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Conventional graph based clustering methods treat all features equally even if they are redundant fea-
tures or noise in the stage of graph learning, which is obviously unreasonable. In this paper, we propose
a novel graph learning method named adaptive weighted nonnegative low-rank representation (AWNLRR)
for data clustering. Based on the observation that noise and outliers usually cannot be represented well
and suffer from larger reconstruction errors than the important features (clean features) in low-rank
or sparse representation, we impose an adaptive weighted matrix on the data reconstruction errors to
reinforce the role of the important features in the joint representation and thus a robust graph can
be obtained. In addition, a locality constraint, ie., distance regularization term, is introduced to cap-
ture the local structure of data and enable the obtained graph to be sparser. These appealing proper-
ties allow AWNLRR to well capture the intrinsic structure of data, and thus AWNLRR has potential to
achieve a better clustering performance than other methods. Experimental results on synthetic and real
databases show that the proposed method obtains the best clustering performance than some state-of-
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the-art methods.
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1. Introduction

Data clustering has gained a lot of attention in the fields of
machine learning and data mining [1]. The main purpose of data
clustering is to partition a collection of samples without any label
information into respective groups such that samples in the same
group are naturally a class. For this goal, many methods have been
proposed in the past few years, such as the density based cluster-
ing [2], K-means clustering [3], hierarchical clustering [4], neural
networks-based clustering [5], and spectral clustering [6], etc.

High-dimensionality is one of the most challenging problems in
data clustering. Generally, high-dimensionality data usually contain
large amounts of redundant features such as noise and outliers.
These useless features may play the dominant role during the clus-
tering process, which leads to a bad performance. Spectral cluster-
ing is one of the most effective clustering methods to address this
issue by seeking a low-dimensional representation with powerful
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discriminability from the original high-dimensional data [6-8]. It
usually uses a three-step approach to obtain the clustering result.
Specifically, it first constructs a graph that reveals the similarity
relationships among data, and then produces the low-dimensional
representation based on the graph, followed by using K-means to
partition the low-dimensional data into respective groups. Gener-
ally, the clustering performance is directly determined by the con-
structed graph. In other words, constructing a natural graph to
capture the essential relationship of data is very important to the
spectral clustering. Recent years, various graph learning approaches
have been proposed by using different metrics to measure the es-
sential relationships among samples. For example, Euclidean dis-
tance is widely used to construct the knn-graph for clustering [6,9].
knn-graph reveals the distribution relationships of samples in the
Euclidean space. Based on the knn-graph, Roweis constructed a lo-
cality linear embedding graph (LLE-graph) to capture the represen-
tation relationships between sample and its nearest neighbors [10].
Both of knn-graph and LLE-graph use distance metric to capture
the local geometric structure of data. The only difference between
them is that elements in knn-graph represent the distance rela-
tionships of samples while in LLE-graph denote the representation
ability or contribution in the joint linear representation. However,
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these distance based graph learning methods have the following
two main issues: (1) they are sensitive to the selection of the near-
est neighbor size; (2) they cannot find the real nearest neighbors
for each sample when data are suffered from noise, so that the ob-
tained graph cannot capture the intrinsic structure of data.

Recent years, the representation techniques such as sparse rep-
resentation and low-rank representation have been witness a great
development and attracted much attention in data clustering ow-
ing to their success in adaptively uncovering the intrinsic repre-
sentation structures of data [11-14]. Based on the assumption that
each data point can be efficiently represented by a linear com-
bination of a few points from its own subspace, sparse subspace
clustering (SSC) imposes the sparsity norm, i.e., [; norm, to con-
strain the self-representation matrix so that a natural graph with
adaptive nearest neighbors is achieved [15]. We refer to the graph
obtained by SSC as [;-graph. However, [;-graph is constructed in-
dependently to each sample, thus the derived [;-graph lacks the
global information of data [12]. Compared with SSC, low-rank rep-
resentation (LRR) jointly learns the graph by imposing the nuclear
norm to constrain the self-representation matrix so that the global
structure of data is captured [16,17]. We refer to the graph learned
by LRR as l-graph. However, l--graph is often denser than the
l;-graph, which does not guarantee the locality. Besides, both of
the l«-graph and l;-graph lack the physical interpretation to the
similarity relationship of samples since they contain many nega-
tive elements. To overcome these issues and obtain a more rea-
sonable graph, non-negative low rank and sparse graph (NNLRS-
graph) learning method is proposed, in which the sparsity and nu-
clear norm are simultaneously imposed to constrain the nonneg-
ative self-representation matrix [12]. Moreover, in order to simul-
taneously capture the local and global structures of data, various
extensions of LRR have been proposed. For example, the Laplacian
regularizer is imposed on the self-representation matrix to pre-
serve the local structure that similar samples have similar repre-
sentations [18,19]. A Gaussian function based weighted matrix is
introduced to ensure that the dissimilarity samples have small rep-
resentation coefficients and vice versa [20]. Based on the observa-
tion that the perfect graph with satisfactory performance should
better have exactly block-diagonal structure, Feng et al. sought for
such graph by introducing a novel graph Laplacian constraint into
the SSC and LRR [21]. The biggest limitation of this method is that
it needs to know the exact number of clusters of data in advance.

