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a b s t r a c t

In this paper, we propose a coarse to fine K nearest neighbor (KNN) classifier (CFKNNC). CFKNNC differs
from the conventional KNN classifier (CKNNC) as follows: CFKNNC first coarsely determines a small num-
ber of training samples that are ‘‘close’’ to the test sample and then finely identifies the K nearest neigh-
bors of the test sample. The main difference between CFKNNC and CKNNC is that they exploit the
‘‘representation-based distances’’ and Euclidean distances to determine the nearest neighbors of the test
sample from the set of training samples, respectively. The analysis shows that the ‘‘representation-based
distances’’ are able to take into account the dependent relationship between different training samples.
Actually, the nearest neighbors determined by the proposed method are optimal from the point of view of
representing the test sample. Moreover, the nearest neighbors obtained using our method contain less
redundant information than those obtained using CKNNC. The experimental results show that CFKNNC
can classify much more accurately than CKNNC and various improvements to CKNNC such as the nearest
feature line (NFL) classifier, the nearest feature space (NFS) classifier, nearest neighbor line classifier
(NNLC) and center-based nearest neighbor classifier (CBNNC).

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

The KNN classifier has been widely used in the fields of pattern
classification and machine learning. For example, the KNN classi-
fier has been applied to feature selection (Tahir et al., 2007) and
dimensionality reduction (Villegas and Paredes, 2011). As we
know, the conventional KNN classifier (CKNNC) (Cover and Hart,
1967) simply uses the K training samples that are closest to the
test sample to classify it. Owing to the simplicity of the classifica-
tion rule of CKNNC, many improvements have been proposed for
achieving a higher accuracy.

As pointed out by Weinberger et al., the accuracy of K nearest
neighbor (KNN) classification significantly depends on the metric
used to compute distances between different samples (Weinberger
et al., 2009; Weinberger et al., 2006). A number of metrics have
been proposed to improve CKNNC, such as the Mahalanobis dis-
tance metric (Weinberger et al., 2009; Park et al., 2011), adaptive
distance (Wang et al., 2007) and local metric (Noh et al., 2010). Li
and Lu defined a distance between a test sample and a ‘‘line’’ con-
structed by two training samples from a same class and extended
the nearest neighbor classifier to the nearest feature line (NFL) clas-
sifier (Li and Lu, 1999). NFL treats all points on feature lines which
pass through each pair of training samples from the same class as

virtual training samples. If a class has n training samples, then
NFL obtains n(n � 1)/2 feature lines for this class. Chien and Wu
(Chien and Wu, 2002) devised the nearest feature plane (NFP) and
the nearest feature space (NFS) classifiers, which used the distance
between the test sample and a plane and the distance between the
test sample and the space spanned by the training samples from a
class, respectively. NFP classifies a test sample to a class that con-
tains the nearest feature plane to the test sample and NFS classifies
a test sample to a class whose feature space is closest to the test
sample. NFL, NFP and NFS can be regarded as nearest neighbor clas-
sifiers with some constraints. A modification of NFL, center-based
nearest neighbor classifier (CBNNC) calculated only the distances
between the test sample and the line passing through a sample
point with known label and the center of the sample class (Gao
and Wang, 2007). Nearest neighbor line classifier (NNLC) is also a
modification of NFL NNLC exploits only the feature line whose cor-
responding prototypes are the neighbors of the test sample and is
more computationally efficient than NFL (Zheng et al., 2004). More-
over, some researchers changed the distance structure of samples
by setting a weight to each feature component of the sample (Wang
et al., 2007). For example, Hu et al. proposed an approach to learn
sample weights for enlarging the margin by minimizing margin
based classification loss (Hu et al., 2011).

Recently, the dynamic time warping constraint was also
exploited to improve CKNNC (Yu et al., 2011). Besides the above
improvements to CKNNC, a number of new and valuable
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definitions of the nearest neighbor, such as meaningful nearest
neighbor (MNN) (Omercevic et al., 2007), MaxNearestDist (Samet,
2008), probably correct k-nearest neighbor (PCKN) (Toyama et al.,
2010) and distance lower bound based nearest neighbor (Chen
et al., 2007) have also been proposed.

