
Pattern Recognition 81 (2018) 326–340 

Contents lists available at ScienceDirect 

Pattern Recognition 

journal homepage: www.elsevier.com/locate/patcog 

Adaptive weighted nonnegative low-rank representation 

Jie Wen 

a , b , Bob Zhang 

c , ∗, Yong Xu 

a , b , d , Jian Yang 

e , Na Han 

f 

a Bio-Computing Research Center, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, Guangdong, PR China 
b Shenzhen Medical Biometrics Perception and Analysis Engineering Laboratory, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, Guangdong, PR 

China 
c Department of Computer and Information Science, University of Macau, Taipa, Macau, PR China 
d Key Laboratory of Network Oriented Intelligent Computation, Shenzhen 518055, Guangdong, PR China 
e School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, PR China 
f School of Computer Science and Technology, Guangdong University of Technology, Guangzhou 510 0 06, Guangdong, PR China 

a r t i c l e i n f o 

Article history: 

Received 26 May 2017 

Revised 12 December 2017 

Accepted 4 April 2018 

Available online 11 April 2018 

Keywords: 

Low-rank representation 

Adaptive weighted matrix 

Data clustering 

Locality constraint 

a b s t r a c t 

Conventional graph based clustering methods treat all features equally even if they are redundant fea- 

tures or noise in the stage of graph learning, which is obviously unreasonable. In this paper, we propose 

a novel graph learning method named adaptive weighted nonnegative low-rank representation (AWNLRR) 

for data clustering. Based on the observation that noise and outliers usually cannot be represented well 

and suffer from larger reconstruction errors than the important features (clean features) in low-rank 

or sparse representation, we impose an adaptive weighted matrix on the data reconstruction errors to 

reinforce the role of the important features in the joint representation and thus a robust graph can 

be obtained. In addition, a locality constraint, i.e. , distance regularization term, is introduced to cap- 

ture the local structure of data and enable the obtained graph to be sparser. These appealing proper- 

ties allow AWNLRR to well capture the intrinsic structure of data, and thus AWNLRR has potential to 

achieve a better clustering performance than other methods. Experimental results on synthetic and real 

databases show that the proposed method obtains the best clustering performance than some state-of- 

the-art methods. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Data clustering has gained a lot of attention in the fields of

machine learning and data mining [1] . The main purpose of data

clustering is to partition a collection of samples without any label

information into respective groups such that samples in the same

group are naturally a class. For this goal, many methods have been

proposed in the past few years, such as the density based cluster-

ing [2] , K -means clustering [3] , hierarchical clustering [4] , neural

networks-based clustering [5] , and spectral clustering [6] , etc. 

High-dimensionality is one of the most challenging problems in

data clustering. Generally, high-dimensionality data usually contain

large amounts of redundant features such as noise and outliers.

These useless features may play the dominant role during the clus-

tering process, which leads to a bad performance. Spectral cluster-

ing is one of the most effective clustering methods to address this

issue by seeking a low-dimensional representation with powerful
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iscriminability from the original high-dimensional data [6–8] . It

sually uses a three-step approach to obtain the clustering result.

pecifically, it first constructs a graph that reveals the similarity

elationships among data, and then produces the low-dimensional

epresentation based on the graph, followed by using K -means to

artition the low-dimensional data into respective groups. Gener-

lly, the clustering performance is directly determined by the con-

tructed graph. In other words, constructing a natural graph to

apture the essential relationship of data is very important to the

pectral clustering. Recent years, various graph learning approaches

ave been proposed by using different metrics to measure the es-

ential relationships among samples. For example, Euclidean dis-

ance is widely used to construct the knn -graph for clustering [6,9] .

nn -graph reveals the distribution relationships of samples in the

uclidean space. Based on the knn -graph, Roweis constructed a lo-

ality linear embedding graph ( LLE -graph) to capture the represen-

ation relationships between sample and its nearest neighbors [10] .

oth of knn -graph and LLE -graph use distance metric to capture

he local geometric structure of data. The only difference between

hem is that elements in knn -graph represent the distance rela-

ionships of samples while in LLE -graph denote the representation

bility or contribution in the joint linear representation. However,
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hese distance based graph learning methods have the following

wo main issues: (1) they are sensitive to the selection of the near-

st neighbor size; (2) they cannot find the real nearest neighbors

or each sample when data are suffered from noise, so that the ob-

ained graph cannot capture the intrinsic structure of data. 

Recent years, the representation techniques such as sparse rep-

esentation and low-rank representation have been witness a great

evelopment and attracted much attention in data clustering ow-

ng to their success in adaptively uncovering the intrinsic repre-

entation structures of data [11–14] . Based on the assumption that

ach data point can be efficiently represented by a linear com-

ination of a few points from its own subspace, sparse subspace

lustering (SSC) imposes the sparsity norm, i.e., l 1 norm, to con-

train the self-representation matrix so that a natural graph with

daptive nearest neighbors is achieved [15] . We refer to the graph

btained by SSC as l 1 -graph. However, l 1 -graph is constructed in-

ependently to each sample, thus the derived l 1 -graph lacks the

lobal information of data [12] . Compared with SSC, low-rank rep-

esentation (LRR) jointly learns the graph by imposing the nuclear

orm to constrain the self-representation matrix so that the global

tructure of data is captured [16,17] . We refer to the graph learned

y LRR as l ∗ -graph. However, l ∗ -graph is often denser than the

 1 -graph, which does not guarantee the locality. Besides, both of

he l ∗ -graph and l 1 -graph lack the physical interpretation to the

imilarity relationship of samples since they contain many nega-

ive elements. To overcome these issues and obtain a more rea-

onable graph, non-negative low rank and sparse graph ( NNLRS -

raph) learning method is proposed, in which the sparsity and nu-

lear norm are simultaneously imposed to constrain the nonneg-

tive self-representation matrix [12] . Moreover, in order to simul-

aneously capture the local and global structures of data, various

xtensions of LRR have been proposed. For example, the Laplacian

egularizer is imposed on the self-representation matrix to pre-

erve the local structure that similar samples have similar repre-

entations [18,19] . A Gaussian function based weighted matrix is

ntroduced to ensure that the dissimilarity samples have small rep-

esentation coefficients and vice versa [20] . Based on the observa-

ion that the perfect graph with satisfactory performance should

etter have exactly block-diagonal structure, Feng et al. sought for

uch graph by introducing a novel graph Laplacian constraint into

he SSC and LRR [21] . The biggest limitation of this method is that

t needs to know the exact number of clusters of data in advance. 

Although the above extension methods of LRR and SSC are

roved to be effective under mixed conditions, they have a se-

ere problem that all features are treated equally in the graph con-

truction and data representation even if many features are redun-

ant features or even noises. It should be pointed out that these

edundant features and noise not only are useless, but also may

e harmful to the representation. Especially when the percent-

ge of those redundant features is larger than the useful features,

he redundant features may play the dominant role in the self-

epresentation. In this case, the learned graph is inaccurate and

eveals the mendacious relationships of samples, which leads to

 bad clustering performance. In this paper, we mainly propose

 novel and simple approach to overcome this issue. We observe

hat the outliers or noises usually cannot be well represented. This

bservation is also proved in many references. For example, many

eferences show that using the sparse norm and nuclear norm to

odel the noise has potential to detect them since they usually

ave large reconstruction errors in practice [16,22] . Inspired by this

bservation, we impose a weighted matrix on the data reconstruc-

ion errors so that the representation contributions of the impor-

ant features will be improved and those of the useless features

ith large reconstruction errors will be reduced. This encourages

s to learn a more robust graph to reveal the intrinsic similarity

elationships of samples than other methods. Moreover, a local-
ty constraint is introduced to capture the local intrinsic structure

hat nearest neighbors should have larger representation contribu-

ions. These meaningful factors enable the method to perform bet-

er than other methods. Experimental results show that the pro-

osed method not only can learn a clearer graph and obtains the

est clustering performance than other methods, but also is ro-

ust to noises. In summary, the proposed method has the following

ood properties. 

(1) By integrating the local distance regularization term into

LRR, the proposed method can simultaneously exploit both

global and local structures of data, which ensures to learn a

more reasonable graph. 

(2) The nonnegative constraint not only greatly improves the in-

terpretability of the graph, but also guarantees each sample

to be in the convex hull of its nearest neighbors. 

(3) By introducing an adaptive weighted matrix to regularize

the data reconstruction errors, the representation contribu-

tion of the most important features will be improved while

those of the redundant features will be reduced in the self-

representation so that a more robust graph will be achieved.

The paper is organized as the following six sections.

ection 2 briefly introduces some related works about repre-

entation based clustering and classification. Section 3 mainly

resents the proposed graph learning model and its solution. In

ection 4 , we analyze the proposed method from the aspect of

omputational complexity, convergence, and connections to other

ethods. Section 5 conducts several experiments to evaluate the

roposed method. Section 6 offers the conclusion. 

