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Abstract: 
In contrast with PCA, the two-dimension presentation 

technique (TDP) developed recently is very efficient. With 
TDP, we can easily extract feature vectors of an image matrix 
by projecting the image matrix rather than the corresponding 
vector onto projecting axes. In this paper, we present complete 
properties of TDP in detail and the property of decorrelation 
associated with TDP is originally revealed. The differences 
and similarities between TDP and PCA are also analyzed and 
presented. Furthermore, Local-TDP approach is proposed to 
perform face recognition. Local-TDP aims to draw local 
characteristic of face images. Especially, Local-TDP appears 
to be beneficial to weaken the side effect on face recognition of 
varying imaging conditions. The possible reason is that the 
varying imaging conditions mainly bring strong difference for 
parts of the image, while the influence on other parts is little. 
As a result, the similarity between the extracted local features 
of two face images of one individual may become larger in 
comparison with holistic features of face images. The 
conducted experiment also indicates that Local-TDP is 
competent for extracting invariant features of face images 
with varying illumination.  
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1.  Introduction 

In the area of pattern recognition, principal component 
analysis (PCA) has been of wide concern. PCA has been 
applied to image processing, face detection, feature 
extraction [1,2,3]. It was also exploited in handprint 
recognition, human-made object recognition and industrial 
robotics [4,5,6]. Besides, applications on gesture 
recognition, face recognition and autonomous navigation of 
the technique were also available [7,8,9]. PCA can 
transform original sample space into a new one, in which 
components of data are uncorrelated to each other. In 
practice, the PCA technique is a very powerful tool of 
dimensional reduction. While the technique is applied to 

images, they should be expressed as vectors by 
concatenating rows (or columns) of the corresponding 
matrices in advance. Because the dimension of an image is 
usually large, applications on images of PCA usually bring 
high computational complexity. Moreover, the number of 
image samples is usually much less than the dimension of 
an image, so it is not assured that the corresponding 
covariance matrix of image samples can be estimated 
accurately [2]. For instance, if the resolution of an image is 

100100× , the dimension of the corresponding vector will 
be 10000. In this case, it is almost impossible to accurately 
estimate the covariance matrix using a small number of 
image samples.  

To overcome the above disadvantages for PCA to be 
applied to images, a novel technique, TDP, has been 
proposed recently [2,3]. On one hand, the technique can be 
viewed as an extension of PCA. On the other hand, unlike 
the traditional PCA, this technique is devoted to directly 
extracting features of image matrices. That is, for feature 
extraction based on the developed technique, it is not 
needed to transform each image into a vector in advance. 
Instead, the covariance matrix is directly computed using 
the image matrices. Consequently, its eigenvectors (i.e. 
projecting axes) can be worked out with low computation 
complexity. By projecting one image matrix onto the 
projecting axes, we can obtain features of the image. Note 
that the projection of one image matrix onto a projecting 
axis is still a vector, called feature-vector. It is demonstrated 
that the new-arisen technique is computationally much 
more efficient than PCA. Besides, when the method is 
applied for feature extraction, it can correspond to good 
classification performance [2].  

In this paper, the method that transforms an image 
matrix into a new two-dimensional matrix is termed 
two-dimension presentation (TDP) technique of images. In 
contrast, the traditional PCA technique may be called 
one-dimension presentation technique (ODP) of images, 
which transforms an image into a one-dimensional-vector 
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(i.e. the collection of all the features of one image forms a 
vector).  

The paper is organized as follows. In section 2 the 
TDP technique is presented. Section 3 reveals the properties 
of TDP, including the decorrelation property.  In section 3, 
we find that TDP is still formally analogical to PCA. It is 
helpful for us to understand that TDP is an extension of 
PCA. Experiments results are shown in section 4, and 
finally some conclusions are drawn in section 5. 

 
2.  TDP and its formulation 

2.1.  Introduction on TDP 

As we have presented in the last section, TDP aims to 
transform an image matrix into a novel one. In practice, 
2DPCA (two-dimensional PCA) is a successful TDP 
technique developed by Jian Yang, et al.[2,3]. According to 
[2], 2DPCA may be carried out as follows.  
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is defined as the covariance matrix of image matrices. 
nm

i RA ×∈  denotes the thi −  image in the collection of 

image samples, and 
−

A  is the mean of all the image 
samples. tG  is regarded as the generative matrix. In other 

words, the eigenvectors of tG  are taken as projecting 

axes. If duuu ,...,, 21  are the first d  eigenvectors 

corresponding to the largest d eigen-values 

dλλλ ≥≥ ,...,21 , duuu ,...,, 21  can be selected as 
projecting axes to extract features of image samples. Note 
that the projection of an image matrix A  onto iu  is 

computed according to ii Auv = , where iv  is a vector, 

i.e. a feature-vector. Consequently, A  can be transformed 
into a novel matrix [ ]dvvvB ...21=  based 

on all the projections of A  onto the d projecting axes.  
 