The satisfactory performance of coarse to fine classification has
drawn much attention in many cases. For example, coarse to fine
image classification (Descampe et al., 2011) and face recognition
(Feng et al., 2004) have achieved a high accuracy. The coarse to fine
strategy has also been applied to resolve other problems such as
shape matching (Rube et al., 2004), object detection (Pedersoli
et al., 2011) and textures retrieval (Descampe et al., 2006).

In this paper, an integration of coarse to fine classification and
KNN classifier is proposed. The proposed classifier, CFKNNC, first
selects a small number of training samples that are ‘‘similar’’
(‘‘close’’) to the test sample from the original set of training sam-
ples. CFKNNC then computes a representation-based ‘‘distance’’
to determine K training samples that are the most ‘‘similar’’ to
the test sample. Finally, CFKNNC classifies a test sample to the class
which the most of the determined K training samples come from.
The experimental results show that CFKNNC performs very well
and obtain a much higher accuracy than CKNNC. CFKNNC also out-
performs NFL, NFS, NNLC and CBNNC. CFKNNC has the following
rationales: the first step of CFKNNC eliminates side-effects on clas-
sification of the training samples that are far from the test sample,
so it will be easier to ultimately classify the test sample into one of
the classes that are genuinely close to the test sample. Further-
more, the second step of CFKNNC allows the distance between
the test sample and each of its K neighbors to be evaluated in a
competitive way rather than in an independent way. The compet-
itive way evaluates the distance more reliable. Our analysis also
shows that the nearest neighbors obtained by our method contain
less redundant information than those obtained by CKNNC. As a re-
sult, under the condition that our method and CKNNC determine a
same number of nearest neighbors, the nearest neighbors obtained
using our method is able to provide a better representation for the
test sample than those obtained using CKNNC. In other words, as
the nearest neighbors obtained by our method contain less redun-
dant information, the weighted sum of the nearest neighbors ob-
tained using our method has a greater potential to approximate
the test sample than that of the nearest neighbors obtained using
CKNNC.

The rest of the paper is organized as follows: Section 2 describes
our method. Section 3 shows the rationales of the proposed meth-
od. Section 4 presents the experimental results and Section 5 offers
our conclusion.

2. Coarse to fine K nearest neighbor classifier

Coarse to fine K nearest neighbor classifier (CFKNNC) exploits
column vectors X1. . .. . .XN to stand for all N training samples.
CFKNNC first coarsely determines n training samples that are clos-
est to the test sample. CFKNNC then finely selects K (K 6 n) nearest
neighbors of the test sample from the n training samples
determined. Finally, CFKNNC uses the class labels of the K nearest
neighbors to classify the test sample. If X1. . .. . .XN and test sample Y
are not unit vectors with length of 1, CFKNNC will convert them
into unit vectors in advance. CFKNNC tries to express test sample
Y as a linear combination of all the training samples. In other
words, CFKNNC assumes that the following equation is almost
satisfied:

Y ¼
XN

i¼1

ciXi: ð1Þ

Eq. (1) can be rewritten as

Y ¼ Xc; ð2Þ

where c = (c1. . .cN)T, X ¼ ðX1 . . . XN Þ.
We exploit the Lagrangian algorithm to obtain the solution of

Eq. (2). As we expect that Xc best approximate Y, we require that
c minimizes ||Y � Xc||2. Moreover, theories of numerical analysis
have proven that if n has a small norm, the solution of Eq. (2)
can generalize well. Therefore, we also expect that ||c||2 be as small
as possible. For the above factors, we define a Lagrangian function
f(c) = ||Y � Xc||2 + l||c||2, where l is a positive constant. The opti-
mal solution of Eq. (2) should minimize f(c) and satisfy @f ðcÞ