Although the above extension methods of LRR and SSC are
proved to be effective under mixed conditions, they have a se-
vere problem that all features are treated equally in the graph con-
struction and data representation even if many features are redun-
dant features or even noises. It should be pointed out that these
redundant features and noise not only are useless, but also may
be harmful to the representation. Especially when the percent-
age of those redundant features is larger than the useful features,
the redundant features may play the dominant role in the self-
representation. In this case, the learned graph is inaccurate and
reveals the mendacious relationships of samples, which leads to
a bad clustering performance. In this paper, we mainly propose
a novel and simple approach to overcome this issue. We observe
that the outliers or noises usually cannot be well represented. This
observation is also proved in many references. For example, many
references show that using the sparse norm and nuclear norm to
model the noise has potential to detect them since they usually
have large reconstruction errors in practice [16,22]. Inspired by this
observation, we impose a weighted matrix on the data reconstruc-
tion errors so that the representation contributions of the impor-
tant features will be improved and those of the useless features
with large reconstruction errors will be reduced. This encourages
us to learn a more robust graph to reveal the intrinsic similarity
relationships of samples than other methods. Moreover, a local-

ity constraint is introduced to capture the local intrinsic structure
that nearest neighbors should have larger representation contribu-
tions. These meaningful factors enable the method to perform bet-
ter than other methods. Experimental results show that the pro-
posed method not only can learn a clearer graph and obtains the
best clustering performance than other methods, but also is ro-
bust to noises. In summary, the proposed method has the following
good properties.

(1) By integrating the local distance regularization term into
LRR, the proposed method can simultaneously exploit both
global and local structures of data, which ensures to learn a
more reasonable graph.

(2) The nonnegative constraint not only greatly improves the in-
terpretability of the graph, but also guarantees each sample
to be in the convex hull of its nearest neighbors.

(3) By introducing an adaptive weighted matrix to regularize
the data reconstruction errors, the representation contribu-
tion of the most important features will be improved while
those of the redundant features will be reduced in the self-
representation so that a more robust graph will be achieved.

The paper is organized as the following six sections.
Section 2 briefly introduces some related works about repre-
sentation based clustering and classification. Section 3 mainly
presents the proposed graph learning model and its solution. In
section 4, we analyze the proposed method from the aspect of
computational complexity, convergence, and connections to other
methods. Section 5 conducts several experiments to evaluate the
proposed method. Section 6 offers the conclusion.

2. Related works

In this section we briefly introduce some related representa-
tion based clustering and classification methods. For convenience,
we first introduce some notations used through the paper. Ma-
trix. X = [Xq,X3, ..., Xn]€R™*" is the original data, column x;(ie[1,
n]) denotes the ith data point, m and n are the number of fea-
tures and samples, respectively. ||E|l, is the I, (p=1,{2,1},F)
norm of matrix E, and some typical norm constraints are calculated
as [[Elly = X% X5 leijl IENF = (2 Xj-q €)%, and [[Ell2q =
Yo (2 eizj)l/z, respectively, where e; denotes element of the
ith row and jth column of matrix E. ||Z||« is the nuclear norm of
matrix Z and is calculated as the sum of all singular values of ma-
trix Z. 1eR™*" is a matrix which all elements are 1, 1TeR™*1 is a
vector that all elements are 1.

2.1. Representation based subspace clustering

In this paper, we refer to the methods that learn a graph by
using the representation techniques, such as sparse representation
and low-rank representation, etc., as the representation based sub-
space clustering (RSC) method. RSC can be unified into the follow-
ing general framework [15,16,23]:

min ®(2) + AV (E)s.t.X =XZ +E 1)

where E is the reconstruction errors. W(E) models different noises
by using different norm constraints, such as |E|ly, ||E|l3 1, and
[E|IZ. A is the regularization parameter used to balance the impor-
tance of the corresponding term. ®(Z) is the regularization func-
tions with respect to variable Z. The purpose of model (1) is to
learn the self-representation matrix Z<R"*™" that can best uncover
the intrinsic geometric structures reside in the high-dimensional
data. For different RSC methods, the major difference is the choice
of ®(Z). For example, sparse subspace clustering (SSC) [15] con-
strains matrix Z with l; norm to capture the sparse representation
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relationships among data. Low-rank representation (LRR) chooses
the nuclear norm, ie, ®(Z) = |Z|,, to capture the global repre-
sentation structure of data for clustering [16,24].

Once obtaining the representation matrix Z, RSC methods ob-
tain the final clustering result via the following three steps:
(1) building an affinity matrix W = (|Z| +|27|)/2; (2) produc-
ing the low-dimensional representations by performing the eigen-
decomposition on the Laplacian matrix of the affinity graph; (3)
partitioning the derived low-dimensional representations into ¢
clusters via K-means.

2.2. Representation based classification methods

Representation based classification (RC) methods are typical su-
pervised classification methods which exploit label information
during classification [25]. RC assumes that samples of the same
class with the test sample contribute much more than those of
other classes in the joint linear representation of using all sam-
ples to represent the test sample [26]. Based on this assump-
tion, various RC methods have been proposed, in which sparse
representation based classification (SRC) [27], collaborative repre-
sentation based classification (CRC) [28], regularized robust coding
(RRC) [29], and locality-constrained linear coding (LLC) [30], etc.,
are the most well-known methods. These RC methods classify the
test samples via the following three steps: (1) using all training
samples to represent the test samples and calculating the corre-
sponding representation vector; (2) producing the representation
residual of each class with respect to the test sample; (3) classi-
fying the test sample into the class with the minimum residual
[31]. The representation residual in the second step can also be re-
garded as the representation contribution of the class in the joint
linear representation. The minimum representation residual means
the largest contribution of the corresponding class. For various RC
methods, the major difference among them is the approach to
learn the representation vector. In most cases, the objective func-
tion to learn the representation vector of these RC methods can be
unified into the following model [32]:

min [ls© (v - Xe) |3 + Ao (d © ) (2)