. Related works 

In this section we briefly introduce some related representa-

ion based clustering and classification methods. For convenience,

e first introduce some notations used through the paper. Ma-

rix. X = [ x 1 , x 2 , ..., x n ] εR m ×n 
. is the original data, column x i ( i ∈ [1,

 ]) denotes the i th data point, m and n are the number of fea-

ures and samples, respectively. ‖ E ‖ p is the l p ( p = 1 , { 2 , 1 } , F )
orm of matrix E , and some typical norm constraints are calculated

s ‖ E‖ 1 = 

∑ m 

i =1 

∑ n 
j=1 | e i j | , ‖ E‖ F = ( 

∑ m 

i =1 

∑ n 
j=1 e 

2 
i j 
) 1 / 2 , and ‖ E‖ 2 , 1 =

 n 
j=1 ( 

∑ m 

i =1 e 
2 
i j 
) 

1 / 2 
, respectively, where e ij denotes element of the

 th row and j th column of matrix E . ‖ Z ‖ ∗ is the nuclear norm of

atrix Z and is calculated as the sum of all singular values of ma-

rix Z . 1 ∈ R m × n is a matrix which all elements are 1, 1 ∈ R m × 1 is a

ector that all elements are 1. 

.1. Representation based subspace clustering 

In this paper, we refer to the methods that learn a graph by

sing the representation techniques, such as sparse representation

nd low-rank representation, etc., as the representation based sub-

pace clustering (RSC) method. RSC can be unified into the follow-

ng general framework [15,16,23] : 

in 

Z,E 
�( Z ) + λ�( E ) s.t.X = X Z + E (1)

here E is the reconstruction errors. �( E ) models different noises

y using different norm constraints, such as ‖ E ‖ 1 , ‖ E ‖ 2, 1 , and

 E‖ 2 F . λ is the regularization parameter used to balance the impor-

ance of the corresponding term. �( Z ) is the regularization func-

ions with respect to variable Z . The purpose of model (1) is to

earn the self-representation matrix Z ∈ R n × n that can best uncover

he intrinsic geometric structures reside in the high-dimensional

ata. For different RSC methods, the major difference is the choice

f �( Z ). For example, sparse subspace clustering (SSC) [15] con-

trains matrix Z with l norm to capture the sparse representation
1 
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relationships among data. Low-rank representation (LRR) chooses

the nuclear norm, i.e., �(Z) = ‖ Z‖ ∗, to capture the global repre-

sentation structure of data for clustering [16,24] . 

Once obtaining the representation matrix Z , RSC methods ob-

tain the final clustering result via the following three steps:

(1) building an affinity matrix W = ( | Z| + | Z T | ) / 2 ; (2) produc-

ing the low-dimensional representations by performing the eigen-

decomposition on the Laplacian matrix of the affinity graph; (3)

partitioning the derived low-dimensional representations into c

clusters via K -means. 

2.2. Representation based classification methods 

Representation based classification (RC) methods are typical su-

pervised classification methods which exploit label information

during classification [25] . RC assumes that samples of the same

class with the test sample contribute much more than those of

other classes in the joint linear representation of using all sam-

ples to represent the test sample [26] . Based on this assump-

tion, various RC methods have been proposed, in which sparse

representation based classification (SRC) [27] , collaborative repre-

sentation based classification (CRC) [28] , regularized robust coding

(RRC) [29] , and locality-constrained linear coding (LLC) [30] , etc. ,

are the most well-known methods. These RC methods classify the

test samples via the following three steps: (1) using all training

samples to represent the test samples and calculating the corre-

sponding representation vector; (2) producing the representation

residual of each class with respect to the test sample; (3) classi-

fying the test sample into the class with the minimum residual

[31] . The representation residual in the second step can also be re-

garded as the representation contribution of the class in the joint

linear representation. The minimum representation residual means

the largest contribution of the corresponding class. For various RC

methods, the major difference among them is the approach to

learn the representation vector. In most cases, the objective func-

tion to learn the representation vector of these RC methods can be

unified into the following model [32] : 

min 

α
‖ 

s � ( y − X α) ‖ 

2 
2 + λϕ ( d � α) (2)

where � denotes the element-wise multiplication, λ is the regu-

larization parameter. X = [ x 1 , x 2 , . . . , x n ] ∈ R m ×n is the training set

which contains all training samples, y ∈ R m × 1 is the test sample.

ϕ( d �α) is a regularization term of α with different norm con-

straints, such as ‖ d � α‖ 2 
2 

and ‖ d �α‖ 1 , etc. Vectors s and d are the

prior knowledge which encourages the model to learn a more rea-

sonable representation vector. The major differences among most

of RC methods are the choices of parameters s and d , and the reg-

ularized norm of ϕ( d �α). For example, if d = s = 1 and ϕ( d � α) =
‖ α‖ 1 , then model (2) is degraded to the basic model of SRC. LLC

uses the Gaussian distances between the test sample and train-

ing samples as prior knowledge d to avoid selecting training sam-

ples that are far from test sample y in the joint linear representa-

tion. By doing so, the representation contribution of those samples

that are much more possible to be the same class with the test

sample can be efficiently improved [30] . RRC imposes an adaptive

weighted vector s derived from the reconstruction error to con-

strain the reconstruction term so that the representation contri-

bution of the important features can be improved and the nega-

tive influence of redundant features or outliers can be eliminated

to some extent [29] . Based on RRC, Zheng et al. proposed an it-

erative re-constrained group sparse classification (IRGSC) method

which can adaptively learn a more flexible weight s to identify the

outlier and inlier [32] . 
. Adaptive weighted nonnegative low-rank representation 

As introduced in previous section, graph learning is the most

mportant step in unsupervised clustering. A good affinity graph

hat can best capture the intrinsic structures of data is the as-

urance to obtain a satisfactory performance. In this section, we

ainly present a robust graph learning method, i.e. , adaptive

eighted nonnegative low-rank representation (AWNLRR) for un-

upervised clustering. 

.1. Motivations and model of AWNLRR 

Both of representation based clustering and classification meth-

ds prove that the representation relationships among data contain

uch discriminant information. Thus capturing the representation

tructure of data is necessary for graph based clustering method.

RR and SSC are proved to be effective in capturing the global

nd local representation structures of data, respectively. However,

hese two methods treat all features equally in the linear repre-

entation, no matter whether they are outlier or not. This is harm-

ul to capture the intrinsic representation structure of data. In real

orld applications, samples always have large dimensions and con-

ain many redundant features and noise. A robust graph learning

ethod should have the ability to identify the important features

nd reinforce the effect of them during graph learning so as to

daptively learn a more robust graph. Motivated by RRC [29] and

RGSC [32] , we propose the following weighted nonnegative low-

ank representation approach: 

min 

Z,S 

∥∥S 1 / 2 � ( X − X Z ) 
∥∥2 

F 
+ 

λ1 

2 

‖ 

S ‖ 

2 
F + λ2 ‖ 

Z ‖ ∗

s.t.S ≥ 0 , S T 1 = 1 , Z ≥ 0 (3)

here Z is the affinity graph to be learned, S is the weighted

atrix with positive values of all elements. S 1/2 is defined as an

lement-wise square root of S, i.e. , each element of S 1/2 is 
√ 

s i j .

1 and λ2 are tunable parameters used to balance the importance

f the corresponding terms. By imposing the weighted matrix to

egularize the data reconstruction errors, the method will adap-

ively assign smaller weight to the feature with larger reconstruc-

ion error and assign larger weight to the important feature. The

onstraint term S T 1 = 1 ensures all samples to be treated equally.

n addition, we can prove that optimizing the objective function

3) allows the proposed method to obtain a sparse weighted ma-

rix. 

roposition 1. Suppose E = X − XZ and elements of each column

f E are not all 0, minimizing the optimization sub-problem to

ariable S, i.e. , min S≥0 , S T 1 = 1 ‖ S 1 / 2 � ( X − XZ ) ‖ 2 
F 

+ 

λ1 
2 ‖ S‖ 2 F 

, leads to a

parse weighted matrix. 

roof. Define D = E � E. Obviously, we have D ≥ 0. Then prob-

em min 

S≥0 , S T 1 = 1 
‖ S 1 / 2 � ( X − XZ ) ‖ 2 

F 
+ 

λ1 
2 ‖ S‖ 2 F 

is equivalent to problem

in S≥0 , S T 1 = 1 ‖ S‖ 2 F 
+ 

2 
λ1 

‖ D � S ‖ 1 . It is also equivalent to the follow-

ng n independent sub-problems min s i ≥0 , s i 
T 1 =1 ‖ s i ‖ 2 2 + 

2 
λ1 

‖ d i � s i ‖ 1 ,
 = 1 , . . . , n , where s i and d i are the i th column of matrices S and

 , respectively. Problem min s i ≥0 , s i 
T 1 =1 ‖ s i ‖ 2 2 

+ 

2 
λ1 

‖ d i � s i ‖ 1 can be

iewed as a special case of Lasso problem [33] , which will pro-

uce a sparse solution s i . Specially, the sparse degree is controlled

y the penalty parameter 2/ λ1 [34] . Thus, we can conclude that

olving problem (3) will produce a sparse weighted matrix S . 