@c ¼ 0
as well. Because @f ðcÞ

@c ¼ 0 means 2(XTX + lI)c = 2XTY, As a result,
we obtain the solution of Eq. (2) using ĉ ¼ ðXT X þ lIÞ�1XT Y , where
I is the identity matrix. CFKNNC then calculates

ei ¼ kY � ĉiXik2
; ð3Þ

where ĉi stands for the i-th entry of ĉ. CFKNNC selects n training
samples that have the first n smallest ei s and denotes them as Z1-

. . .. . .Zn, respectively.CFKNNC then uses a weighted sum of Z1. . .. . .Zn

shown as Eq. (4) to express test sample Y

Y ¼
Xn

i¼1

wiZi: ð4Þ

Eq. (4) can be rewritten as Y = Zw, where w = [w1. . .wn]T and Z =
[Z1. . .Zn]. CFKNNC obtains the solution of Eq. (4) using
ŵ ¼ ðZT Z þ lIÞ�1ZT Y , where l is a positive constant and I is the
identity matrix. CFKNNC views di ¼ kY � ŵiZik2 (ŵi stands for the
i-th entry of ŵ) as the similarity metric between Y and Zi. It is re-
garded that a smaller di means a higher similarity between Y and
Zi. CFKNNC then selects K training samples that have the first K
smallest di s from Z1. . .. . .Zn and denotes them as s1. . .. . .sK, respec-
tively.For s1. . .. . .sK, CFKNNC counts the number of the training sam-
ples from the j-th (j = 1, . . ., C) class. C is the number of all the
classes. Let mj be the number of the training samples from the j-
th (j = 1, . . ., C) class. It is clear that K ¼

PC
j¼1mj. If t ¼ arg max

j
mj,

then CFKNNC assigns the test sample Y into the t-th class.

3. Interpretation and rationale of the proposed method

In this section, we interpret the difference and relationship
between CKNNC and the proposed method and show the rationale
of the proposed method.

We show the flowcharts of CKNNC and the proposed method,
CFKNNC, in Fig. 1. The main similarity between CKNNC and
CFKNNC is that both of them classify a test sample by exploiting
the labels of the K nearest neighbors of the test sample. Suppose
that the class labels of these K nearest neighbors are c1, . . .,
cK e {1, 2, . . ., C}, respectively. If l is the class label that the most
of these K nearest neighbors have, then both CKNNC and CFKNNC
will classify the test sample into the l-th class.

As shown in Fig. 1, the main difference between CKNNC and
CFKNNC is that CKNNC uses the Euclidean distance to determine
the nearest neighbors of the test sample, whereas CFKNNC uses
‘‘representation-based distances’’ to do so. Moreover, the algorithm
of CFKNNC seems to be more elaborate and has more steps than
that of CKNNC.

As we know, CKNNC calculates the distances between the test
sample and each training sample in an independent way. However,
the method proposed in this paper calculates the distances in a
dependent way. In order to simply interpret the above difference,
we assume that there are only two training samples. If the second
training sample changes and the first training sample does not do
so, then in CKNNC the distance between the test sample and the
second training sample also changes, whereas the distance be-
tween the test sample and the first training sample is the same
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as its previous value. However, in CFKNNC if either of the training
samples changes, the distance between the test sample and each of
the two training samples must change. Actually, the proposed
method has the following idea: it partially views classification as
a representation problem of the test sample and considers that a
number of training samples that can provide a good approximation
for the test sample should be selected as its ‘‘nearest neighbors’’.
The method proposed indeed selects the training samples that
have much contribution to this approximation as the nearest
neighbors of the test sample. Moreover, as shown in Eq. (4), the
weighted sum of all the training samples is expected to approxi-
mate the test sample and different training samples make contri-
bution to this approximation in a competitive way. Therefore, it
seems that the K training samples selected by our method can pro-
vide a good approximation, i.e. representation for the test sample
and the approximation does not contain much redundant informa-
tion. From the point of view of representation-based classification,
a good representation of the test sample usually can lead to a high
classification accuracy. In contrast, as CKNNC separately evaluates
the similarity (distance) between the test sample and each training
sample, the nearest neighbors selected by CKNNC might contain
much more redundant information to represent the test sample.

