j 
∈ R 

q 
i j 

×r 
i j , and r 

i j 
is the rank of A ij , then it

s easy to see that w 

i j 
M 

i j 
( P 

i j 
Q i j 

T ) is a sub-gradient of b ij with re-

ard to x , where M 

i j 
: R 

p 
i j 

×q 
i j → R 

n is the adjoint mapping of M 

(·) ,
.e., M 

i j 
( X 

i j 
) = ( tr ( M 1 , i j 

T X 

i j 
) , tr ( M 2 , i j 

T X 

i j 
) , . . . , tr ( M n, i j 

T X 

i j 
) ) . Let

 

i j 
= w 

i j 
M 

i j 
( P 

i j 
Q i j 

T ) , and y 
i j,k 

denote the k th element of y ij .

hen, 

 ( k ) = 

⎛ 

⎜ ⎜ ⎝ 

y 
11 ,k 

y 
12 ,k 

. . . y 
1 q,k 

y 
21 ,k 

y 
22 ,k 

. . . y 
2 q,k 

. . . 
. . . 

. . . 
. . . 

y 
p1 ,k 

y 
p2 ,k 

. . . y 
pq,k 

⎞ 

⎟ ⎟ ⎠ 

∈ 

∂U 

∂ x k 
. 

Thus, T r[ ( P Q 

T ) 
T 

Y (k ) ] ∈ 

∂ g (B ) 
∂ x k 

. 

By the above analysis, we can obtain a sub-gradient of

 D − M 

(x ) ‖ ∗, w i j , ∗, σl 
w. r. t. x : w 1 = [ w 1 , w 2 , . . . , w n ] , where each

 k = T r[ ( P Q 

T ) 
T 

Y (k ) ] , k = 1 , 2 , . . . , n . Since the sub-differential of

 x ‖ 1 w. r. t. x can be written as w 2 = sgn (x ) , where sgn (·) denotes

he symbolic function, then a sub-gradient of J(x ) = f(x ) + ρg(x ) is

ltimately expressed as 

 = w 1 + ρw 2 . (16)

Since the estimated variate is a vector in model (14) , then all

ppercase letters in Algorithm 1 will be rewritten as lowercase

etters in this subsection. Then, the core iteration in Algorithm 1 ,

amely step 1, becomes 

 

t+1 = v t − μt w 

t , (17)

.2. Nesting-structured nuclear norm based matrix completion 

The matrix completion aims at recovering a low-rank matrix

rom partial observations of its entries. Several important real-

orld problems can be cast as a matrix completion problem, in-

luding remote sensing, system identification and recommenda-

ion systems. Utilizing nuclear norm minimization, Candès and

echt [45] first investigated the noiseless setting for matrix com-

letion. Subsequently, Candès and Plan [46] further showed that

atrix completion is provably accurate by nuclear norm mini-

ization when the few observed entries are corrupted with a

mall amount of noise. Along with these theoretical results, a

arge number of effort s have been recently concentrated to develop

ow-computational yet effective algorithms to cope with nuclear

orm minimization for matrix completion, such as interior-point

ethod, singular value thresholding, Alternating Direction Method

f Multipliers, singular value projection, accelerated proximal gra-

ient method and so on. To better approximate the rank function,

u et al. [47] introduced truncated nuclear norm regularization

TNNR) to characterize the matrix variate. Overall experiments on
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ynthetic data and real visual data show the advantages of trun-

ated nuclear norm, but it still confronts SVD for a large-scale ma-

rix, and the two-step strategy will consume a large amount of

ime. For clarity, we first present the detailed definition of matrix

ompletion in the following. 