where ® denotes the element-wise multiplication, A is the regu-
larization parameter. X = [X1,Xp,...,Xz] € R™" is the training set
which contains all training samples, yeR™*1 is the test sample.
¢(doa) is a regularization term of o with different norm con-
straints, such as ||d ® o:||§ and ||doa||1, etc. Vectors s and d are the
prior knowledge which encourages the model to learn a more rea-
sonable representation vector. The major differences among most
of RC methods are the choices of parameters s and d, and the reg-
ularized norm of ¢(d®a). For example, ifd =s=1and p(dO @) =
|[|l1, then model (2) is degraded to the basic model of SRC. LLC
uses the Gaussian distances between the test sample and train-
ing samples as prior knowledge d to avoid selecting training sam-
ples that are far from test sample y in the joint linear representa-
tion. By doing so, the representation contribution of those samples
that are much more possible to be the same class with the test
sample can be efficiently improved [30]. RRC imposes an adaptive
weighted vector s derived from the reconstruction error to con-
strain the reconstruction term so that the representation contri-
bution of the important features can be improved and the nega-
tive influence of redundant features or outliers can be eliminated
to some extent [29]. Based on RRC, Zheng et al. proposed an it-
erative re-constrained group sparse classification (IRGSC) method
which can adaptively learn a more flexible weight s to identify the
outlier and inlier [32].

3. Adaptive weighted nonnegative low-rank representation

As introduced in previous section, graph learning is the most
important step in unsupervised clustering. A good affinity graph
that can best capture the intrinsic structures of data is the as-
surance to obtain a satisfactory performance. In this section, we
mainly present a robust graph learning method, i.e., adaptive
weighted nonnegative low-rank representation (AWNLRR) for un-
supervised clustering.

3.1. Motivations and model of AWNLRR

Both of representation based clustering and classification meth-
ods prove that the representation relationships among data contain
much discriminant information. Thus capturing the representation
structure of data is necessary for graph based clustering method.
LRR and SSC are proved to be effective in capturing the global
and local representation structures of data, respectively. However,
these two methods treat all features equally in the linear repre-
sentation, no matter whether they are outlier or not. This is harm-
ful to capture the intrinsic representation structure of data. In real
world applications, samples always have large dimensions and con-
tain many redundant features and noise. A robust graph learning
method should have the ability to identify the important features
and reinforce the effect of them during graph learning so as to
adaptively learn a more robust graph. Motivated by RRC [29] and
IRGSC [32], we propose the following weighted nonnegative low-
rank representation approach:

Y _ 2, Mg
rggn’|5 o X XZ)”F+ 3 ISIIF + 22121l

565>051=1,2>0 3)

where Z is the affinity graph to be learned, S is the weighted
matrix with positive values of all elements. S!/2 is defined as an
element-wise square root of S, i.e., each element of S/2 is ﬁ
X1 and A, are tunable parameters used to balance the importance
of the corresponding terms. By imposing the weighted matrix to
regularize the data reconstruction errors, the method will adap-
tively assign smaller weight to the feature with larger reconstruc-
tion error and assign larger weight to the important feature. The
constraint term ST1 =1 ensures all samples to be treated equally.
In addition, we can prove that optimizing the objective function
(3) allows the proposed method to obtain a sparse weighted ma-
trix.

Proposition 1. Suppose E = X — XZ and elements of each column
of E are not all 0, minimizing the optimization sub-problem to
variable S, ie., ming_g r1_q [SV2 @ (X = X2)||% + )‘71 [IS||Z, leads to a
sparse weighted matrix.

Proof. Define D =E ®E. Obviously, we have D>0. Then prob-

lem min 512 (X~ XZ)||Z + % [IS]|2 is equivalent to problem
520,571=1

MiNg. o ¢r1_1 ||S||§ + %IID ® S||;. It is also equivalent to the follow-
ing n independent sub-problems mi“sizo.sﬂ:] ||s,-||% + % Ild; @ sill1,
i=1,...,n, where s; and d; are the ith column of matrices S and
D, respectively. Problem min,_q r1_; lIsill3 + %Hdi@sill] can be
viewed as a special case of Lasso problem [33], which will pro-
duce a sparse solution s;. Specially, the sparse degree is controlled
by the penalty parameter 2/A; [34]. Thus, we can conclude that
solving problem (3) will produce a sparse weighted matrix S.

Most importantly, restricting the value of S in a reasonable
range by using the regularization term %1 IIS ||% and boundary con-
straints S>0, ST1 =1 can avoid trivial solution to S [32,34]. Con-
straint Z> 0 ensures the learned graph to have good interpretabil-



J. Wen et al./Pattern Recognition 81 (2018) 326-340 329

ity for samples such that its each element directly reveals the in-
trinsic similar degree of the corresponding two samples. Moreover,
the non-negativity constraint has potential to obtain a better per-
formance in the representation based graph learning [35].

As introduced in the previous section, the local structure of data
is useful and also reveals the intrinsic relationships of samples. To
preserve the local structure, we further impose a distance regular-
ization term to constrain the affinity matrix Z as follows

o llc1/2 2 Ay
min [$'2 0 X =X2) [ + S ISIIE + 221121,

n
+ a3 Y =]z
ij=1

st5>0,81=1,Z>0 (4)

where A5 is the tunable regularization parameter. The third regu-
larization term is used to preserve the local structure of data so
that similar samples have similar representations [36].