2.2.  The property of 2DPCA 

2DPCA is an extension of PCA, so we expect that 
some properties analogical to PCA can also hold for it. In 
the following, we will reveal new property of 2DPCA that 
has not been shown before. The existing properties are also 
presented. 

Property 1. tG  defined by (1) is a non-negative 
definite matrix [2]. 

In fact, property 1 is guaranteed according to formula 
(1). It is noted that PCA is a technique of decorrelation. If 
every sample is a m -dimensional vector and PCA 
transforms each sample into a novel vector with the size of 

)(1 mnn ≤× , the n  obtained components will be 
uncorrelated to each other. We also say that PCA can 
eliminate the correlation among the components of original 
samples. Generally, the generative matrix of PCA is defined 

to be ∑
=

−−

−−=
M

i

T
iit XXXX

M
S

1
))((1

, where iX  

denotes the thi −  sample, 
−

X  is the mean of all the 
samples.  

Actually, for 2DPCA, there is also a property very 
similar to the decorrealtion property of PCA. We define 
correlation between two feature-vectors, if  and jf , as 
follows. 

Definition 1. The correlation coefficient between 
feature-vector iv  and feature-vector jv  is defined to be  

( ) ( ) ( ) ( )( )jijiji vDvDvvvv ⋅= ,cov,ρ , 

where 
  ( ) ( ) ( )]][][[,cov jj

T
iiji vEvvEvEvv −−= , 

( ) ( ) ( )]][][[ ii
T

iii vEvvEvEvD −−= , 

( ) ( ) ( )]][][[ jj
T

jjj vEvvEvEvD −−= . 
Theorem 1. Feature-vectors are uncorrelated according 

to definition 1. In other words, ( )ji vv ,ρ  is equal to zero. 
Proof.  

 Because ii Auv = , we have 
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In fact, ( )[ ] ( )[ ][ ]AEAAEAE TT −− is always 

evaluated by tG . As a result, we have 

( ) jt
T
iji uGuvv =,cov . ju  is the thj −  eigenvector 

of tG , i.e. jjjt uuG λ= , so it is certain that 

( ) j
T
ijji uuvv λ=,cov . Obviously, if ji ≠ , then 
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( ) 0,cov =ji vv . As a result, ( ) 0, =ji vvρ  will be 
assured.  

 Hence, 2DPCA can be considered as a technique that 
tries to obtain uncorrelated feature-vectors, while PCA aims 
at obtaining uncorrelated feature components. Moreover, 
according to [2], the following theorem holds. 

Theorem 2. Among all potential TDP techniques, 
2DPCA is optimal with the minimum reconstruction error. 

On the other hand, from the point of view of 
mean-square error, it is also known that PCA is optimal of 
all potential OTP techniques. The above analysis clearly 
reveals the differences between 2DPCA and PCA. In 
addition, Theorem 1 and Theorem 2 are very helpful to 
understand the fact that as a TDP technique, 2DPCA is an 
extension of PCA. 

3.  Local-2DPCA approach  

Face recognition is a challenging task affected by a 
number of factors. For example, if one of the circumstances 
such as lighting conditions, facial expression or pose varies, 
the image of the face will also vary. It makes face 
recognition difficult. However, these variations may mainly 
affect some parts of the face image, while the other parts of 
the same face may be almost stable. On the other hand, 
holistic characteristic of face images seems to vary 
comparably with the imaging conditions. In other words, 
local characteristic of face images may become more useful 
for face recognition in comparison with holistic 
characteristic [10]. Thus, it is possible for us to perform 
personal identity more easily using local features of face 
images.. Hence, we develop Local-2DPCA technique for 
face recognition.  

Simply speaking, Local-2DPCA means that the 
2DPCA technique is applied for sub-images of original face 
images. For convenience, we divide one image into some 
rectangular sub-images, which are of the same size and can 
be presented by matrices with the same dimension.  