Suppose that there exists a location set � of size l × k such that

he x ij ( x ij is an element of matrix X ∈ R n × m ) is observed if and

nly if ( i, j ) ∈ �. It is also assumed that � is sampled uniformly

t random. Define P �(X ) as the orthogonal projection of X onto

he subspace of matrices that vanish outside. We aim at recover-

ng X from P �(X ) . Combining model (1) , let f (X ) = X and 

g (X ) =
 P �(X ) − P �(D ) ‖ 2 

F 
, then we can obtain a nesting-structured nu-

lear norm minimization for matrix completion (NNC) as follows:

in 

X 
‖ 

X ‖ ∗, w i j , ∗, σl 
+ ρ‖ 

P �( X ) − P �( D ) ‖ 

2 
F , (18) 

The statistical meaning of (18) can be obtained by using the

imilar technique as in Section 3 . The difference is that we need

o exchange the roles of f (X ) and 

g (X ) . Compared to the popu-

ar nuclear norm minimization for matrix completion, the model

 18 ) shares the lower time completion since the large-scale matrix

 is partitioned into several small blocks . Observing that our view-

oint is originated from the spatial dependence between pixels of

 , and combining the statistical meaning of nesting-structured nu-

lear norm , we can see that the proposed problem ( 18 ) captures the

lobal structure of X as well as the local structure more fully than the

eneral nuclear norm minimization. 

In order for achieving the optimal solution of (18) by

lgorithm 1 , we first need to acquire a sub-gradient of ‖ X ‖ ∗, w i j , ∗, σl 

ith regard to X . As in Section 2.1 , we view X as the matrix A ,

hen we have PQ 

T ∈ ∂‖ B ‖ ∗ . Let s = ( Vec ( Q P 

T ) ) T , where Vec (·) is

n operator converting a matrix into a vector, then a sub-gradient

f ‖ X ‖ ∗, w i j , ∗, σl 
with regard with X can be expressed as: 

 1 = 

⎛ 

⎜ ⎜ ⎝ 

W 11 W 12 . . . W 1 q 

W 21 W 22 . . . W 2 q 

. . . 
. . . 

. . . 
. . . 

W p1 W p2 . . . W pq 

⎞ 

⎟ ⎟ ⎠ 

, (19) 

here W i j = s i + i ∗( j−1) P 

i j 
Q 

T 
i j 

. 

Meanwhile, the gradient of g (X ) = ‖ P �(X ) − P �(D ) ‖ 2 
F 

can be

ritten as W 2 = 2( P �( X ) − P �(D ) ) . Thus, we can get a sub-

radient of J = f(X ) + ρg(X ) as: W = W 1 + ρW 2 . Then, the step 1

n Algorithm 1 can be written as: 

 

t+1 = V 

t − μt W 

t , (20) 

Compared to TNNR, our method computes the SVD on some small-

cale matrices and does not carry out the nesting loop. 

emark 3. By (17) and (20) , we see that Algorithm 1 is very sim-

le and can be applied to a far wider variety of problems than

ther methods such as ADMM, gradient based methods and New-

on’s method. 

. Convergence and complexity analysis 

From the forcing descent step, namely step 2 in Algorithm 1 ,

t holds that the sequence { J ( X 

t ) } is decreasing monotonously, i.e.,

 ( X 

t+1 ) ≤ J ( X 

t ) for all t ≥ 0. Connecting J ( x t ) ≥ 0 , then the known

onotone bounded theorem implies that the objective function

equence {J( x t )} generated by Algorithm 1 can ultimately achieve

t an accumulation point as t → ∞ . Therefore, the convergence of

lgorithm 1 does not rely on the convexity of the problem (1) .

hen, given a parameter ɛ > 0, it is enough for Algorithm 1 that

e only need to adopt the following termination criterion: 

 J ( X 

t+1 ) − J ( X 

t ) | ≤ ε, (21) 

here | · | denotes the absolute value function. 
.1. The choice of step size rule 

By a series of experiments, we find that the nonsummable di-

inishing rule [29] can obtain the better performance both in

peed and accuracy. Thus, throughout this paper, μt = ξ/ 
√ 

t + 1 ,

here ξ ∈ [0.01, 0.1]. 