Define the ith row and jth column element d; of matrix D is
dij = l|lx; — |13, then Y°7;_; [Ix; — x;[|3z;; = Tr(D'Z), where Tr(-) is
the trace operation. Then model (4) is transformed into:

min [5? @ (X - XZ) ||ﬁ + % ISIIF + A21|Z]l, + AsTr(D"Z)

st$5>0,S"1=1,Z>0 (5)

To avoid the negative influence that sample is selected to rep-
resent itself and the trivial solution that some samples are not se-
lected in the joint linear representation, i.e., some rows of Z are
all zeros, we further constrain the affinity graph such that the val-
ues of its diagonal elements is zero and the sum of its each row is
one. Then the final graph learning model of AWNLRR is written as
follows:

. A
min [$'2 © (X = X2) |} + ZHISIF + 220ZI1. + AsTr(D2)

st.5>0,8"1=1,diag(Z)=0,Z>0,21=1 (6)

3.2. Solution to AWNLRR

There are two unknown variables need to be solved in an
Eq. (6). Obviously, it is unrealistic to obtain its analytical solution.
In this section, we use the alternating direction method of multi-
pliers (ADMM) [37] to obtain the local optimal solution of variables
S and Z. We first introduce two auxiliary variables E and U to make
the optimization problem (6) separable as follows:

; A
i [[$72 B[ + SHISIE + AUl + AsTr(D72)

st.5>0,571=1,diag(Z)=0,Z>0,21 =1,
E=X-XZ,Z=U (7)
Compared with problem (6), the complexity of problem
(7) seems to be increased. Fortunately, we can prove that it is still
a two-block optimization problem which can be fast solved by the

classical ADMM. Please refer to Section 4.2 for the detailed proof.
We first form the following augmented Lagrangian function

L(Z.S.E.U,G.G) = ||S”2®E|| |5||F
+22lU|l, + k3Tr(DTZ)

G

HX XZ — E—|—
%

Hz U422

)

(8)

where C; and C, are Lagrangian multipliers,u is the penalty pa-
rameter. Then we can calculate each variable by fixing the remain-
ing variables, respectively.

Step 1. Update S: By fixing variables Z, E, U, variable S can be
calculated by minimizing the following problem:

2 A

min _||SY2 0 E| + 21|12 9
omin_|s"2 e E[L+ SISl 9)

When E is fixed, Eq. (9) is equivalent to the following minimiza-
tion problem:

)»
2
min s; Sy
$20.5T1= 1,2; ]Z ( it 5%

ez, 03 (10)
& S>(r)nSlTr11 112”2 (Sl] M)

It is obvious that the problem (10) is independent for different
j. So we can obtain S by solving its each column separately [34].
Each column s; is calculated by solving the following minimization
problem:
n
min
5;>0,571=1 i

o ]

where f; is the jth column of matrix F =E © E.
To calculate s;, we first transform Eq. (11) into the following La-
grangian function

1 2
il RCLER IR (12)

where 7; and 8; >0 are the Lagrangian multipliers.
The optimal solution s; can be obtained by setting the derivative
of Eq. (12) with respect to s; to zero:

1
L(Sj, 7’],,3]‘) = 5”51‘ +

1
aL(sj,nj,,Bj)/asjzsj+A—lfj—njl—,Bj:O (13)
According to the Karush-Kuhn-Tucker (KKT) condition that
Bj ©s; =0 [34], we can obtain s;:

f], 0) (14)

According to the constraint s]T.l =1, we have

Zf,]

When 7; is calculated, we can obtain the optimal solution s; by
using (14) so that the optimal solution S is obtained.

Step 2. Update E: By fixing variables Z, S, U, we can obtain vari-
able E by solving the following minimization problem

min [$'2 0 E|; + & |x - x2 - E+iz

Sj —HlElX(

(15)

== m}q

(16)

F

Define G =X — XZ + %‘ Eq. (16) can be rewritten as follows:
etz 2 HiE_qp?

min [[$'2 @ E[| + % |IE - Gz

o om n " 2
& [r]E]ng g (Sijeizj + j(eij _gij) ) (17)

2
L H8ij
g ngtn <€u T 25”)

From problem (17), we can obtain that the optimal solution to
each element e;; of variable E is:
MEij
6jj =
M+ 2sj;

Ms

¢>

Il
—_

(18)
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So that variable E is obtained. Theoretically, variables S and E
need to be iteratively updated in a sub-loop. In this paper, we only
update the two variables one time in a loop for computational ef-
ficiency.

Step 3. Update U. Fix variables Z, S, E, variable U can be obtained
by minimizing objective function L with respect to U as follows:

G|?

min[[U]], + MHZ U+—= P (19)

F

Problem (19) has a closed solution as follows:

U=0,,,(Z+G/w) (20)
where @ is the singular value thresholding (SVT) shrinkage opera-
tion [16].

Step 4. Update Z: By fixing variables S, E, U, we can calculate
variable Z by minimizing the following equation:

mzinksTr(DTZ)Jr%HZ—U+ H + B x-xz- B O

s.t. dlag(Z)

F
0,2>0,21=1

(21)

For simplicity and computational efficiency, we first calculate a
latent solution Z by minimizing the following problem

- argmlnk3Tr(DTZ +8 HZ U+ il HX XZ - E—i—C1
124 Ml
(22)
Problem (22) has a closed solution as
5 T -1yt As
Z=(X"X+1I) XM1+M2—ED (23)

where M, :X—E+%1, M, = —%2
Then the optimal solution Z can be calculated by solving the
following minimization problem:
min zZ-7 24
diag(2)=0,2>0.21= 1” ”F (24)
Similar to the optimization style of problem (10), we can obtain
the optimal solution Z. For each row of Z, its optimal solution is

z;=max (1" +2,0) (25)

where Z; = [Zy.....Z. ..., 2] is the ith row of Z (obtained by
Eq. (23)) that element Z; is set to zero. 1 is the column vector that
all elements except the ith element are one and the ith element is
zero. ¢; is the Lagrangian multiplier that is calculated as:

§i=(1+z1)/(n-1) (26)

For each row, after computing &;, we can obtain the optimal
solution of z; by Eq. (25) so that the optimal solution Z is obtained.