The coarse to fine strategy used in the proposed method also
has the following positive effect. It allows the first step to exclude
the training samples that are ‘‘far’’ from the test sample and allows
the second step to finally obtain the ‘‘optimal’’ nearest neighbors of
the test sample. In particular, it seems that the coarse to fine strat-
egy enables the proposed method first to determine a number of
candidates to the K nearest neighbors and enables it then to iden-
tify the most competent candidates in terms of the contribution to
the approximation of the test sample. In the experimental section,
the results show that our coarse to fine strategy can obtain a higher
accuracy than CKNNC.

Now we use a two-class problem to illustrate the difference be-
tween CKNNC and CFKNNC. Fig. 2 shows the first seven nearest
neighbors of the test sample obtained using CKNNC and CFKNNC.
In this figure, the notations with a same color denote samples that
are from a same class. We see that the nearest neighbors deter-
mined by CFKNNC might be very different from those determined
by CKNNC. There are two main reasons for this difference. First,
CKNNC uses the original sample vectors to determine the nearest
neighbors of the test sample, whereas CFKNNC uses the normal-

ized sample vectors to do so. Second, CFKNNC exploits the repre-
sentation-based ‘‘distance’’ shown in Section 2, whereas CKNNC
uses the Euclidean distance. Fig. 2 visually illustrates the difference

(a) 

(b) 

A test sample and 
all the training 
samples are 
inputted 

K nearest 
neighbors of the 
test sample are 
determined from 
the training 
samples

Euclidean distance Exploit the class 
labels of the K 
nearest neighbors 
to classify the test 
sample. 

A test 
sample and 
all the 
training 
samples are 
inputted 

representation-bas
ed distances 

Identify 
n training 
samples that 
are closest to 
the test 
sample. 

K 
“nearest 
neighbor
s “ of 
the test 
sample  

representation
-based 
distances” 

Exploit the 
class labels of 
the K nearest 
neighbors to 
classify the test 
sample. 

Fig. 1. Flowcharts of CKNNC and CFKNNC. (a) and (b) show the flowcharts of CKNNC and CFKNNC, respectively.

Fig. 2. The first seven nearest neighbors (denoted by black digitals) of the test
sample obtained using CKNNC and CFKNNC. (a) and (b) show the results of CKNNC
and CFKNNC, respectively. In (a) and (b), the samples are the same. The test sample
is denoted by star (�). The training samples are denoted by circles (O) (the first
class) and triangles (the second class), respectively. The genuine class of the test
sample is the first class. The first step of CFKNNC selects 26 training samples from
the set of all the training samples.
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between CKNNC and our representation-based method, CFKNNC. It
is clear that when using 1, 3 or 5 nearest neighbors of the test sam-
ple to perform classification, CKNNC will erroneously classify the
test sample into the second class. However, when using 1, 3 or 5
nearest neighbors of the test sample to perform classification,
CFKNNC will correctly classify the test sample into the first class.

As shown in the experimental section, our method obtains a
smaller mean of the cosine correlation coefficients of different
nearest neighbors than CKNNC. This illustrates that the nearest
neighbors obtained using our method contain less redundant infor-
mation than those obtained using CKNNC. As a result, under the
condition that our method and CKNNC determine a same number
of nearest neighbors, the weighted sum of the nearest neighbors
obtained using our method can better approximate the test sample

than that of the nearest neighbors obtained using CKNNC. In the
field of pattern recognition a better approximation is usually fa-
vored. For example, the widely used principal component analysis
has the goal to represent the samples with the smallest error (Xu
et al., 2010; Yang et al., 2010).