The running time of the proposed Algorithm 1 is mainly

mbodied in calculating the sub-gradient of the function

 f (X ) ‖ ∗, w i j , ∗, σl 
for the first step, which is closely related

o the designed nesting structure in advance. For the sub-

atrix A ij of dimensions p ij × q ij , where we assume p ij ≥ q ij and

p i j = n/p, q i j = m/q for all 1 ≤ i ≤ n , 1 ≤ j ≤ m , the time complexity

f performing SVD is O ( p ij q ij 
2 ). For the induced matrix B with size

 × q , the time complexity of performing SVD is O ( pq 2 ), where

 ≥ q is assumed. Since we only consider the second layer in Fig. 2 ,

he total time complexity for Algorithm 1 is O (pq p 11 q 11 
2 + p q 2 ) . 

.2. The comparison with nuclear norm minimization 

For the nuclear norm minimization, the SVD is implemented on

he original matrix A with dimensions of n × m . Assuming m ≤ n ,

hen the time complexity in the designed algorithm generally is

 ( nm 

2 ) [56,57] . Because p, q, p ij and q ij < n or m , we can obtain

hat pq p 11 q 11 
2 + p q 2 < n m 

2 by the certain partition strategy. Par-

icularly, suppose that m = n = 100 , then the complexity of nu-

lear norm minimization is O (10 6 ), while our method can achieve a

omplexity of O (10 4 ). Therefore, compared with nuclear norm min-

mization, the proposed strategy greatly reduces the time complex-

ty. 

. Experiment and analysis 

In this Section, we implement face recognition on four standard

ace databases, namely the Extended Yale B database, the AR face

atabase, Multi-PIE database and FERET database, to validate the

obustness of model (14) for dealing with the structural noise. Sev-

ral experiments on both synthetic data and real visual data are

lso conducted to show the effectiveness of model (14) for matrix

ompletion. In this Section, all weights w ij are set as 1. 

In face recognition experiments, the ratio of nesting-structured

uclear norm of representation residual and L 2 norm of coefficients

or each class is utilized to measure the distance between recon-

truction image and classes, that is, 

 i ( D ) = ‖ M 

( x 

∗) − M 

( πi ( x 

∗) ) ‖ ∗, w i j , ∗, σl 
/ ‖ 

πi ( x 

∗) ‖ 2 , 

or i = 1 , . . . , k, where π i ( x 
∗) is a vector whose only nonzero en-

ries are the entries in x ∗ that are associated with Class i, and x ∗

s the optimal representation coefficient obtained by Algorithm 1 .

hus, the classification rule is defined as: if r l (D ) = min 

i 
r i (D ) , then

 belongs to Class l . 

.1. Databases 

The AR face database [48] contains over 40 0 0 color face images

f 126 people (70 men and 56 women), including frontal views of

aces with different facial expressions, lighting conditions and oc-

lusions. The pictures of most persons were taken in two sessions

separated by two weeks). Each section contains 13 color images

nd 120 individuals (65 men and 55 women) participated in both

essions. The images of these 120 individuals were selected and

sed in our experiment. We manually cropped the face portion of

he image and then normalized it to 50 × 40 pixels. 

The extended Yale B face database [49] contains 38 human sub-

ects under nine poses and 64 illumination conditions the light
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Fig. 6. (a) Seven training samples for one person from the extended Yale B database (b) Twelve test samples for one person from the extended Yale B database. 

Table 3 

The maximal recognition rates (%) of SRC, LRC, CRC, RSC, RLRC, CESR, SSEC, SSRC, NMR NL 1 R and 

nesting-NMR for multiple random occlusions on the Extended Yale B face database. 

SRC CRC LRC RLRC RSC CESR SSEC SSRC NMR NL 1 R Nesting-NMR 

41.7 14.7 18.6 45.9 46.7 42.5 18.6 44.1 47.4 47.8 69.5 
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source direction and the camera axis. The 64 images of a subject in

a particular pose are acquired at camera frame rate of 30 frames/s,

so there is only small change in head pose and facial expression

for those 64 images. All frontal-face images marked with P00 are

used, and each image is resized to 42 × 48 pixels and 96 × 84 pix-

els, respectively. 