Step 5. Update C;, C; and w. Lagrangian multipliers C; and Gy,
penalty parameter u are updated as follows:

G=G+uX-XZ-E) (27)
G=C+uZ-U) (28)
_ {min (Mmax, o), if T <0.01 (29)
", else
where parameters max and p are positive constants,

7w =max(||Z, —Z_4 ”F' Uk — Uk_1 ”F’ lEx — Ex_1 ”F)/HX”F’ Zy, Uy,
E, and Z,_;,U,_q, E;_; are the value of Z, U, E at the kth iteration
(current step) and k — 1th iteration (previous step), respectively.

The optimization steps of AWNLRR are summarized in
Algorithm 1.

Algorithm 1 AWNLRR (solving (7)).

Input: Data matrix X, Parameters A, A;, A3
Initialization: Constructing the k-nearest neighbor graph as the initial matrix of
Z;S=1,U=ZE=X-XZ;C;=C =0, =001, p = 1.1, ftmax = 108,
while not converged do
1. Update S by using Eq. (14).
2. Update E by using Eq. (18).
3. Update U by using Eq. (20).
4. Update Z by using Eq. (25).
5. Update Cy, Gy, 1 by using Eqs. (27), (28), and (29
end while
Output: Z, S

), respectively.

Algorithm 2 Data clustering via Ncut with the obtained graph Z.

Input: Graph Z obtained via Algorithm 1, cluster number ¢

1. Calculate the affinity matrix W = (|1Z| +127])/2 .

2. Compute the normalized Laplacian matrix L = — D-2WD~1/2, where D is a
diagonal matrix with each diagonal element d;; = ZL] wjj, I is the identity
matrix.

3. Perform eigenvalue decomposition on matrix L and treat the first c
eigenvectors corresponding to the first ¢ smallest eigenvalues as the new
representation Ye R"*¢ of original data, where each row vector y; can be
regarded as the new representation of the ith original sample.

4. Obtain the normalized new representation of each sample by y; = y;/||yill,-

5. Obtain c clusters F, ..., F. by performing K-means on the normalized new
representations.

Output: Clusters Ay, ..., Ac with A; = {jly; e E}.

3.3. AWNLRR based clustering

Similar to conventional graph based clustering methods, we
also use the spectral clustering to obtain the final clustering re-
sults. Normalized cut (Ncut) [9] and Ratio cut (Rcut) [38] are the
two most popular spectral clustering algorithms. The only differ-
ence between them is that Rcut produces the low-dimensional
representation from the conventional Laplacian matrix derived
from the similarity graph Z, while Ncut produces the low-
dimensional representation from the normalized Laplacian matrix.
In this paper, we chose Ncut to partition data into respective
groups when similarity graph Z is obtained. The clustering steps
via Ncut are summarized in Algorithm 2 in details.

3.4. Out-of-sample extension

The graph based clustering can only partition the available data
that used during graph learning into respective groups. They can-
not deal with new sample that does not used to learn the graph.
Generally, there are two approaches which are widely applied to
address this problem when the graph is obtained. The one ap-
proach first produces a linear projection from the obtained graph,
and then classifies the new sample in the low-dimensional sub-
space [39]. This approach can also be viewed as the graph based
dimensionality reduction. The second approach uses the well-
known supervised classification method, i.e., representation based
classification, such as collaborative representation based classifi-
cation (CRC) and sparse representation based classification (SRC),
to classify the new sample [40,41]. Considering that the first ap-
proach is sensitive to the selection of dimension, in this paper we
adopt the second approach to address the out-of-sample problem.
In particular, we chose the CRC [42] to classify the new sample ow-
ing to its good performance and high efficiency. The detailed steps
to address the out-of-sample problem via CRC are summarized in
Algorithm 3.
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Algorithm 3 New sample classification based on AWNLRR.

Input: Training data XeR™*", test sample y e R"*!, parameter .

1. Use Algorithm 2 to obtain the clustering results of training data X;

2. Represent the test sample y by the linear combination of all samples in the
training data X, and calculate the representation vector
o = argmin [ly — Xatl|2 + 4 ell3;

3. Calculate the normalized representation residual of each cluster by
i = ||y — Xiotillo/l|ill,, where X; denotes the training samples from the ith
cluster and «; is their corresponding representation coefficients;

4, Classify the test sample to the cluster with the minimum representation
residual as identity(y) = arg miin T

Output: Predict label identity(y).

4. Analysis of the proposed method
4.1. Computational complexity of AWNLRR

For AWNLRR listed in Algorithm 1, there are five main steps,
in which the most computational costs are the SVT and inverse
operation of matrix in steps 3 and 4, respectively. It should be
noted that steps 1 and 2 can be viewed as the element-wise op-
eration which can be fast solved. This indicates that the computa-
tional complexities of these two steps are very low and thus can
be ignored compared with the other steps. Besides, we do not take
into account the computational complexity of fundamental matrix
operations, such as matrix addition and multiplication. For step 4,
although the matrix inverse operation (X'X +1)~! has high com-
putational complexity, we can pre-calculate it before iteration loop
because the matrix inverse operation is independent with all vari-
ables. So the real computational cost of step 4 is only the matrix
multiplication operation which can be ignored. For a matrix U with
the size of n xn, the computational complexity of SVT operation
is O(rn?) by using the skinny singular value decomposition (SVD),
where r (r<n) is the rank of matrix U [18]. So the computational
complexity of step 3 is about O(rn2). Therefore, the total computa-
tional complexity of the proposed method is about O(trn?), where
T is the iteration number.