The cosine correlation coefficient is calculated using

simij ¼
sT

i sj

ksikksjk
; ð5Þ

where sj denotes the j-th (j = 1, . . ., K) nearest neighbor obtained
using our method or CKNNC. simij is referred to as the correlation
coefficient between the i-th and j-th nearest neighbors of the test
sample. For a test sample, the mean of the cosine correlation coef-
ficients is defined as

sim� ¼ 2
KðK � 1Þ

XK�1

i¼1

XK

j¼iþ1

simij: ð6Þ

In the experimental section, Fig. 4 shows the mean of �sim on all
the test samples.

4. Experimental results

In this section we show the experimental results of our method,
NFL, NFS, NNLC and CBNNC. The main reasons to compare the
method proposed in this paper to NFL, NFS, NNLC and CBNNC are
as follows. First, these methods are improvements to K nearest
neighbor classifier. Second, these methods and our method all

Fig. 4. Mean of the correlation coefficients between different nearest neighbors.
The vertical axis shows the mean of the cosine correlation coefficients. The
horizontal axis shows the number (i.e. the value of K) of the nearest neighbors, of a
test sample, which are used for classification of the test sample.

Fig. 3. Experimental results of our method and CKNNC on the multispectral
palmprint image dataset. All the images captured in the second session were used
as test samples. In (a), the first three images captured in the first session were used
as training samples and the first step of our method selects 150 (n = 150) samples
from the set of all the training samples. In (b), the first six images captured in the
first session were used as training samples and the first step of our method selects
300 (n = 300) samples from the set of all the training samples.

Table 1
Classification accuracies (%) of NFL, NFS, CBNNC, NNLC and the competitive coding method on the multispectral palmprint image dataset.

Blue Green Red Near infrared

Three training samples per palm NFL 95.00 92.63 95.17 95.37
NFS 95.10 92.87 95.40 95.63
CBNNC 95.20 92.10 95.03 94.73
NNLC 94.50 91.10 94.30 93.33
Competitive coding 92.00 90.60 95.33 95.13

Six training samples per palm NFL 96.57 95.57 97.60 97.47
NFS 97.30 96.37 97.97 98.17
CBNNC 96.23 94.93 96.87 96.57
NNLC 96.30 94.77 96.80 96.20
Competitive coding 93.83 93.00 95.50 95.83

Y. Xu et al. / Pattern Recognition Letters 34 (2013) 980–986 983
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use a similar way to modify K nearest neighbor classifier. In other
words, these methods modify K nearest neighbor classifier by
weighting the training samples. In particular, they first replace
the original training sample with weighted training sample or take
a weighted sum of some training samples as a training sample.
Then they calculate the distances between the test sample and
weighted training sample or the weighted sum of the training sam-
ples and use the distances to classify the test sample.

Before testing these methods, we converted each sample into a
unit vector with length of 1 in advance. We also tested competitive
coding method. The codes of our method will be available at http://
www.yongxu.org/lunwen.html.

4.1. Experiment on the multispectral palmprint dataset

We first conducted experiments on the PolyU multispectral
palmprint dataset. This dataset was generated from the Hong Kong
Polytechnic University. It was collected from 250 persons (55 wo-
men and 195 men) (Zhang et al., 2010; Han et al., 2008; Zhang
et al., 2003). As every person provided palmprint images of both
the left and right palms, there are 500 palms. This dataset contains
four kinds of palmprint images that are captured under the red,
green, blue and near infrared illuminations, respectively. We refer
to these images as red, green, blue and near infrared palmprint
images, respectively. These multispectral palmprint images were
collected in two separate sessions. In each session, every palm pro-
vided 6 palmprint images at each illumination. As a result, for each
illumination there are 6000 palmprint images and the dataset in-
cludes 24,000 palmprint images in total from 500 different palms.
The resolution of the original palmprint image was 352 � 288. The
128 � 128 region of interest (ROI) domain was extracted from each
palmprint image using the method proposed in Zhang et al. (2003).
In the following experiments, for palmprint ROI images of a palm
captured under one illumination, the first three or six images