The CMU Multi-PIE database [50] contains images of 337 dif-

ferent subjects with variations in pose, expression and illumina-

tion. Individual attendance varies from 249, 203, 230 and 239

for Sessions 1–4. In our experiment, we use the frontal images

with different illuminations and neutral expression. We manually

cropped the face portion of the image and then normalized it to

60 × 45 pixels. 

The FERET database [51] contains a total of 13,539 face images

of 1565 subjects. The images vary in size, pose, illumination, fa-

cial expression, and age. We selected 1400 images of 200 indi-

viduals (each one has seven images). Each image was cropped to

40 × 40 pixels. 

6.2. Experiments using the Extended Yale B database 

We design two groups of experiments based on the Extended

Yale B database. The first experiment is used to test the advan-

tage of our algorithm for dealing with face recognition with artifi-

cial occlusion. To be fair, we use the same experiment setting as in

[1] . Here Subsets 1 and Subsets 3 of Extended Yale B are utilized

for training and testing, respectively. All the face images are re-

sized to 96 × 84. We add five unrelated randomly block images into

each test image in Subset 3. To be challenging, the locations of five

block images are limited to some key parts in a face (but small-

amplitude random changes), e.g., eyes, nose and mouth. The train-

ing samples and test samples for one person are shown in Fig. 6 .

The recognition rates of LRC [40] , SRC [39] , CRC [38] , RSC [43] ,

RLRC [42] , CESR [44] , SSEC [52] , SSRC [25] , NMR [3] , NL 1 R [6] and

Nesting-NMR are summarized in Table 3 . From Table 3 , we can

see that the advantage of the Nesting-NMR is quite evident, which

achieves an improvement of 21.7% than the second best method:

NL 1 R (47.8%). Although both NMR and NL 1 R consider the global

structure of the error image, the ignoring of local structure leads to

the undesired performance. Meanwhile, what is noteworthy is that

NMR and NL 1 R obtain the better results than other methods, which

implies that it is indeed necessary to consider the structure of the

error image in regression based models. Among these vector based

methods, RSC (46.7%) and RLRC (45.9%) show some advantages as
ompared to SRC (41.7%) and LRC (18.6%), which demonstrates the

ffectiveness of M-estimator for characterizing noise image. The

bove results tell us that exploiting fully the structural informa-

ion of noise image can effectively promote the performance of

ace recognition. 

The second experiment is used to verify the robustness of the

roposed algorithm to illumination. Under the settings of the pre-

ious experiment, Subset 1 is chosen as training images. Subset 4

nd 5 are selected as testing images, respectively. Fig. 7 exhibits

he samples for one person. Table 4 lists the results of some latest

pproaches and the proposed method. We can find that Nesting-

MR overall achieves much higher recognition rates than the other

ethods. Meanwhile, it is seen that some image-level methods,

uch as NMR, NL 1 R and Nesting-NMR show the better results than

ector-level methods such as SRC and CRC, which demonstrates

hat the face recognition performance benefits from the exploit-

ng of the spatial structure for the face images. For Subset 4, at

east 5.5% improvement is achieved by Nesting-NMR as compared

o RLRC. For Subset 5, the advantage of Nesting-NMR is more ap-

arent. The recognition rates of other methods are all less than

0%, while that of the proposed method reaches 63.5%. It seems

hat the effect of the structure information to recognition perfor-

ance become more important with the increasing of illumination

evel. Therefore, considering the spatial structure of an error im-

ge is indispensable in face recognition with illumination changes.

eanwhile, connecting the global with local structures of the error

mage can further improve the performance of face recognition. 

.3. Experiments using the AR database 

We evaluate the effectiveness of Nesting-NMR in coping with

ace recognition with real disguise on the AR database. Twenty-

ix face images of these 120 individuals are selected and used in

ur experiment. Eight images of them are used for training, which

ary as follows: (a) neutral expression, (b) smiling, (c) angry, (d)

creaming, (e)–(h) are taken under the same conditions. Eighteen

mages of them are used for testing, but we will set two differ-

nt cases: (1) face images with glasses: Images from the testing

et vary as follows: (i) wearing sunglasses (j) wearing sunglasses

nd left light on (k) wearing sunglasses and right light on, and (l)–

n) are taken under the same conditions as (i)–(k). (2) face images

ith scarf: Images from the testing set vary as follows: (i) wearing

carf (j) wearing scarf and left light on (k) wearing scarf and right

ight on, and (l)–(n) are taken under the same conditions as (i)–(k).