Most importantly, restricting the value of S in a reasonable

ange by using the regularization term 

λ1 
2 ‖ S‖ 2 F 

and boundary con-

traints S ≥ 0, S T 1 = 1 can avoid trivial solution to S [32,34] . Con-

traint Z ≥ 0 ensures the learned graph to have good interpretabil-



J. Wen et al. / Pattern Recognition 81 (2018) 326–340 329 

i  

t  

t  

f

 

i  

p  

i

m

w  

l  

t

 

d  

t

m

 

r  

l  

a  

u  

o  

f

3

 

E  

I  

p  

S  

t

 

(  

a  

c

L

w  

r  

i

 

c

S

 

t

S

⇔

 

j  

E  

p

s

w

 

g

L

w

 

o

∂  

 

β

s

i

⇒

 

u

 

a

m

⇔

 

e

e

ty for samples such that its each element directly reveals the in-

rinsic similar degree of the corresponding two samples. Moreover,

he non-negativity constraint has potential to obtain a better per-

ormance in the representation based graph learning [35] . 

As introduced in the previous section, the local structure of data

s useful and also reveals the intrinsic relationships of samples. To

reserve the local structure, we further impose a distance regular-

zation term to constrain the affinity matrix Z as follows 

in 

S,Z 

∥∥S 1 / 2 � ( X − X Z ) 
∥∥2 

F 
+ 

λ1 

2 

‖ 

S ‖ 

2 
F + λ2 ‖ 

Z ‖ ∗

+ λ3 

n ∑ 

i, j=1 

∥∥x i − x j 
∥∥2 

2 
z i j 

s.t.S ≥ 0 , S T 1 = 1 , Z ≥ 0 (4) 

here λ3 is the tunable regularization parameter. The third regu-

arization term is used to preserve the local structure of data so

hat similar samples have similar representations [36] . 

Define the i th row and j th column element d ij of matrix D is

 i j = ‖ x i − x j ‖ 2 2 , then 

∑ n 
i, j=1 ‖ x i − x j ‖ 2 2 z i j = T r( D 

T Z ) , where Tr ( · ) is

he trace operation. Then model (4) is transformed into: 

in 

S,Z 

∥∥S 1 / 2 � ( X − X Z ) 
∥∥2 

F 
+ 

λ1 

2 

‖ 

S ‖ 

2 
F + λ2 ‖ 

Z ‖ ∗ + λ3 T r 
(
D 

T Z 
)

s.t.S ≥ 0 , S T 1 = 1 , Z ≥ 0 (5) 

To avoid the negative influence that sample is selected to rep-

esent itself and the trivial solution that some samples are not se-

ected in the joint linear representation, i.e. , some rows of Z are

ll zeros, we further constrain the affinity graph such that the val-

es of its diagonal elements is zero and the sum of its each row is

ne. Then the final graph learning model of AWNLRR is written as

ollows: 

min 

S,Z 

∥∥S 1 / 2 � ( X − X Z ) 
∥∥2 

F 
+ 

λ1 

2 

‖ 

S ‖ 

2 
F + λ2 ‖ 

Z ‖ ∗ + λ3 T r( D 

T Z) 

s.t.S ≥ 0 , S T 1 = 1 , diag ( Z ) = 0 , Z ≥ 0 , Z1 = 1 (6) 

.2. Solution to AWNLRR 

There are two unknown variables need to be solved in an

q. (6) . Obviously, it is unrealistic to obtain its analytical solution.

n this section, we use the alternating direction method of multi-

liers (ADMM) [37] to obtain the local optimal solution of variables

 and Z . We first introduce two auxiliary variables E and U to make

he optimization problem (6) separable as follows: 

min 

S,Z,E,U 

∥∥S 1 / 2 � E 
∥∥2 

F 
+ 

λ1 

2 

‖ 

S ‖ 

2 
F + λ2 ‖ 

U ‖ ∗ + λ3 T r 
(
D 

T Z 
)

s.t.S ≥ 0 , S T 1 = 1 , diag ( Z ) = 0 , Z ≥ 0 , Z1 = 1 , 

E = X − X Z, Z = U (7) 

Compared with problem (6) , the complexity of problem

7) seems to be increased. Fortunately, we can prove that it is still

 two-block optimization problem which can be fast solved by the

lassical ADMM. Please refer to Section 4.2 for the detailed proof. 

We first form the following augmented Lagrangian function 

 ( Z, S, E, U, C 1 , C 2 ) = 

∥∥S 1 / 2 � E 
∥∥2 

F 
+ 

λ1 

2 

‖ 

S ‖ 

2 
F 

+ λ2 ‖ 

U ‖ ∗ + λ3 T r 
(
D 

T Z 
)

+ 

μ

2 

(∥∥∥X − X Z − E + 

C 1 
μ

∥∥∥2 

F 

+ 

∥∥∥Z−U + 

C 2 
μ

∥∥∥2 

F 

)

(8) 
here C 1 and C 2 are Lagrangian multipliers, μ is the penalty pa-

ameter. Then we can calculate each variable by fixing the remain-

ng variables, respectively. 

Step 1. Update S : By fixing variables Z, E, U , variable S can be

alculated by minimizing the following problem: 

min 

≥0 , S T 1 = 1 

∥∥S 1 / 2 � E 
∥∥2 

F 
+ 

λ1 

2 

‖ 

S ‖ 

2 
F (9) 

When E is fixed, Eq. (9) is equivalent to the following minimiza-

ion problem: 

min 

≥0 , S T 1 = 1 

m ∑ 

i =1 

n ∑ 

j=1 

(
s i j e 

2 
i j 

+ 

λ1 

2 

s 2 
i j 

)

 min 

S≥0 , S T 1 = 1 

m ∑ 

i =1 

n ∑ 

j=1 

(
s i j + 

e 2 
i j 

λ1 

)2 (10) 

It is obvious that the problem (10) is independent for different

 . So we can obtain S by solving its each column separately [34] .

ach column s j is calculated by solving the following minimization

roblem: 

min 

 j > 0 ,s 
T 
j 
1 =1 

n ∑ 

j=1 

∥∥∥s j + 

1 

λ1 

f j 

∥∥∥2 

2 

(11) 

here f j is the j th column of matrix F = E � E. 

To calculate s j , we first transform Eq. (11) into the following La-

rangian function 

 

(
s j , η, β j 

)
= 

1 

2 

∥∥∥s j + 

1 

λ1 

f j 

∥∥∥2 

2 

− η j 

(
s T j 1 − 1 

)
− βT 

j s j (12) 

here ηj and β j > 0 are the Lagrangian multipliers. 

The optimal solution s j can be obtained by setting the derivative

f Eq. (12) with respect to s j to zero: 

L 
(
s j , η j , β j 

)
/ ∂ s j = s j + 

1 

λ1 

f j − η j 1 − β j = 0 (13)

According to the Karush–Kuhn–Tucker (KKT) condition that

j � s j = 0 [34] , we can obtain s j : 

 j = max 

(
η j 1 − 1 

λ1 

f j , 0 

)
(14) 

According to the constraint s T 
j 
1 = 1 , we have 

m ∑ 

 =1 

(
η j −

1 

λ1 

f i j 

)
= 1 

 η j = 

1 

m 

+ 

1 

m λ1 

m ∑ 

i =1 

f i j 

(15) 

When ηj is calculated, we can obtain the optimal solution s j by

sing (14) so that the optimal solution S is obtained. 

Step 2. Update E : By fixing variables Z, S, U , we can obtain vari-

ble E by solving the following minimization problem 

in 

E 

∥∥S 1 / 2 � E 
∥∥2 

F 
+ 

μ

2 

∥∥∥X − X Z − E + 

C 1 
μ

∥∥∥2 

F 

(16) 

Define G = X − XZ + 

C 1 
μ , Eq. (16) can be rewritten as follows: 

min 

E 

∥∥S 1 / 2 � E 
∥∥2 

F 
+ 

μ

2 

‖ 

E − G ‖ 

2 
F 

 min 

E 

m ∑ 

i =1 

n ∑ 

j=1 

(
s i j e 

2 
i j 

+ 

μ

2 

(
e i j − g i j 

)2 
)

⇔ 

m ∑ 

i =1 

n ∑ 

j=1 

min 

e i j 

(
e i j −

μg i j 

μ + 2 s i j 

)2 

(17) 

From problem (17) , we can obtain that the optimal solution to

ach element e ij of variable E is: 

 i j = 

μg i j 

μ + 2 s i j 

(18) 
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Algorithm 1 AWNLRR (solving (7) ). 