captured in the first session were used as training samples and
all the images captured in the second session were used as test
samples. We resized each ROI image to a 32 � 32 image and then
converted it into a one-dimensional unit vector with length of 1.
Fig. 3 shows the experimental results of our method and CKNNC
on the multispectral palmprint image dataset. In Fig. 3(a), the first
three images captured in the first session were used as training
samples and the first step of our method selects 150 samples from
the set of all the training samples. In Fig. 3(b), the first six images
captured in the first session were used as training samples and the
first step of our method selects 300 samples from the set of all the
training samples. From this figure, we also see that if there are
more training samples, the method will obtain a higher accuracy.
Table 1 shows the classification accuracies of NFL, NFS, CBNNC
and NNLC on the multispectral palmprint image dataset. We see
that our method always obtains a higher classification accuracy
than CKNNC. For example, when only the nearest neighbor was
used for classification, the classification accuracies of CKNNC on
the blue, green, red and near infrared illumination palmprint ROI
images are 95.17%, 92.07%, 95.03% and 94.77%, respectively. How-
ever, as shown in Fig. 3, the corresponding classification accuracies
of our method on the blue, green, red and near infrared illumina-
tion palmprint ROI images are 98.37%, 98.17%, 97.67% and
95.27%, respectively. Our method also outperforms NFL, NFS,
CBNNC and NNLC. Both our method and CKNNC obtain the best
performance with K = 1. The main reason is that palmprint images
usually have no much deformation and the ‘‘nearest neighbor’’ of
the test sample has a very high probability of being from the same
palm as the test sample.

From Table 2, we can see the variation with parameter n of the
classification accuracy of our method. Fig. 4 shows the mean of the
correlation coefficients between different nearest neighbors. From
Fig. 4, we see that our method obtains a smaller mean of the cosine
correlation coefficients between different nearest neighbors than

Table 2
Classification accuracies (%) of our method and CKNNC.

K = 1 K = 2 K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9

Our method on the blue palmprint images(n = 75) 97.43 95.00 96.33 95.40 95.23 94.17 92.97 90.83 88.60
Our method on the blue palmprint images(n = 150) 98.37 96.30 96.73 96.23 95.83 93.77 91.60 89.57 86.50
Our method on the blue palmprint images(n = 300) 98.57 96.40 96.87 96.37 95.80 93.07 90.47 87.57 84.63
Our method on the 2D palmprint images in the 2D + 3D palmprint dataset(n = 160) 96.60 95.70 95.85 96.00 95.75 95.90 95.65 94.45 93.30
CKNNC on the 2D palmprint images in the 2D + 3D palmprint dataset 91.15 89.00 87.85 85.50 83.95 82.10 80.30 76.85 74.90
Our method on the noisy multispectral palmprint (R, n = 300) 97.70 97.07 98.00 97.97 98.00 97.47 97.13 96.77 96.60
Our method on the noisy multispectral palmprint (G, n = 300) 98.77 97.83 98.47 98.30 98.17 97.97 97.90 97.80 97.67
Our method on the noisy multispectral palmprint (B, n = 300) 98.83 97.97 98.07 98.07 98.07 97.97 97.90 97.73 97.53
Our method on the noisy multispectral palmprint (I, n = 300) 96.40 95.50 95.67 95.87 96.03 95.50 95.43 95.10 95.10
CKNNC on the noisy multispectral palmprint (R) 96.50 95.33 95.03 94.40 93.83 93.10 92.47 91.73 90.70
CKNNC on the noisy multispectral palmprint (G) 94.37 93.00 92.67 91.57 91.17 907 89.37 88.60 87.73
CKNNC on the noisy multispectral palmprint (B) 96.13 95.30 95.33 94.70 94.43 93.27 92.73 92.03 91.33
CKNNC on the noisy multispectral palmprint (I) 96.07 94.73 93.70 93.27 92.63 91.10 90.17 89.33 87.93
Our method on the noisy 2D images in the 2D + 3D dataset (n = 300) 95.35 94.00 94.75 94.85 95.15 94.85 94.85 94.30 93.85
CKNNC on the noisy 2D images in the 2D + 3D dataset 87.30 81.20 82.60 80.05 79.00 77.10 75.60 71.90 69.05
Our method on the AR face dataset (n = 300) 86.81 71.39 72.22 72.57 74.03 75.35 75.83 76.25 76.18
CKNNC on the AR face dataset 79.44 62.78 62.50 63.06 64.72 65.56 65.56 65.00 63.61