L. Luo, J. Yang and Y. Zhang et al. / Pattern Recognition 91 (2019) 147–161 155 

Fig. 7. Sample images with different illumination conditions from the Extended Yale B database. 

Fig. 8. The sample images for one person from AR face database. 

Table 4 

The maximal recognition rates (%) of SRC, LRC, CRC, RSC, RLRC, CESR, SSEC, SSRC, NMR NL 1 R and nesting-NMR for 

illumination changes on the Extended Yale B face database. 

Cases SRC CRC LRC RLRC RSC CESR SSEC SSRC NMR NL 1 R Nesting -NMR 

Subset 4 78.4 88.0 87.6 89.7 80.5 36.8 20.6 79.3 90.2 93.9 95.2 

Subset 5 28.8 35.7 42.2 43.2 36.7 22.2 12.5 32.4 47.9 48.1 63.5 

Table 5 

Recognition rates (%) of LRC, CRC, SRC, CESR, RSC, SSEC, NMR, NL 1 R and nesting-NMR for real disguise on the AR 

Database. 

Cases SRC CRC LRC RLRC RSC CESR SSEC SSRC NMR NL 1 R Nesting -NMR 

Glasses 94.5 88.5 91.2 94.7 92.2 95.1 82.1 95.2 95.3 95.5 96.5 

Scarf 54.6 61.0 27.6 52.9 60.2 34.9 42.9 61.3 65.0 64.8 68.5 
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r  
ll the face images are resized to 45 × 30. Thus, for each case, the

otal number of training samples is 840. Fig. 8 presents the sample

mages for one person from AR database. 

In all cases mentioned above, SRC, LRC, RLRC, CRC, RSC, CESR,

SEC, SSRC, NMR, NL 1 R and the proposed Nesting-NMR are, respec-

ively, used for face classification. The maximal recognition rate of

ach method is compared in Table 5 , from which we find that

esting-NMR gets the better results than state-of-the-art meth-

ds. For face recognition with glasses, the performances of CESR

nd SRC is very competitive, which achieve the recognition rates

f 95.1% and 94.5%, respectively. For scarf disguise, NMR works

he second best, but lags behind our method by 3.5%. As the pre-

ious experiments, CRC (88.5%, 61.0%) and LRC (91.2%, 27.6%) are

till not suitable for describing the structural noise, while some

tructural methods such as NL 1 R (95.5%, 64.8%) and SSRC (95.2%,

1.3%) present the better results. This experiment implies that the

roposed nesting-structured nuclear norm fits better to character-

ze real disguises than L 1 , L 2 or even nuclear norm. 

.4. Experiments using the multi-PIE database 

In this subsection, an experiment is conducted on the Multi-

IE database. There are 249 subjects in Session 1, and 166, 160,
75 subjects in Sessions 2, 3 and 4, respectively. The similar ex-

erimental setting as in [55] is adopted. We choose 7 frontal im-

ges with slight illuminations (Session 1) {05, 06, 07, 08, 15, 16, 17}

rom each subject as training images and another 7 frontal images

ith severe illuminations {00, 01, 02, 11, 12, 13, 19} per subject

rom Session 2 are used as test images. We add randomly three

rregular block occlusions, including tiger, butterfly and lotus, into

he test images to validate the robustness of our methods to illu-

ination plus irregular occlusion (as shown in Fig. 9 ). Table 6 lists

ecognition rates of all methods. It is clear that Nesting-NMR ob-

ains the highest recognition rate: 95.6%. NMR achieves the sec-

nd highest recognition rate: 94.3%. That means that 1.3% recogni-

ion errors can be avoided by using Nesting-NMR instead of NMR.

eanwhile, we also see that LRC and CRC are sensitive to irregu-

ar occlusion. Thus, we can draw a conclusion that the proposed

ethod is effective for face recognition with irregular occlusion,

hich implies the statistical meaning of Nesting-NMR is closer to

he nature of the structural noise. 