4.2. Convergence analysis of AWNLRR

As presented in previous section, the ADMM is adopted to solve
the optimization problem (6). In this subsection, we mainly focus
on analyzing the convergence property of the proposed method
with the proposed optimization scheme listed in Algorithm 1.

Proposition 2. The optimization problem (7) is equivalent to the
two-block optimization problem. And the proposed Algorithm 1 is
equivalent to the classical ADMM for the two-block problem.

Proof. The classical two-block optimization problem can be uni-
fied as follows [43,44]:

min %% Y)st. AW +BY =L 30
wednin o fW) +g(Y) + (30)

where Qy, and Qy are the domains (boundary constraints) of
variables W and Y. f{-) and g(-) are the convex functions. A, B, L
could be either vectors or matrices. Classical ADMM first converts
the constrained optimization problem (30) into the following aug-
mented Lagrangian function:

C 12
L(W,Y,C)=f(W)+g(Y)+%‘AW+BY—L+ﬁ (31)
F
Then iteratively update all variables as follows
Wi, 1 =arg min LW, Y, G) (32)
WeQy

Vi1 = argylgzn LW, Y, G) (33)
ey

Cr1 =G+ (AWt + BYq — L) (34)

From Algorithm 1, it is obvious to see that our optimization
problem (7) is optimized by the similar approach with the clas-
sical ADMM [45]. Specially, the optimization of variable Z in (21) is
equivalent to optimize Y in (33) when other variables are fixed. For
variable U, we can find that the optimization of U is independent
with variables S and E. While optimizing variables S and E can be
treated as a unified sub-problem during the optimization, which
can be calculated by the block coordinate-wise descent method. It
should be noted that we only update variables S and E one time
for computational efficiency in Algorithm 1. In this case, the op-
timization steps for variables S, E, U can be accumulated in W as
(32) [45]. Hence, the optimization problem (7) can be viewed as a
special case of the classical two-block optimization problem. And
the proposed optimization algorithm, i.e., Algorithm 1, is equiva-
lent to the classical ADMM for the two-block problem. Thus we
complete the proof.

For the classical two-block ADMM, the convergence property
has been theoretically proved in [43,46-48]. Hence, as an equiv-
alent two-block optimization problem, the proposed optimization
approach can also converge to the local optimum as the classical
ADMM.

We also conduct experiments to prove the convergence prop-
erty of the proposed algorithm. Fig. 1 shows the objective function
value and clustering accuracy (%) versus the iteration step, in which
the objective function value is calculated as obj = ||SV2 @ E||2 +
2LIUSIZ + AgllU |« + AsTr(DTZ) + X = XZ —E|2 + IZ-U||2. 1t is
obvious that the objective function value is monotonically decreas-
ing till to the stable point, which also proves the fast convergence
property of the proposed method.

4.3. Connections to other methods

Since the proposed method utilizes the low-rank representation
technique to capture the structure of data, thus we mainly ana-
lyze the connections between the method and other LRR based
graph learning methods, such as LRR [16], Laplacian regularized
LRR (LapLRR) [19], NNLRS [12], and non-negative sparse hyper-
Laplacian regularized LRR (NSHLRR) [18], etc.

(1) Connections to LRR and NNLRS: The graph learning model of
LRR is briefly introduced in Section 2.1. NNLRS is an exten-
sion of LRR. It seeks a non-negative graph that can capture
both global and local structures of data. The graph learning
model of NNLRS is as follows

min | ZI|, + BIZI, + MEll, sEX =XZ+EZ=0  (35)

By introducing the sparse constraint §||Z||;, NNLRS has poten-
tial to learn a sparser graph than LRR. Parameter 8 controls the
sparse degree of the learned graph.

It should be noted that LRR and NNLRS can be viewed the
special cases of AWNLRR. When all elements of S are defined as
sij=1/m (m is the feature dimension of matrix X), A; = A3 =0,
AWNLRR degrades into a variation of LRR, in which the only differ-
ence between them is the regularization of error term. If A; =0,
D and S are given as follows: all elements of D are equivalent, and
all elements of S are 1/m, then AWNLRR degrades into a variation
of NNLRS to some extent, in which the only difference is also the
regularization of error term.

Compared with LRR and NNLRS, the proposed method has the
following advantages. First, both of LRR and NNLRS only capture
the representation structures of data while ignoring the distance
or nearest neighbor relationships of samples. Compared with these
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Fig. 1. Objective function value and clustering accuracy versus the number of iteration of the proposed method on the COIL20 and Extended Yale B databases.

two methods, AWNLRR utilizes a weighted sparse constraint,! i.e.,
A3Tr(D7Z), to capture the local structure of data. It not only ensures
the sparsity, but also effectively exploits the local distance infor-
mation of samples to learn a more reasonable graph. Second, dur-
ing the data representation of LRR and NNLRS, all features no mat-
ter they are redundant features or noise are treated equally. This
is harmful to obtain the clean graph. The proposed method effec-
tively tackles this issue by introducing an adaptive weighted ma-
trix S. By boosting the two variables of S and Z together, AWNLRR
has potential to improve the role of those most important features
during data representation, so that a more robust graph will be
produced.