Table 3
Classification accuracies (%) of NFL, NFS, CBNNC, NNLC and the competitive coding method.

NFL NFS CBNNC NNLC Competitive coding

2D palmprint images in the 2D + 3D palmprint dataset 92.10 91.95 91.15 90.10 92.35
Noisy multispectral palmprint dataset (R) 97.07 97.60 96.50 96.23 92.17
Noisy multispectral palmprint dataset (G) 95.30 95.80 94.36 94.43 91.50
Noisy multispectral palmprint dataset (B) 96.33 97.03 96.13 96.03 92.17
Noisy multispectral palmprint dataset (I) 96.90 97.80 96.03 95.80 91.83
Noisy 2D images in the 2D + 3D palmprint dataset 89.45 89.50 87.35 89.05 87.65
AR face dataset 84.03 79.72 73.82 86.04 /
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CKNNC for each illumination. This illustrates that the nearest
neighbors obtained using our method contain less redundant infor-
mation than those obtained using CKNNC. Table 2 also shows that
our method is somewhat robust to parameter n. When n varies
from 75 to 300, the accuracy of our method changes only a little.

4.2. Experiment on the 2D + 3D palmprint dataset

We also used a 2D + 3D palmprint dataset to perform experi-
ments. This dataset contains 8000 palmprint samples collected
from 400 different palms (Li et al., 2010). Twenty samples from
each of these palms were collected in two separated sessions,
where 10 samples were captured in each session, respectively.
The average time interval between the two sessions is one month.
Each sample contains a 3D ROI (region of interest) and its corre-
sponding 2D ROI. Each 3D ROI is recorded by a binary file which
contains 128 ⁄ 128 float values denoting the mean curve ratio,
and each 2D ROI is recorded by a BMP format image file.

We used the first four 2D ROI images collected in the first ses-
sion as training samples and took the first five 2D ROI images col-
lected in the second session as test samples. We also resized each
image to a 32 by 32 matrix in advance. Each sample in this exper-
iment was also converted into a unit vector with length of 1 in ad-
vance. Tables 2 and 3 show the classification accuracies of our
method, CKNNC, NFL, NFS, CBNNC, NNLC and the competitive cod-
ing method. They also indicate that our method is superior to the
other methods in classification accuracy!. The experimental results
also show that when the ratio of n to the number of all the training
samples ranges from 0.05 to 0.2, the accuracy of our method
changes only a little.

4.3. Experiments on noisy test samples

In this subsection, we test the robustness of different methods
by imposing Gaussian noise to the test samples (no noise is im-
posed to the training samples). We use Matlab function ‘‘imnoise
(I,’gaussian’,0,variance)’’ to generate Gaussian noise, where I stands
for the test sample, ‘‘0’’ means that the mean of the noise is zero
and the parameter ‘‘variance’’ is set to 0.01.

4.3.1. Experiment on the multispectral palmprint dataset
For palmprint ROI images of a palm captured under one illumi-

nation, the first six images captured in the first session were used
as training samples and all the images captured in the second ses-
sion were used as test samples. Tables 2 and 3 show that when rec-
ognizing the noisy palmprint images, our method still outperforms
the other methods.

4.3.2. Experiments on the 2D + 3D palmprint dataset
The experimental results on the noisy 2D images from the

2D + 3D palmprint dataset are also shown in Tables 2 and 3. The
Gaussian noise is also only imposed to the test sample. Tables 2
and 3 show again that when the test sample is corrupted by the
noise, our method is also superior to the other methods in classifi-
cation accuracy.