 Suppose that there are K  training images in total. If 
each image is divided into L sub-images, we will take all 
the sub-images as training samples of Local-2DPCA. In 
other words, for the Local-2sDPCA technique, the number 
of the training images is KL . The mean of all the training 

sub-images is ∑
=
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After eigenvectors of subΣ  are worked out, we can take 

the first c  eigenvectors as projecting axes to extract 
feature-vectors of the training sub-images and the test 
sub-images. Note that for Local-2DPCA, the number of all 
the feature-vectors of one image will be cL , if every 
sub-image is projected onto all the projecting axes, 
respectively. If pLpp BBB ,...,, 21  are the L  sub-images 

of image matrix pA , the feature-vectors of pA  can be 
worked out by 

LjcquBf qpjpjq ,...,2,1,,...,2,1, === . That is, the 

cL feature-vectors of pA are 

pLcpLpL

cpppcppp

fff

ffffff

,...,,

,...,,...,,,,...,,

21

2222111211
. 

4.  Experimental results 

An experiment is performed for face images with pose 
00 in Yale B database. For every person, there are 45 frontal 
face images (with pose “00”). They are sorted out from the 
database. Each of these images is cut as the size of 32×32 
pixels. Then they are used to construct a new database, 
called new Yale B database. The new database is divided 
into 4 subsets according to the azimuth angle and the 
elevation angle of the light source with respective to the 
camera axis. The azimuth angle and the elevation angle in 
the images of subset 1 are both smaller than 12 0 . Both the 
azimuth angle and the elevation angle in the images of 
subset 2 don’t exceed 25 0  and either of them is between 
20 0  and 25 0 . Subset 3 includes the images for which the 
azimuth angle and the elevation angle don’t exceed 50 0 and 
either of them is between 35 0  and 50 0 . Subset 4 includes 
the other images. Fig.1 shows images of the same face to 
illustrate the difference between face images in different 
subsets.  Subset 1 is regarded as the training set, and the 
images in the other sets are taken as test samples. 

 
 

 
(a) Subset 1 
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         (b) Subset 2 

        
         (c) Subset 3 

     
            (d) Subset 4 
Figure 1. The face images of the same individual. (a) The images in subset 1. (b) The images in subset 2. (c) The images in 
subset 3. (d) The images in subset 4.
 

The experimental results of PCA, 2DPCA and 
Local-2DPCA are shown in Figure.2. Note that when 
Local-2DPCA is applied, each image is divided into 4 
sub-images with the same size. It is revealed by Figure 2(a) 
that while the number of the eigenvectors used for feature 
extraction increases, the recognition error rates of the three 
methods all descend. Besides, Local-2DPCA achieves the 
lowest error rate among the three methods. Further, based 
on a few eigenvectors, the classification performance of 

Local-2DPCA is very prominent in contrast with the other 
methods. Especially, (b), (c) and (d) show that the 
Local-2DPCA technique strongly outperforms the other two 
methods for the subset whose illumination is much different 
from the training set i.e. subset 1. It is noticeable that with 
other schemes of dividing image, similar results are still 
available. Hence, we may say that Local-2DPCA is very 
effective to classify the face images with varying 
illumination. Based on this technique, the side effect on 
face recognition of various illuminations can be weakened.
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（a） The total recognition error rates of the three methods. The average of the recognition error rates on subsets 

2,3,4 is called total recognition error rate. 
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(b) The recognition error rates on subset 4 
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(c) The recognition error rates on subset 3 
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(d) The recognition error rates on subset 2 
 
Figure 2. Experimental results on Yale B. The x-axis denotes the number of the eigenvectors used for feature extraction, 
while the y-axis denotes recognition error rates.  
 

5. Conclusion 

TDP techniques can be used to directly extract features 
of image matrices. By using this technique, an image matrix 
can be transformed into a novel one with tractable 
computation. 2DPCA is one of the TDP techniques with 
successful applications. In this paper, we firstly show that 
the “decorrelation property” also holds for 2DPCA. That is, 
2DPCA aims to obtain feature-vectors uncorrelated to each 
other. With this property, 2DPCA appears to be consistent 
with PCA in methodology.  

 A novel approach, called Local-2DPCA, is developed 
in this paper. With Local-2DPCA, we can segment a face 
image into some rectangular regions and perform feature 
extraction for all the regions, respectively. Note that for the 
face databases with varying illumination, Local-2DPCA can 
outperform 2DPCA, with higher recognition accuracy. One 
underlying reason is that varying illumination has different 
effects on different parts of a face image. Based on the 
extracted features, the similarity between two images of the 
same face can become larger, in contrast with the holistic 
features extracted by 2DPCA. Consequently, face 
recognition can be performed with higher accuracy. The 
experiment illustrates that our method is feasible and 
powerful.  
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