.5. Experiments using the FERET database 

In this part, a challenging experiment is designed to handle face

ecognition with pose, illumination and facial expression on FERET
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Fig. 9. The testing images for one person from Multi-PIE database. 

Fig. 10. The samples for one person from FERET face database. 

Table 6 

Recognition rates (%) of LRC, RLRC, CRC, SRC, CESR, RSC, SSEC, SSRC, NMR, NL 1 R and nesting-NMR for 

illumination variations on the Multi-PIE Database. 

SRC CRC LRC RLRC RSC CESR SSEC SSRC NMR NL 1 R Nesting -NMR 

94.1 63.3 68.1 93.8 91.7 94.2 81.6 94.5 94.3 94.2 95.6 

Table 7 

Recognition rates (%) of LRC, RLRC, CRC, SRC, CESR, RSC, SSEC, SSRC, NMR, NL 1 R and our methods on the FERET face database. 

SRC CRC LRC RLRC RSC CESR SSEC SSRC NMR NL 1 R Nesting-NMR 

72.95 ± 13.06 51.29 ± 13.23 72.12 ± 12.65 73.08 ± 13.60 73.06 ± 12.78 74.87 ± 14.07 59.75 ± 13.72 74.12 ± 14.89 71.63 ± 11.91 74.29 ± 12.9 76.67 ± 12.06 
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database. 7 images from FERET database for each subject are ran-

domly selected and in total 200 subjects are used for our train-

ing and test, and each image is resized to 40 × 40 pixels. Fig. 10

shows the samples of a person from this dataset. We choose a ran-

dom subset with 4 images per subject to form the training set

and take the rest for test. This experiment is repeated over 10

random splits of the data set. The average accuracy and the stan-

dard deviation of each algorithm are exhibited in Table 7 . Com-

pared with other robust methods such as SRC, RSC and RLRC, CESR

obtains better performance. But they are still inferior to the pro-

posed method. Nesting-NMR integrates the spatial structure of the

noise into modeling, while other methods do not take this infor-

mation into account. Thus, our algorithm obtains the leading re-

sults. In addition, standard deviation of Nesting-NMR is relatively

low as compared to CESR, that is, it is robust to different partition-

ing data. The above experiment further demonstrates that preserv-

ing the structural information of the noise image does contribute

to face recognition with pose, illumination and facial expression. 

6.6. Matrix completion on synthetic data 

We generate the rank-r matrix D as a product UV 

T , where U

and V are independent m × r matrices whose elements are inde-

pendent and identically distributed (i.i.d) samples from standard

Gaussian distribution N (0, 1). Thus, entries of D have mean 0 and

variance r . The locations of observed indices � are sampled uni-

formly at random. Let � be the percentage of observed entries

over m × m . We generate synthetic data X by X = D + λE , where

E is Gaussian white noise with zero mean and standard deviation

of one and λ is the noise level. Suppose that X sol is the recov-

ered solution by a certain algorithm. We define the total recon-

struction error by RE = ‖ X sol − D ‖ F / ‖ D ‖ F , which is a widely used

metric in matrix completion. Note that our programming environ-

ment is Matlab 2011, and all algorithms are implemented on a Core

Duo 2.93 GHz with 4 G RAM desktop. 
In this experiment, we first set � = λ = 0 . 5 , and select m =
0 0 0 and m = 10 0 0 0 , respectively. All the chosen algorithms are

un 20 times with the underlying rank r lying between 10 and 100.

o be fair, we try to choose the optimal parameters for all methods.

he mean errors for TNNR, SVP [53] , SVT [54] and our method are

eported in Fig. 11 (a) and (b), respectively. What is worth mention-

ng is that we consider TNNR-ADMMAP as TNNR since it gets the

est results in [47] . Compared with other methods, our approach

chieves higher accuracy. It is chiefly because our method com-

ines the global and local structures in modeling, which exploits

ully the structure information of X . Meanwhile, the result of TNNR

s considerably competitive. And the performance of SVT and SVP

s almost the same. 