Input: Data matrix X , Parameters λ1 , λ2 , λ3 

Initialization: Constructing the k -nearest neighbor graph as the initial matrix of 

Z ; S = 1 , U = Z, E = X − XZ; C 1 = C 2 = 0 , μ = 0 . 01 , ρ = 1 . 1 , μmax = 10 8 . 

while not converged do 

1. Update S by using Eq. (14) . 

2. Update E by using Eq. (18) . 

3. Update U by using Eq. (20) . 

4. Update Z by using Eq. (25) . 

5. Update C 1 , C 2 , μ by using Eqs. (27) , (28) , and (29) , respectively. 

end while 

Output: Z, S 

Algorithm 2 Data clustering via Ncut with the obtained graph Z . 

Input: Graph Z obtained via Algorithm 1 , cluster number c 

1. Calculate the affinity matrix W = ( | Z| + | Z T | ) / 2 . 
2. Compute the normalized Laplacian matrix L = I − D −1 / 2 W D −1 / 2 , where D is a 

diagonal matrix with each diagonal element d ii = 

∑ n 
j=1 w i j , I is the identity 

matrix. 

3. Perform eigenvalue decomposition on matrix L and treat the first c 

eigenvectors corresponding to the first c smallest eigenvalues as the new 

representation Y ∈ R n × c of original data, where each row vector y i can be 

regarded as the new representation of the i th original sample. 

4. Obtain the normalized new representation of each sample by ˆ y i = y i / ‖ y i ‖ 2 . 
5. Obtain c clusters F 1 , . . . , F c by performing K -means on the normalized new 

representations. 

Output: Clusters A 1 , . . . , A c with A i = { j| y j ∈ F i } . 

3
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So that variable E is obtained. Theoretically, variables S and E

need to be iteratively updated in a sub-loop. In this paper, we only

update the two variables one time in a loop for computational ef-

ficiency. 

Step 3. Update U . Fix variables Z, S, E , variable U can be obtained

by minimizing objective function L with respect to U as follows: 

min 

U 
λ2 ‖ 

U ‖ ∗ + 

μ

2 

∥∥∥Z − U + 

C 2 
μ

∥∥∥2 

F 

(19)

Problem (19) has a closed solution as follows: 

 = �λ2 /μ( Z + C 2 /μ) (20)

where � is the singular value thresholding (SVT) shrinkage opera-

tion [16] . 

Step 4. Update Z : By fixing variables S, E, U , we can calculate

variable Z by minimizing the following equation: 

min 

Z 
λ3 T r 

(
D 

T Z 
)

+ 

μ

2 

∥∥∥Z − U + 

C 2 
μ

∥∥∥2 

F 

+ 

μ

2 

∥∥∥X − X Z − E + 

C 1 
μ

∥∥∥2 

F 
s.t.diag ( Z ) = 0 , Z ≥ 0 , Z1 = 1 

(21)

For simplicity and computational efficiency, we first calculate a

latent solution 

ˆ Z by minimizing the following problem 

ˆ Z = arg min 

Z 
λ3 T r 

(
D 

T Z 
)
+ 

μ

2 

∥∥∥Z − U + 

C 2 
μ

∥∥∥2 

F 

+ 

μ

2 

∥∥∥X − X Z − E + 

C 1 
μ

∥∥∥2 

F 

(22)

Problem (22) has a closed solution as 

ˆ Z = 

(
X 

T X + I 
)−1 

(
X 

T M 1 + M 2 − λ3 

μ
D 

)
(23)

where M 1 = X − E + 

C 1 
μ , M 2 = U − C 2 

μ . 

Then the optimal solution Z can be calculated by solving the

following minimization problem: 

min 

diag ( Z ) =0 ,Z ≥0 ,Z 1 = 1 

∥∥Z − ˆ Z 
∥∥2 

F 
(24)

Similar to the optimization style of problem (10) , we can obtain

the optimal solution Z . For each row of Z , its optimal solution is 

z i = max 
(
ζi ̄1 

T + z̄ i , 0 

)
(25)

where z̄ i = [ ̄z i 1 , . . . , ̄z ii , . . . , ̄z in ] is the i th row of ˆ Z (obtained by

Eq. (23) ) that element z̄ ii is set to zero. 1̄ is the column vector that

all elements except the i th element are one and the i th element is

zero. ζ i is the Lagrangian multiplier that is calculated as: 

ξi = ( 1 + z̄ i 1 ) / ( n − 1 ) (26)

For each row, after computing ξ i , we can obtain the optimal

solution of z i by Eq. (25) so that the optimal solution Z is obtained.

Step 5. Update C 1 , C 2 and μ. Lagrangian multipliers C 1 and C 2 ,

penalty parameter μ are updated as follows: 

 1 = C 1 + μ( X − X Z − E ) (27)

 2 = C 2 + μ( Z − U ) (28)

μ = 

{
min ( μmax , ρμ) , i f π < 0 . 01 

μ, else 
(29)

where parameters μmax and ρ are positive constants,

π = max ( ‖ Z k − Z k −1 ‖ F , ‖ U k − U k −1 ‖ F , ‖ E k − E k −1 ‖ F ) / ‖ X‖ F , Z k , U k ,

E k and Z k −1 , U k −1 , E k −1 are the value of Z, U, E at the k th iteration

(current step) and k − 1 th iteration (previous step), respectively. 

The optimization steps of AWNLRR are summarized in

Algorithm 1 . 
.3. AWNLRR based clustering 

Similar to conventional graph based clustering methods, we

lso use the spectral clustering to obtain the final clustering re-

ults. Normalized cut (Ncut) [9] and Ratio cut (Rcut) [38] are the

wo most popular spectral clustering algorithms. The only differ-

nce between them is that Rcut produces the low-dimensional

epresentation from the conventional Laplacian matrix derived

rom the similarity graph Z , while Ncut produces the low-

imensional representation from the normalized Laplacian matrix.

n this paper, we chose Ncut to partition data into respective

roups when similarity graph Z is obtained. The clustering steps

ia Ncut are summarized in Algorithm 2 in details. 

.4. Out-of-sample extension 

The graph based clustering can only partition the available data

hat used during graph learning into respective groups. They can-

ot deal with new sample that does not used to learn the graph.

enerally, there are two approaches which are widely applied to

ddress this problem when the graph is obtained. The one ap-

roach first produces a linear projection from the obtained graph,

nd then classifies the new sample in the low-dimensional sub-

pace [39] . This approach can also be viewed as the graph based

imensionality reduction. The second approach uses the well-

nown supervised classification method, i.e. , representation based

lassification, such as collaborative representation based classifi-

ation (CRC) and sparse representation based classification (SRC),

o classify the new sample [40,41] . Considering that the first ap-

roach is sensitive to the selection of dimension, in this paper we

dopt the second approach to address the out-of-sample problem.

n particular, we chose the CRC [42] to classify the new sample ow-

ng to its good performance and high efficiency. The detailed steps

o address the out-of-sample problem via CRC are summarized in

lgorithm 3 . 
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Algorithm 3 New sample classification based on AWNLRR. 

Input: Training data X ∈ R m × n , test sample y ∈ R m × 1 , parameter β . 

1. Use Algorithm 2 to obtain the clustering results of training data X ; 

2. Represent the test sample y by the linear combination of all samples in the 

training data X , and calculate the representation vector 

α = arg min 
α

‖ y − Xα‖ 2 F + 

β
2 
‖ α‖ 2 2 ; 

3. Calculate the normalized representation residual of each cluster by 

r i = ‖ y − X i αi ‖ 2 / ‖ αi ‖ 2 , where X i denotes the training samples from the i th 

cluster and αi is their corresponding representation coefficients; 

4. Classify the test sample to the cluster with the minimum representation 

residual as ident it y (y ) = arg min 
i 

r i . 