4.4. Further exploration of CFKNNC

As mentioned in Section 3, the main rationale of the proposed
method, i.e. CFKNNC is as follows: the K training samples selected
by CFKNNC can provide a good representation for the test sample,
and the representation contains less redundant information. In
contrast, as CKNNC separately evaluates the similarity (distance)
between the test sample and each training sample, the nearest
neighbors selected by CKNNC might contain much more redundant
information. As a result, the K training samples determined using

CFKNNC can better represent the test sample than the K training
samples determined using CKNNC. It is likely that if the training
samples provide a good representation for the test sample, the test
sample will have a higher probability of being from the same class
as these training samples. Therefore, CFKNNC can obtain a higher
accuracy than CKNNC.

We can also describe the rationale of CFKNNC from an intuitive
viewpoint. We take two training samples, respectively from two
different classes as an example. We assume that one training sam-
ple is from the same class as the test sample and the other is not.
We calculate the Euclidean distance between each training sample
and the test sample. Because the sample is captured in a noisy con-
dition, it is possible that these two training samples have identical
Euclidean distances to the test sample and both of them belong to
K nearest neighbors of the test sample. As a consequence, CKNNC
might erroneously classify the test sample. However, as CFKNNC
can effectively exploit the data structure of the sample, it might
correctly obtain the distance relationship between the test sample
and these two training samples.

The classification accuracy also show that when K increases, the
accuracy of CFKNNC decreases slowly; whereas the accuracy of
CKNNC decreases quickly with the increase of K. Under the condi-
tion that K is less than or equal to 4, CFKNNC obtain a satisfactory
accuracy. In the real-world applications, we can combine the train-
ing set and a validation set to determine a proper value for K. On
the other hand, all the palmprint recognition experiments show
that when K = 1, CFKNNC is able to obtain the highest accuracy.
As a result, for palmprint recognition, it is feasible to simply set
K to 1.

We would like to point out that as our method includes
more steps and matrix operations, it has a higher computational
complexity than CKNNC.

4.5. Face recognition experiment

In order to verify whether our method is applicable for other
biometrics issues, we use the AR face dataset (http://cob-
web.ecn.purdue.edu/�aleix/aleix�face�DB.html) to conduct face
recognition experiment. The face images of this database were ob-
tained under the condition of varying pose, facial expression, or
lighting. Occluded face images are also included in the AR face
database. There are 120 subjects and 3120 gray face images cap-
tured in two sessions. We resized each image to a 40 by 50 image.
The first 14 face images and the remaining face images of each
subject are used as training samples and test samples, respectively.
Tables 2 and 3 show that our method can also perform very well in
face recognition. This implies that our method might be applicable
for other biometrics issues.

5. Conclusions

The CFKNNC method proposed in this paper has the following
rationales: it depends on an elaborate distance metric, i.e. the rep-
resentation-based distance to determine the nearest neighbors of
the test sample from the set of training samples. The first and sec-
ond steps of CFKNNC coarsely and finely identify the nearest neigh-
bors, respectively. These two steps are very useful for eliminating
the side-effect on classification of the test sample of the training
samples that are far from the test sample and for enhancing the po-
sitive effect on classification of the test sample of the training sam-
ples that are close to the test sample and are probably from the
same class as the test sample. Another potential reason why our
method outperforms CKNNC is that the nearest neighbors obtained
using our method contain less redundant information than those
obtained using CKNNC. As a result, under the condition that our
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method and CKNNC determine a same number of nearest neigh-
bors, the weighted sum of the nearest neighbors obtained using
our method is able to better approximate the test sample than that
of the nearest neighbors obtained using CKNNC.

The experimental results show that CFKNNC performs very well
and can obtain a much higher accuracy than CKNNC. Moreover,
CFKNNC also outperforms the state-of-art improvements to
CKNNC.
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