Then, we fix the rank r = 100, m = n and � = λ = 0 . 5 . All the

hosen algorithms are run 20 times with the underlying size m

ying from 10 0 0 to 10,0 0 0. The average time consuming for all

ethods is compared in Fig. 11 (c). Since the proposed method car-

ies out SVD on the smaller matrices and avoids the nesting loop,

t consumes less time than TNNR. With the increasing of dimen-

ions, the advantage of the speed for our method becomes more

bvious. Additionally, it is found that the time consuming of SVT is

elatively high as compared to other methods. 

.7. Matrix completion on real visual data 

In order to verify the effectiveness of our algorithm on real

ata, as well as illustrate it in a visible approach, we apply the

esting-structured nuclear norm based matrix completion for im-

ge recovery. As a colored image is commonly represented as

hree matrices (containing red, green and blue components respec-

ively), we independently deal with each of three matrices and

ombine them together to obtain the final results. We compare

he proposed method with several representative matrix comple-

ion algorithms, including SVT, SVP and TNNR. Performances of

ifferent algorithms are evaluated by the well-known PSNR (Peak
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Fig. 11. (a) The reconstruction error versus the matrix rank for m = 10 0 0 ; (b) The reconstruction error versus the matrix rank for m = 10 0 0 0 ; (c) The time consuming versus 

the size of matrix from 10 0 0 to 10,0 0 0. 

Table 8 

The Comparison of PSNR Values and average running time (second) by different matrix comple- 

tion algorithms (corresponding to Fig. 12 ). 

Cases 

TNNR SVP SVT NNC 

PSNR Time PSNR Time PSNR Time PSNR Time 

Random mask 24.389 18.10 18.263 20.2 21.398 60.10 25.183 10.3 

Text mask 37.638 23.1 10.695 21.9 31.532 59.1 39.325 8.90 
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ignal-to-Noise Ratio) metric [43] . We try to tune the parame-

ers to be optimal of the chosen algorithms and report the best

esult. 

Two experiments on the real images are implemented. The

rst is a relatively easy matrix completion problem with random

ask, where the missing entries are randomly distributed on the

00 × 300 image (as shown in Figs. 12 or 13 ). Second experiment

ses text mask. It is generally agreed that image inpainting with

ext mask is more difficult since the observed pixels are not ran-

omly sampled and text mask may result in loss of important im-

ge information. We report our results in Figs. 12 and 13 . It is

een that the results of the compared methods are encouraging

or random mask, but SVP is still sensitive to text mask. Notice
hat the higher PSNR value represents the better performance. The

esults in Tables 8 and 9 further demonstrate the advantage of

ur method over the other methods. Therefore, considering the

tructural information (including local and global structures) does

lay a pivotal role in matrix completion problem. Next, we com-

are the time consuming of all methods for the above two ex-

eriment. Each of the above experiments is run 20 times and

e compute the average time consuming. The results are also

hown in Tables 8 and 9 , from which we find that our method

s still fastest. Especially, the time consuming of NNC is less

han half of TNNR. SVT is significantly more time-consuming than

VP. Thus, our method is reliable in both time consuming and

erformance. 
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Fig. 12. Comparison of image recovery by using different matrix completion algorithms for random mask. 

Table 9 

The Comparison of PSNR values and average running time (second) by different matrix comple- 

tion algorithms (corresponding to Fig. 13 ). 

Cases 

TNNR SVP SVT NNC 

PSNR Time PSNR Time PSNR Time PSNR Time 

Random mask 25.541 19.4 20.450 33.2 16.684 55.6 25.973 6.78 

Text mask 17.389 12.7 15.367 28.9 16.231 59.1 17.582 6.24 

Table 10 

The influence of different factorization strategies to the recognition performance on the Extended Yale B database. 