Output: Predict label identity ( y ). 
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. Analysis of the proposed method 

.1. Computational complexity of AWNLRR 

For AWNLRR listed in Algorithm 1 , there are five main steps,

n which the most computational costs are the SVT and inverse

peration of matrix in steps 3 and 4, respectively. It should be

oted that steps 1 and 2 can be viewed as the element-wise op-

ration which can be fast solved. This indicates that the computa-

ional complexities of these two steps are very low and thus can

e ignored compared with the other steps. Besides, we do not take

nto account the computational complexity of fundamental matrix

perations, such as matrix addition and multiplication. For step 4,

lthough the matrix inverse operation ( X T X + I ) −1 has high com-

utational complexity, we can pre-calculate it before iteration loop

ecause the matrix inverse operation is independent with all vari-

bles. So the real computational cost of step 4 is only the matrix

ultiplication operation which can be ignored. For a matrix U with

he size of n × n , the computational complexity of SVT operation

s O ( rn 2 ) by using the skinny singular value decomposition (SVD),

here r ( r ≤ n ) is the rank of matrix U [18] . So the computational

omplexity of step 3 is about O ( rn 2 ). Therefore, the total computa-

ional complexity of the proposed method is about O ( τ rn 2 ), where

is the iteration number. 

.2. Convergence analysis of AWNLRR 

As presented in previous section, the ADMM is adopted to solve

he optimization problem (6) . In this subsection, we mainly focus

n analyzing the convergence property of the proposed method

ith the proposed optimization scheme listed in Algorithm 1 . 

roposition 2. The optimization problem (7) is equivalent to the

wo-block optimization problem. And the proposed Algorithm 1 is

quivalent to the classical ADMM for the two-block problem. 

roof. The classical two-block optimization problem can be uni-

ed as follows [43,44] : 

min 

 ∈ �W ,Y ∈ �Y 

f ( W ) + g ( Y ) s.t.AW + BY = L (30)

where �W 

and �Y are the domains (boundary constraints) of

ariables W and Y. f ( · ) and g ( · ) are the convex functions. A, B, L

ould be either vectors or matrices. Classical ADMM first converts

he constrained optimization problem (30) into the following aug-

ented Lagrangian function: 

 ( W, Y, C ) = f ( W ) + g ( Y ) + 

μ

2 

∥∥∥AW + BY − L + 

C 

μ

∥∥∥2 

F 

(31)

Then iteratively update all variables as follows 

 t+1 = arg min 

W ∈ �W 

L ( W, Y t , C t ) (32) 

 t+1 = arg min 

Y ∈ �Y 

L ( W t+1 , Y, C t ) (33) 
 t+1 = C t + μ( A W t+1 + B Y t+1 − L ) (34) 

From Algorithm 1 , it is obvious to see that our optimization

roblem (7) is optimized by the similar approach with the clas-

ical ADMM [45] . Specially, the optimization of variable Z in (21) is

quivalent to optimize Y in (33) when other variables are fixed. For

ariable U , we can find that the optimization of U is independent

ith variables S and E . While optimizing variables S and E can be

reated as a unified sub-problem during the optimization, which

an be calculated by the block coordinate-wise descent method. It

hould be noted that we only update variables S and E one time

or computational efficiency in Algorithm 1 . In this case, the op-

imization steps for variables S, E, U can be accumulated in W as

32) [45] . Hence, the optimization problem (7) can be viewed as a

pecial case of the classical two-block optimization problem. And

he proposed optimization algorithm, i.e. , Algorithm 1 , is equiva-

ent to the classical ADMM for the two-block problem. Thus we

omplete the proof. 

For the classical two-block ADMM, the convergence property

as been theoretically proved in [43,46–48] . Hence, as an equiv-

lent two-block optimization problem, the proposed optimization

pproach can also converge to the local optimum as the classical

DMM. 

We also conduct experiments to prove the convergence prop-

rty of the proposed algorithm. Fig. 1 shows the objective function

alue and clustering accuracy (%) versus the iteration step, in which

he objective function value is calculated as ob j = ‖ S 1 / 2 � E ‖ 2 
F 

+
λ1 
2 ‖ S‖ 2 F + λ2 ‖ U‖ ∗ + λ3 T r( D 

T Z ) + ‖ X − XZ − E ‖ 2 F + ‖ Z − U ‖ 2 F . It is

bvious that the objective function value is monotonically decreas-

ng till to the stable point, which also proves the fast convergence

roperty of the proposed method. 

.3. Connections to other methods 

Since the proposed method utilizes the low-rank representation

echnique to capture the structure of data, thus we mainly ana-

yze the connections between the method and other LRR based

raph learning methods, such as LRR [16] , Laplacian regularized

RR (LapLRR) [19] , NNLRS [12] , and non-negative sparse hyper-

aplacian regularized LRR (NSHLRR) [18] , etc. 

(1) Connections to LRR and NNLRS: The graph learning model of

LRR is briefly introduced in Section 2.1 . NNLRS is an exten-

sion of LRR. It seeks a non-negative graph that can capture

both global and local structures of data. The graph learning

model of NNLRS is as follows 

min 

Z,E 
‖ 

Z ‖ ∗ + β‖ 

Z ‖ 1 + λ‖ 

E ‖ 2 , 1 s.t.X = X Z + E, Z ≥ 0 (35)

By introducing the sparse constraint β‖ Z ‖ 1 , NNLRS has poten-

ial to learn a sparser graph than LRR. Parameter β controls the

parse degree of the learned graph. 

It should be noted that LRR and NNLRS can be viewed the

pecial cases of AWNLRR. When all elements of S are defined as

 i j = 1 /m ( m is the feature dimension of matrix X ), λ1 = λ3 = 0 ,

WNLRR degrades into a variation of LRR, in which the only differ-

nce between them is the regularization of error term. If λ1 = 0 ,

 and S are given as follows: all elements of D are equivalent, and

ll elements of S are 1/ m , then AWNLRR degrades into a variation

f NNLRS to some extent, in which the only difference is also the

egularization of error term. 

Compared with LRR and NNLRS, the proposed method has the

ollowing advantages. First, both of LRR and NNLRS only capture

he representation structures of data while ignoring the distance

r nearest neighbor relationships of samples. Compared with these
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Fig. 1. Objective function value and clustering accuracy versus the number of iteration of the proposed method on the COIL20 and Extended Yale B databases. 
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2 Code of Ncut is available at: http://www.cis.upenn.edu/ ∼jshi/software/ 
3 Code of SSC is available at: http://www.vision.jhu.edu/code/ 
two methods, AWNLRR utilizes a weighted sparse constraint, 1 i.e.,

λ3 Tr ( D 

T Z ), to capture the local structure of data. It not only ensures

the sparsity, but also effectively exploits the local distance infor-

mation of samples to learn a more reasonable graph. Second, dur-

ing the data representation of LRR and NNLRS, all features no mat-

ter they are redundant features or noise are treated equally. This

is harmful to obtain the clean graph. The proposed method effec-

tively tackles this issue by introducing an adaptive weighted ma-

trix S . By boosting the two variables of S and Z together, AWNLRR

has potential to improve the role of those most important features

during data representation, so that a more robust graph will be

produced. 

From the above analyses, AWNLRR has many superior proper-

ties compared with these two methods, which enables it to obtain

a better performance. 

(2) Connections to LapLRR and NSHLRR: The graph learning

models of LapLRR and NSHLRR are shown as Eq. (36) and

Eq. (37) , respectively. 

min 

Z 

1 

2 

‖ 

X − X Z ‖ 

2 
F + λ1 ‖ 

Z ‖ ∗ + 

λ2 

2 

T r 
(
Z L Z T 

)
s.t.Z ≥ 0 (36)

min 

Z 
‖ 

Z ‖ ∗ + λ1 ‖ 

Z ‖ 1 + βT r 
(
Z L h Z T 

)
+ γ ‖ 

X − X Z ‖ 1 s.t.Z ≥ 0 

(37)

where L and L h are the Laplacian graphs and Laplacian hypergraph

[18] . 