From the above analyses, AWNLRR has many superior proper-
ties compared with these two methods, which enables it to obtain
a better performance.

(2) Connections to LapLRR and NSHLRR: The graph learning
models of LapLRR and NSHLRR are shown as Eq. (36) and
Eq. (37), respectively.

min % IX = XZ|2 + Azl + 2Tr(zizT)sez =0 (36)

2

min [Z|,, + 24121, + BTr(ZL"Z") +y X — XZ]| 562 2 0
(37)

where L and L" are the Laplacian graphs and Laplacian hypergraph
[18].

Compared with LapLRR, NSHLRR additionally introduces a spar-
sity term, i.e., A1]|Z||1, to capture the local representation structure
of data and avoid a dense graph. Although nearest neighbor rela-
tionships are exploited in these two methods, they cannot ensure
the greater contributions of nearest neighbors during data rep-
resentation. Compared with these two methods, AWNLRR simply
imposes a simple distance regularization term rather than Lapla-
cian regularization to constrain the graph. In this way, the repre-
sentation coefficients of these nearest neighbors will be enlarged
such that the representation contributions of them will also be im-
proved. Moreover, the distance regularization term also ensures the
sparsity of the graph. These properties are beneficial to obtain a
more reasonable and interpretable graph that each element natu-
rally reveals the similarity degree of the corresponding two sam-
ples. Similar to the previous analysis, the adaptive weighted ma-
trix encourages the method to obtain a more robust graph than
these two methods. In summary, AWNLRR has potential to learn a
more reasonable, interpretable, and robust graph than LapLRR and
NSHLRR.

"If Z>0 and D>0, Tr(D'Z) = |D ® Z|;. Therefore term Tr(D'Z) can be regarded
as the weighted sparse term.

5. Experiments and analysis

In this section, several experiments are conducted on both syn-
thetic and real databases to evaluate the clustering performance of
AWNLRR. K-means and several graph based clustering methods, in-
cluding ratio cut (Rcut) [38], Normalized cut (Ncut)? [9], SSC3[15],
LRR? [16], Latent LRR (LatLRR) [49], LapLRR [19], NSHLRR® [18], and
principal graph and structure learning (PGSL)® [50], are chose to
compare the proposed method to prove its effectiveness. The com-
pared Rcut and Ncut methods use the knn-graph to perform clus-
tering. LatLRR is an extension of LRR which learns a graph by ef-
fectively exploiting the hidden data. Based on reversed graph em-
bedding, PGSL learns a principle graph that captures the local in-
formation for data clustering. Two metrics, i.e., clustering accuracy
(Acc) and normalized mutual information (NMI) [51] are chose as
the evaluation criterion to compare different clustering methods.
All experiments are performed on the same platform, i.e., soft-
ware Matlab 2015b and Windows 10 system, hardware Intel Core
i7-4790 CPU and 16GB ram. In this work, parameters of all com-
pared methods are manually tuned in a wide range to obtain their
best results. Moreover, since K-means is sensitive to the initializa-
tion, thus we run these methods 15 times and then report their
mean values for comparing. In the following experiments, the near-
est neighbor size of the initial graph Z of the proposed method is
set as 10.

5.1. Experiments on synthetic data

In this section, we compare different methods on the synthetic
database. We use the method presented in [19,52] to generate a
data matrix X e R300%200 with 5 clusters. Each cluster contains 40
samples and each sample has 300 features. Then we further add
‘salt and pepper’ noise with different densities on the ground truth
data matrix X to produce some noisy data to validate the robust-
ness of these clustering methods.

Experimental results of different clustering methods on these
noisy data are shown in Table 1. It should be pointed out that the
data with noisy density of 0.0 is the original clean data X. From
Table 1, it is obvious to see that all clustering methods achieve
100% accuracy and NMI on the original clean synthetic data. While
with the increasing of the noisy density, their performances de-
crease dramatically, especially Rcut and Ncut. This indicates that
the distance metric cannot correctly uncover the intrinsic near-

2 Code of Ncut is available at: http://www.cis.upenn.edu/~jshi/software/

3 Code of SSC is available at: http://www.vision.jhu.edu/code/

4 Code of LRR is available at: http://www.cis.pku.edu.cn/faculty/vision/zlin/zlin.
htm

5 Code of NSHLRR is available at: https://www.researchgate.net/profile/Ming_Yin3

6 Code of PGSL is available at: http://liwang8.people.uic.edu/#publication
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Table 1
Clustering accuracies (%) of different methods on the synthetic databases with different noisy degrees.
Metrics Density ~ K-means Rcut Ncut SSC LRR LatLRR  LapLRR  NSHLRR  PGSL AWNLRR
Accuracy 0.0 100 100 100 100 100 100 100 100 100 100
0.1 84.75 5250 5577 100 8450 100 75.65 100 63.60 100
0.2 36.95 3547 3260 9700 3730 9750 35.40 99.50 3245  99.00
0.3 28.95 3150 3200 7350 3065  88.50 32.50 86.00 3025 9445
0.4 28.65 3250 3327 6350 28.00 84.00 29.40 68.00 2920 92,50
0.5 28.25 3273 2930 3055 29.00 31.00 30.10 37.00 2940  41.00
NMI 0.0 100 100 100 100 100 100 100 100 100 100
0.1 65.09 2486 29.88 100 6299 100 50.98 100 4229 100
0.2 10.96 8.03 6.86 91.69 1082 9313 9.49 98.54 6.65 97.09
0.3 3.96 435 6.70 4614  6.55 70.28 7.20 67.00 4.20 82.63
0.4 4.08 6.98 724 3031 423 63.88 4.50 47.39 3.87 67.46
0.5 3.38 5.47 4.64 5.00 413 5.06 7.44 8.47 4.67 15.73

Note: bold numbers denote the best results.