Factorization 1 × 1 3 × 3 4 × 4 6 × 6 8 × 7 12 × 12 16 × 14 24 × 21 48 × 42 96 × 94 

Cases Occlusion 43.2 59.3 65.2 67.2 69.5 68.5 62.0 61.2 52.7 47.4 

Subset 4 83.0 87.2 91.5 93.2 95.2 94.1 94.8 93.8 93.6 95.2 

Subset 4 45.1 53.9 60.7 62.7 63.5 62.1 61.2 59.2 50.8 47.9 

Table 11 

The influence of different factorization strategies to the recognition performance on the AR database. 

Factorization 1 × 1 3 × 3 5 × 3 5 × 5 5 × 6 9 × 10 15 × 15 45 × 30 

Cases Sunglasses 91.2 93.7 95.2 96.2 96.5 96.1 95.1 95.3 

Scarf 59.5 63.2 66.3 68.1 68.5 67.8 65.2 65.0 
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Fig. 13. Comparison of image recovery by using different matrix completion algorithms for random mask. 
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Fig. 14. The influence of different parameters ρ to the recognition performance on 

the Extended Yale B, AR, Multi-PIE and FERET databases. 

w  

f  

p  
.8. Performances of different factorization strategies 

We take the extended Yale B and AR databases for the examples

o investigate the optimal factorization approach in this subsec-

ion. Different factorization strategies are chosen to deal with face

ecognition with occlusion, illumination or real disguises (which

orresponds to Tables 3–5 ). The experimental results are listed in

ables 10 and 11 , respectively. It is seen that when p, q ∈ [5, 10],

he optimal recognition rates are achieved. In fact, each sub-matrix

ith dimensions of p × q (where p × q ∈ [5, 10]) can reflect the

ocal structure of original error image. Thus, such a factorization

trategy can capture the local structure information well, leading

o the outstanding performance. 

.9. The choice of parameters 

In this subsection, we discuss how the parameters in model

1) affect the performance of the proposed method. Throughout

his paper, the face images are carried out the normalization pro-

essing. This makes our method robust to different parameters. For

he convenience, all weights w 

1 
i j 

are set as 1. Thus, there is only a

arameter ρ in the proposed model. Fig. 14 shows the influence of

ifferent parameters ρ to the recognition performance on the ex-

ended Yale B ( Section 6.2 ), AR ( Section 6.3 ), Multi-PIE ( Section 6.4 )

nd FERET databases ( Section 6.5 ). From Fig. 14 , it is found that
hen ρ is around 10, the optimal recognition rates are obtained

or different face recognition scenarios. In addition, the choice of

arameters on matrix completion is also discussed. The similar
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Fig. 15. The influence of different parameters ρ to the recognition performance for 

matrix completion. 
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experiment setting as in Section 6.7 is used. The influence of differ-

ent parameters ρ to the matrix completion is exhibited in Fig. 15 ,

from which it is seen that the best results are achieved in the

range of [0.001, 0.01]. 

7. Conclusions 

Considering the structural information of the matrix variate has

become the hot topic in pattern recognition and computer vision.

This paper establishes a nesting matrix structure and uses it to in-

duce a nesting-structured nuclear norm. Based on this norm, we

present a nesting-structured nuclear norm minimization (NSNM)

model and develop an improved sub-gradient method to solve

it. NSNM captures effectively the global and local structures of a

matrix variate, and owns the lower time complexity than tradi-

tional nuclear norm minimization due to the effect of partition.

The analyzed statistical meaning shows fully the reasonability of

our method. What is more, the proposed framework is applied to

matrix regression and completion problems. In our opinion, the

main limit of our method is in dealing with sparse noise. Since our

method integrates the structural information of noise into model-

ing, its advantage is not obvious for sparse noises which are inde-

pendently generated. Meanwhile, our method may not handle well

non-aligned face recognition problem, which is the common lim-

itation of regression based methods. Therefore, in the future, we

need to develop an effective framework to overcome the above

limitations. We will analyze the essential attribute of the noise in

real data from statistical and physics viewpoints. Leveraging these

properties, we can automatically fit noise to improve the perfor-

mance of models. In addition, it is an interesting research direction

to provide the theoretical analysis for the NNC model. 
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