Compared with LapLRR, NSHLRR additionally introduces a spar-

sity term, i.e., λ1 ‖ Z ‖ 1 , to capture the local representation structure

of data and avoid a dense graph. Although nearest neighbor rela-

tionships are exploited in these two methods, they cannot ensure

the greater contributions of nearest neighbors during data rep-

resentation. Compared with these two methods, AWNLRR simply

imposes a simple distance regularization term rather than Lapla-

cian regularization to constrain the graph. In this way, the repre-

sentation coefficients of these nearest neighbors will be enlarged

such that the representation contributions of them will also be im-

proved. Moreover, the distance regularization term also ensures the

sparsity of the graph. These properties are beneficial to obtain a

more reasonable and interpretable graph that each element natu-

rally reveals the similarity degree of the corresponding two sam-

ples. Similar to the previous analysis, the adaptive weighted ma-

trix encourages the method to obtain a more robust graph than

these two methods. In summary, AWNLRR has potential to learn a

more reasonable, interpretable, and robust graph than LapLRR and

NSHLRR. 
1 If Z ≥ 0 and D > 0, T r( D T Z ) = | D � Z | 1 . Therefore term Tr ( D T Z ) can be regarded 

as the weighted sparse term. 

h

. Experiments and analysis 

In this section, several experiments are conducted on both syn-

hetic and real databases to evaluate the clustering performance of

WNLRR. K -means and several graph based clustering methods, in-

luding ratio cut (Rcut) [38] , Normalized cut (Ncut) 2 [9] , SSC 

3 [15],

RR 

4 [16] , Latent LRR (LatLRR) [49] , LapLRR [19] , NSHLRR 

5 [18] , and

rincipal graph and structure learning (PGSL) 6 [50] , are chose to

ompare the proposed method to prove its effectiveness. The com-

ared Rcut and Ncut methods use the knn -graph to perform clus-

ering. LatLRR is an extension of LRR which learns a graph by ef-

ectively exploiting the hidden data. Based on reversed graph em-

edding, PGSL learns a principle graph that captures the local in-

ormation for data clustering. Two metrics, i.e. , clustering accuracy

Acc) and normalized mutual information (NMI) [51] are chose as

he evaluation criterion to compare different clustering methods.

ll experiments are performed on the same platform, i.e. , soft-

are Matlab 2015b and Windows 10 system, hardware Intel Core

7-4790 CPU and 16GB ram. In this work, parameters of all com-

ared methods are manually tuned in a wide range to obtain their

est results. Moreover, since K -means is sensitive to the initializa-

ion, thus we run these methods 15 times and then report their

ean values for comparing. In the following experiments, the near-

st neighbor size of the initial graph Z of the proposed method is

et as 10. 

.1. Experiments on synthetic data 

In this section, we compare different methods on the synthetic

atabase. We use the method presented in [19,52] to generate a

ata matrix X ∈ R 300 × 200 with 5 clusters. Each cluster contains 40

amples and each sample has 300 features. Then we further add

salt and pepper’ noise with different densities on the ground truth

ata matrix X to produce some noisy data to validate the robust-

ess of these clustering methods. 

Experimental results of different clustering methods on these

oisy data are shown in Table 1 . It should be pointed out that the

ata with noisy density of 0.0 is the original clean data X . From

able 1 , it is obvious to see that all clustering methods achieve

00% accuracy and NMI on the original clean synthetic data. While

ith the increasing of the noisy density, their performances de-

rease dramatically, especially Rcut and Ncut. This indicates that

he distance metric cannot correctly uncover the intrinsic near-
4 Code of LRR is available at: http://www.cis.pku.edu.cn/faculty/vision/zlin/zlin. 

tm 

5 Code of NSHLRR is available at: https://www.researchgate.net/profile/Ming _ Yin3 
6 Code of PGSL is available at: http://liwang8.people.uic.edu/#publication 

http://www.cis.upenn.edu/~jshi/software/
http://www.vision.jhu.edu/code/
http://www.cis.pku.edu.cn/faculty/vision/zlin/zlin.htm
https://www.researchgate.net/profile/Ming_Yin3
http://liwang8.people.uic.edu/#publication
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Table 1 

Clustering accuracies (%) of different methods on the synthetic databases with different noisy degrees. 

Metrics Density K -means Rcut Ncut SSC LRR LatLRR LapLRR NSHLRR PGSL AWNLRR 

Accuracy 0.0 100 100 100 100 100 100 100 100 100 100 

0.1 84.75 52.50 55.77 100 84.50 100 75.65 100 63.60 100 

0.2 36.95 35.47 32.60 97.00 37.30 97.50 35.40 99.50 32.45 99.00 

0.3 28.95 31.50 32.00 73.50 30.65 88.50 32.50 86.00 30.25 94.45 

0.4 28.65 32.50 33.27 63.50 28.00 84.00 29.40 68.00 29.20 92.50 

0.5 28.25 32.73 29.30 30.55 29.00 31.00 30.10 37.00 29.40 41.00 

NMI 0.0 100 100 100 100 100 100 100 100 100 100 

0.1 65.09 24.86 29.88 100 62.99 100 50.98 100 42.29 100 

0.2 10.96 8.03 6.86 91.69 10.82 93.13 9.49 98.54 6.65 97.09 

0.3 3.96 4.35 6.70 46.14 6.55 70.28 7.20 67.00 4.20 82.63 

0.4 4.08 6.98 7.24 30.31 4.23 63.88 4.50 47.39 3.87 67.46 

0.5 3.38 5.47 4.64 5.00 4.13 5.06 7.44 8.47 4.67 15.73 

Note : bold numbers denote the best results. 

Fig. 2. Graph obtained by different graph learning methods on the synthetic database with noisy density of 0.3. Note: for knn- graph, the nearest neighbor size is set as 10. 

All graphs are showed with ‘hot’ colormap. 
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7 Available at: http://www.gaussianprocess.org/gpml/data/ 
8 Available at: http://yann.lecun.com/exdb/mnist/ 
st neighbor structure of data when data contain dense noise. Yet,

he proposed method achieves the better performance than other

ethods in almost all cases. In particular, when the noisy densities

re 0.3 and 0.4, the proposed method still achieves the outstanding

ccuracies and NMIs, whose accuracies are about 6% higher than

he second best method, i.e. , LatLRR. These outstanding perfor-

ances indicate that the proposed method has potential to learn

 more robust graph than other methods when data is corrupted

ith noise. 

Fig. 2 shows some graphs obtained by different compared

ethods on the synthetic database with noisy density of 0.3. It

s obvious to see that graphs obtained by SSC, LatLRR, NSHLRR,

nd AWNLRR has clearer block structure than those of KNN, LRR,

apLRR, and PGSL. In view of SSC, NSHLRR, and AWNLRR all im-

ose the sparse constraint on the graph, we can conclude that the

parse representation is more effective than the low-rank repre-

entation in uncovering the intrinsic structures of noisy data. Al-

hough graph learned by NSHLRR is sparser than those of LatLRR

nd AWNLRR, its clustering accuracy and NMI are lower than those

f LatLRR and AWNLRR. From Fig. 2 (d), (e) and (g), one can see

hat the block diagonal structure of graphs learned by LatLRR and

WNLRR are clearer than that of NSHLRR. This indicates that the

learer block structure the constructed graph, the better the clus-

ering performance. Compared with NSHLRR which shares some

imilar properties with the proposed method, the better perfor-

ance of AWNLRR indicates that the extra non-negative weighted
onstraint of the proposed method is useful and effective to iden-

ify those important features (clean features) and reinforce their

oles in graph learning, which has potential to learn a more robust

raph from the noisy data. 

.2. Experiments on real datasets 

In this section, we conduct experiments on some real databases

isted in Table 2 , including handwritten digit databases, face

atabases, object databases, and some non-image databases from

niversity of California, Irvine (UCI) [53] . 

Handwritten digit database: USPS 7 and MNIST 8 are the two most

ell-known handwritten digit databases. They contain 10 classes

rom digit of “0 ′′ to “9 ′′ . In the experiments, two subsets of these

wo databases which respectively contain 40 0 0 and 6996 Gy digit

mages are selected for comparing. Typical images of these two

atasets are shown in Fig. 3 . Sizes of each image in USPS and

NIST are 16 × 16 and 28 × 28, respectively. 

Face databases: The above methods are compared on five typi-

al face databases, i.e. , the Umist face database 9 [56] , the Extended

ale B (YaleB) face database [54] , the AR face database [55] , the

abeled Faces in the Wild (LFW) face dataset [58] , and the MSRA
9 Available at: http://cs.nyu.edu/ ∼roweis/data.html 

http://www.gaussianprocess.org/gpml/data/
http://yann.lecun.com/exdb/mnist/
http://cs.nyu.edu/~roweis/data.html
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Table 2 

Description of databases. 

Database No. of instances Dimensions Classes 

Handwritten digit databases USPS 40 0 0 256 10 

MNIST 6996 784 10 

Face databases YaleB [54] 2414 1024 38 

AR [55] 3120 20 0 0 120 

Umist [56] 575 2576 20 

LFW [58] 1251 1024 86 

MSRA 1799 256 12 

Object databases COIL20 [57] 1440 1024 20 

UCI databases Cars [53] 392 8 3 

Vehicle [53] 846 18 4 

Yeast [53] 1484 8 10 

Fig. 3. Typical samples of the (a) USPS database and (b) MNIST database. 

Fig. 4. Typical images of the used face databases, in which images from the first 

row to the last row are from the Umist, YaleB, AR, LFW, and MSRA databases, re- 

spectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Typical images of the COIL20 database. 
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database. 10 The Umist face database used in this work has 575 im-

ages provided by 20 persons under different poses. The used YaleB

face database has 38 classes and 2414 images acquired from dif-

ferent illumination sceneries. The used AR face database contains

120 persons and 3120 images in total, in which each person pro-

vides 26 images with different facial expressions, illumination con-

ditions, and occlusions by sun glasses and scarf. There are more

than 13,0 0 0 images in the original LFW database which are col-

lected from the web. In this work, a subset which contains 1251

face images of 86 persons is adopted for evaluation. The MSRA

database contains 12 persons and 1799 images in total. Typical im-

ages of these databases are shown in Fig. 4 . Sizes of images of the

above face databases used in the experiments are 32 × 32, 50 × 40,

56 × 46, 32 × 32, and 16 × 16, respectively. 
10 Available at: http://www.escience.cn/people/fpnie/papers.html 

 

Object database: In this work, we choose the Columbia Object

mage Library (COIL20) database 11 [57] as the representation of the

bject database to evaluate those compared methods. The COIL20

atabase contains 1440 gray-scale images provided by 20 objects.

here are 72 images of each object which are taken at pose inter-

als of 5 °. Images used in this work were pre-resized to 32 × 32 for

omputational efficiency. 

Non-image databases from UCI: The UCI Machine Learning

epository collects lots of databases. In this work, we select many

on-image databases, including the Cars, Vehicle, Isolet, and Yeast

atabases 12 for clustering evaluation. 

Specially, we deeply compare the above clustering methods on

he USPS, COIL20, YaleB, and Umist datasets, in which a series

f experiments are conducted on a range of first c sub-classes of

hese databases. For the remaining databases, we directly perform

hose methods on the corresponding whole database for evaluation

 Fig. 5 ). 

Experimental results of different clustering methods on the

bove databases are shown in Table 3 –7 and Fig. 6 . From these

ables and figures, one can obtain that: 

1) From the comparison of K -means and other graph based clus-

tering methods, it is obvious to see that learning a low-

dimensional representation is effective to obtain a better clus-

tering performance than using the original features directly.

Most importantly, from Table 3 –7 and Fig. 6 , we can find that

the proposed method obtains the best performance in almost

all cases. 

2) Table 3 and Fig. 6 (a) show the clustering accuracies and NMIs of

different methods on the object database, i.e. , COIL20 database.

One can see that in most cases, the clustering accuracies and

NMIs of Rcut and Ncut are much higher than the representa-

tion based graph learning methods, i.e. , SSC, LRR, and LatLRR,

etc. This demonstrates that the distance metric captures the

structure of data more accurately than the representation based

metrics on the COIL20 database. 

3) From the comparison of SSC, LRR, LatLRR, LapLRR, and NSHLRR

in Table 3 –7 and Fig. 6 , we can conclude that a better perfor-

mance can be obtained by integrating the manifold information,

i.e. , nearest neighbor relationships. It should be noted that the

nearest neighbor relationships are also the distance relation-

ships between sample and its nearest neighbors. Therefore, this

also proves the valuable of distance relationships of samples to
11 Available at: http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php 
12 Available at: http://www.escience.cn/people/fpnie/papers.html 

http://www.escience.cn/people/fpnie/papers.html
http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
http://www.escience.cn/people/fpnie/papers.html
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Table 3 

Clustering Acc (%) of different methods on the COIL20 datasets. 

No. of class K -means Rcut Ncut SSC LRR LatLRR LapLRR NSHLRR PGSL AWNLRR 

4 62.15 86.46 82.64 62.50 96.53 91.32 96.53 98.37 81.25 100 

6 48.36 91.68 92.05 62.70 64.12 67.59 81.90 85.48 76.27 93.38 

8 43.66 86.88 86.96 77.26 70.83 65.28 74.31 78.24 78.07 92.08 

10 46.06 83.82 86.04 67.11 68.47 68.22 75.01 80.17 77.64 86.59 

12 53.41 83.16 81.70 79.98 62.99 66.81 78.54 83.65 81.01 88.66 

14 56.81 83.01 81.97 74.01 66.36 75.00 78.98 80.24 78.40 90.02 

16 60.83 82.35 79.81 75.28 69.33 71.25 77.95 81.87 75.95 92.10 

18 64.96 81.09 82.62 75.53 66.54 67.18 80.94 83.74 82.89 92.90 

20 57.67 76.49 77.83 77.92 66.39 65.64 75.01 81.48 80.76 84.03 

Note : bold numbers denote the best results. 

Table 4 

Clustering Acc (%) of different methods on the YaleB datasets. 

No. of class K -means Rcut Ncut SSC LRR LatLRR LapLRR NSHLRR PGSL AWNLRR 

2 50.85 94.53 94.53 100 78.13 96.88 99.22 99.22 98.44 99.22 

8 18.91 50.03 50.30 88.31 83.79 83.20 83.67 84.05 62.83 84.47 

14 15.95 54.33 54.60 78.71 89.46 82.06 77.64 83.24 54.79 88.78 

20 12.11 55.09 55.89 76.84 90.44 80.10 76.55 86.78 52.96 90.36 

26 11.35 56.14 56.70 76.89 87.39 74.79 75.10 80.47 49.67 92.50 

32 10.76 51.44 51.46 76.12 80.65 77.18 81.23 83.96 45.87 91.92 

38 9.39 48.77 49.42 73.89 70.34 78.88 77.29 80.54 42.89 88.89 

Note : bold numbers denote the best results. 

Table 5 

Clustering Acc (%) of different methods on the Umist datasets. 

No. of class K -means Rcut Ncut SSC LRR LatLRR LapLRR NSHLRR PGSL AWNLRR 

4 47.97 66.34 67.05 60.16 61.79 51.55 84.55 88.62 78.78 93.50 

6 52.91 73.37 73.57 70.35 68.02 50.12 82.56 88.90 84.71 90.70 

8 48.45 74.70 76.90 67.42 70.47 60.37 86.85 80.69 71.03 97.18 

10 44.57 68.63 68.58 71.70 74.60 70.04 77.64 78.53 69.43 81.43 

12 44.66 69.27 69.37 67.00 64.87 68.77 69.78 72.22 64.63 79.04 

14 41.52 69.85 69.46 71.67 60.18 69.56 73.56 79.35 64.01 82.24 

16 39.84 60.57 61.37 65.97 54.63 64.75 65.74 71.35 61.61 70.65 

18 38.78 61.34 62.00 67.30 55.90 61.34 65.40 68.73 63.59 69.76 

20 41.58 62.33 62.57 63.48 56.28 61.04 65.78 66.15 65.67 70.10 

Note : bold numbers denote the best results. 

Table 6 

Clustering Acc (%) of different methods on the USPS datasets. 

No. of class K -means Rcut Ncut SSC LRR LatLRR LapLRR NSHLRR PGSL AWNLRR 

2 97.50 99.88 99.88 99.75 99.75 99.25 99.88 99.63 97.38 99.88 

4 90.88 98.69 98.69 98.31 94.56 91.19 98.94 99.00 96.73 99.19 

6 76.83 86.87 84.48 93.54 87.37 66.75 90.73 94.35 71.96 96.00 

8 80.78 88.82 88.44 89.44 84.31 71.25 87.65 90.25 89.41 92.33 

10 64.75 83.23 82.57 79.12 67.39 65.78 75.34 82.18 82.28 84.26 

Note : bold numbers denote the best results. 

Table 7 

Clustering Acc (%) of different methods on remaining real datasets. 

Dataset K -means Rcut Ncut SSC LRR LatLRR LapLRR NSHLRR PGSL AWNLRR 

MNIST 55.30 68.80 69.97 53.65 54.55 42.01 63.65 60.24 67.50 72.34 

AR 31.19 48.39 48.52 64.73 56.37 57.14 65.19 65.75 47.13 70.94 

LFW 22.18 23.79 24.03 29.29 23.81 25.08 27.49 27.98 23.04 31.18 

MSRA 50.70 57.42 57.42 60.98 63.79 60.57 62.89 63.41 59.76 67.58 

Cars 54.59 63.01 63.11 62.00 62.50 67.96 64.09 62.34 60.69 68.62 

Vehicle 45.86 46.53 46.64 44.92 45.75 46.57 45.89 45.98 43.12 48.50 

Yeast 31.79 34.42 34.67 39.34 36.93 37.40 37.42 40.74 36.05 43.44 

Note : bold numbers denote the best results. 
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the graph learning. In other words, exploiting the distance rela-

tionships of data to regularize the graph has potential to learn a

more reasonable and discriminative graph so that a better clus-

tering performance can be obtained. 

4) From the experimental results of different methods on the

YaleB database ( Table 4 and Fig. 6 (b)), we can find that all of
the representation based methods achieve much better perfor-

mance than those of methods that only exploit the distance in-

formation, i.e. , Ncut and Rcut. This illustrates that the represen-

tation based metrics are more robust than distance based met-

ric in capturing the intrinsic structure of data under the condi-

tion of various illuminations. This indicates that the represen-
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Fig. 6. Clustering NMIs (%) of different clustering methods on the (a) COIL20, (b) YaleB, (c) Umist, (d) USPS databases, and (e) other databases. 
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tation structures of data are also useful and contain discrimina-

tive information for data clustering. 

5) We should point out that both of the NSHLRR and the pro-

posed method not only take into account the global and local

structures of data, but also learns a sparsity graph. However,

from the comparison of the two methods, it is obvious that

the proposed method perform much better than NSHLRR. This

is mainly because that the proposed method has potential to

learn a more robust graph by introducing a weighted matrix to

adaptively reinforce the role of important features and simul-

taneously reduce the role of those redundant features during

graph learning. 

From the above analyses, we can conclude that: (1) both dis-

tance relationships and representation relationships of data all

contain discriminative information; (2) the optimal graph can be

learned if and only if the two structures can be effectively ex-

ploited. Compared with other methods, the proposed method has

potential to learn a more robust graph than other methods owing

to its effective in uncovering the important features and improving

their roles during graph learning. The above experimental results

also prove the superiority of the proposed method which is ana-

lyzed in the Section 4.3 . 
.3. Analysis of the graph initialization and parameter selection 

From Algorithm 1 , there are four uncertainty parameters, i.e. ,

alanced parameters λ1 , λ2 , λ3 , and initialized nearest neighbor

umber k . In this subsection, we will analyze the sensitivity of

hese parameters to the proposed method. Fig. 7 shows the cluster-

ng accuracy (%) versus the number of initial nearest neighbor size

n the whole COIL20 and YaleB databases with the fixed parame-

ers of λ1 , λ2 , λ3 . In Fig. 7 (b), the maximum and minimum accura-

ies are 88.99% and 88.81% when nearest neighbor sizes are 6 and

, respectively. The error between the maximum and minimum ac-

uracies on the YaleB database is very small, i.e. , 0.18%. By the way,

he maximum accuracy error on the COIL20 database is also very

mall, i.e. , 0.23%. Therefore, we can conclude that the clustering

erformance are very insensitive to the selection of nearest neigh-

or size of the initial graph Z . The major factor leads to this good

roperty is that the proposed method can adaptively select near-

st neighbors for each sample in the stage of graph learning. In

he above experiments, we uniformly set the nearest neighbor size

o 10. 

Next we analyze the sensitivity of the three balanced parame-

ers, i.e., λ1 , λ2 , and λ3 to the proposed method. Specially, λ1 con-

rols the values of weighted matrix S . This term is used to avoid

he trivial solution to S . Usually, a small value such as {0.1, 0.01,

.001} is a proper value to λ1 . Figs. 8 and 9 show the clustering
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Fig. 7. Clustering accuracy (%) viruses the number of initial nearest neighbor size on the (a) COIL20 database and (b) YaleB database. 

Fig. 8. Clustering accuracy versus different values of (a) parameters λ1 when λ2 and λ3 are fixed, (b) parameters λ2 and λ3 when λ1 = 0 . 01 on the COIL20 dataset. . 

Fig. 9. Clustering accuracy versus different values of (a) parameters λ1 when λ2 and λ3 are fixed, (b) parameters λ2 and λ3 when λ1 = 0 . 01 on the YaleB dataset. 
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ccuracies of the proposed method with respect to the three pa-

ameters on the COIL20 and YaleB databases. From Figs. 8 and 9 ,

ne can see that when parameters λ2 and λ3 are fixed, the clus-

ering performance is insensitive to the selection of parameter λ1 

n the range of [ 10 −4 
, 10 4 ] . Compared with parameter λ1 , the clus-

ering performance is very sensitive to parameters λ2 and λ3 . This

s mainly because they are regularized on the graph and directly

etermine the roles of corresponding terms during graph learn-

ng. For example, a small λ2 will lead to a denser graph which

ay produce a bad performance. So it is necessary to tune suit-

ble values for these three parameters to obtain a satisfactory per-

ormance. 

Due to the diversity of databases, it is difficult to find the com-

on values of these three parameters for different databases. Here

e present a simple and effective way to find their optimal val-

s  
es. According to previous analysis, we can first simply fix pa-

ameter λ1 to a small value such as 0.01, then find the candi-

ate combination of parameters λ2 and λ3 from the coarse set

f { 10 −4 
, 10 −3 

, 10 −2 
, 10 −1 

, 10 0 , 10 1 , 10 2 , 10 3 , 10 4 } . According to the

btained best combination of these two parameters, we can further

efine a fine candidate set for these two parameters that the opti-

al values may be exist. Then we perform the method again with

ifferent combinations of these two parameters selected from the

ne candidate range. In this way, we can finally obtain the optimal

arameters for λ2 and λ3 so that the best clustering performance

s guaranteed. 

.4. Experiments in dealing with new sample 

Following the experimental settings in 1, we chose two large-

cale datasets, i.e. , PenDigits [59] and Covtype [60] , to evaluate the
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Table 8 

Performances of different methods on the PenDigits and Covtype datasets. Bold numbers denote the best results. 

Dataset PenDigits Covtype 

Algorithm Acc (%) NMI (%) Time (s) Acc (%) NMI (%) Time (s) Computational complexity 

K-means 68.38 65.88 – 27.03 5.80 – –

Rcut 71.73 67.86 0.34 29.07 5.50 0.12 O ( n 2 ) 

Ncut 74.39 69.25 0.40 30.67 5.11 0.15 O ( n 2 ) 

SSC 76.59 70.96 577.6 27.13 5.55 223.01 O ( τmn 3 ) 

LRR 76.21 67.91 7.13 30.14 6.71 1.48 O ( τ ( d 2 n + d 3 ) ) , ( d ≤ n ) 

LatLRR 76.08 69.97 7.24 29.70 6.40 1.79 O ( τ ( d 2 n + d 3 ) ) , ( d ≤ n ) 

LapLRR 77.29 71.44 59.66 29.14 5.32 34.83 O ( τn 3 ) 

NSHLRR 77.89 71.56 168.21 29.71 6.18 67.52 O ( τ rn 2 ), ( r ≤ n ) 

PGSL 75.91 71.05 43.43 32.26 6.18 17.49 O ( τ ( n 3 + d n 2 ) ) , ( d ≤ n ) 

AWLRR 80.11 73.87 35.60 34.30 7.68 11.46 O ( τ rn 2 ), ( r ≤ n ) 

Note: These methods all use the same approaches, i.e. , spectral clustering and CRC, to obtain the final clustering 

and classification results, which have the same computational cost in different methods, thus we report only the 

running time of different methods in graph learning. 
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effectiveness of the proposed approach in dealing with new sam-

ples. PenDigits is a handwritten digit feature dataset which con-

tains 10,992 samples and 10 classes. Each sample in the PenDig-

its dataset has 16 features. The Covtype dataset is created for pre-

dicting forest cover types from cartographic variables. It is com-

posed of 581,012 samples provided by 7 classes, in which each

sample is represented by 54 features. For the two datasets, we

randomly select 100 samples from each class as training set (in-

sample) and treat the remaining samples as test set (out-sample),

respectively. We first perform different clustering methods on the

training set to obtain their corresponding clustering results and

then use Algorithm 3 to recognize the out-sample. All experiments

are conducted 10 times in the same hardware and software plat-

forms and the mean clustering accuracies (Acc) (%) and NMI (%)

are reported for comparing. 

Table 8 shows the experimental results of different methods in

recognizing the new samples and clustering the in-samples. Be-

sides, the running times of different methods are also reported. It

is obvious that the proposed method outperforms the other meth-

ods in terms of the Acc and NMI on these two datasets. This also

proves the superiority of the proposed method in dealing with

the new sample. Moreover, from the comparison of the compu-

tational complexity and running time, we can find that the run-

ning time is generally consistent with the computational complex-

ity. The running time and the computational complexity of SSC are

much higher than the other methods. Although the computational

complexity of NSHLRR is lower than LapLRR and PGSL, its run-

ning time is higher than that of the two methods. This is mainly

because NSHLRR needs more iteration steps than the other two

methods to find the optimal solution. Compared with the similar

graph learning methods, i.e., LapLRR, SSC, and NSHLRR, the pro-

posed method is more efficient. 

6. Conclusions 

In this paper, a novel graph learning method called adaptive

weighted nonnegative low-rank representation is proposed to learn

the intrinsic graph for data clustering. By introducing an adaptive

weighted matrix to constrain the self-representation term, the role

of those redundant features especially the noise and outliers can

be effectively reduced so that a more robust graph can be ob-

tained. Compared with other methods, the proposed method si-

multaneously captures the global representation structure and lo-

cal geometric structure of data by integrating the distance regular-

ization term into the LRR model, and thus can learn a more dis-

criminative graph for data clustering. Experimental results on both

synthetic and real databases including face, handwritten digital,
bject, and non-image databases show that the proposed method

chieves the best performance than other state-of-the art methods.
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