(b) SSC

(¢) NSHLRR

(d) LatLRR

(f) PGSL

(g) AWNLRR

Fig. 2. Graph obtained by different graph learning methods on the synthetic database with noisy density of 0.3. Note: for knn-graph, the nearest neighbor size is set as 10.

All graphs are showed with ‘hot’ colormap.

est neighbor structure of data when data contain dense noise. Yet,
the proposed method achieves the better performance than other
methods in almost all cases. In particular, when the noisy densities
are 0.3 and 0.4, the proposed method still achieves the outstanding
accuracies and NMlIs, whose accuracies are about 6% higher than
the second best method, ie., LatLRR. These outstanding perfor-
mances indicate that the proposed method has potential to learn
a more robust graph than other methods when data is corrupted
with noise.

Fig. 2 shows some graphs obtained by different compared
methods on the synthetic database with noisy density of 0.3. It
is obvious to see that graphs obtained by SSC, LatLRR, NSHLRR,
and AWNLRR has clearer block structure than those of KNN, LRR,
LapLRR, and PGSL. In view of SSC, NSHLRR, and AWNLRR all im-
pose the sparse constraint on the graph, we can conclude that the
sparse representation is more effective than the low-rank repre-
sentation in uncovering the intrinsic structures of noisy data. Al-
though graph learned by NSHLRR is sparser than those of LatLRR
and AWNLRR, its clustering accuracy and NMI are lower than those
of LatLRR and AWNLRR. From Fig. 2(d), (e) and (g), one can see
that the block diagonal structure of graphs learned by LatLRR and
AWNLRR are clearer than that of NSHLRR. This indicates that the
clearer block structure the constructed graph, the better the clus-
tering performance. Compared with NSHLRR which shares some
similar properties with the proposed method, the better perfor-
mance of AWNLRR indicates that the extra non-negative weighted

constraint of the proposed method is useful and effective to iden-
tify those important features (clean features) and reinforce their
roles in graph learning, which has potential to learn a more robust
graph from the noisy data.

5.2. Experiments on real datasets

In this section, we conduct experiments on some real databases
listed in Table 2, including handwritten digit databases, face
databases, object databases, and some non-image databases from
University of California, Irvine (UCI) [53].

Handwritten digit database: USPS’ and MNIST® are the two most
well-known handwritten digit databases. They contain 10 classes
from digit of “0” to “9”. In the experiments, two subsets of these
two databases which respectively contain 4000 and 6996 Gy digit
images are selected for comparing. Typical images of these two
datasets are shown in Fig. 3. Sizes of each image in USPS and
MNIST are 16 x 16 and 28 x 28, respectively.

Face databases: The above methods are compared on five typi-
cal face databases, i.e., the Umist face database® [56], the Extended
Yale B (YaleB) face database [54], the AR face database [55], the
Labeled Faces in the Wild (LFW) face dataset [58], and the MSRA

7 Available at: http://www.gaussianprocess.org/gpml/data/
8 Available at: http://yann.lecun.com/exdb/mnist/
9 Available at: http://cs.nyu.edu/~roweis/data.html


http://www.gaussianprocess.org/gpml/data/
http://yann.lecun.com/exdb/mnist/
http://cs.nyu.edu/~roweis/data.html

334 J. Wen et al./Pattern Recognition 81 (2018) 326-340

Table 2
Description of databases.
Database No. of instances  Dimensions  Classes
Handwritten digit databases =~ USPS 4000 256 10
MNIST 6996 784 10
Face databases YaleB [54] 2414 1024 38
AR [55] 3120 2000 120
Umist [56] 575 2576 20
LFW [58] 1251 1024 86
MSRA 1799 256 12
Object databases COIL20 [57] 1440 1024 20
UCI databases Cars [53] 392 8 3
Vehicle [53] 846 18 4
Yeast [53] 1484 8 10
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Fig. 3. Typical samples of the (a) USPS database and (b) MNIST database.
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Fig. 4. Typical images of the used face databases, in which images from the first
row to the last row are from the Umist, YaleB, AR, LFW, and MSRA databases, re-
spectively.

database.' The Umist face database used in this work has 575 im-
ages provided by 20 persons under different poses. The used YaleB
face database has 38 classes and 2414 images acquired from dif-
ferent illumination sceneries. The used AR face database contains
120 persons and 3120 images in total, in which each person pro-
vides 26 images with different facial expressions, illumination con-
ditions, and occlusions by sun glasses and scarf. There are more
than 13,000 images in the original LFW database which are col-
lected from the web. In this work, a subset which contains 1251
face images of 86 persons is adopted for evaluation. The MSRA
database contains 12 persons and 1799 images in total. Typical im-
ages of these databases are shown in Fig. 4. Sizes of images of the
above face databases used in the experiments are 32 x 32, 50 x 40,
56 x 46, 32 x 32, and 16 x 16, respectively.

10 Available at: http://www.escience.cn/people/fpnie/papers.html

Fig. 5. Typical images of the COIL20 database.

Object database: In this work, we choose the Columbia Object
Image Library (COIL20) database'! [57] as the representation of the
object database to evaluate those compared methods. The COIL20
database contains 1440 gray-scale images provided by 20 objects.
There are 72 images of each object which are taken at pose inter-
vals of 5°. Images used in this work were pre-resized to 32 x 32 for
computational efficiency.

Non-image databases from UCI: The UCI Machine Learning
Repository collects lots of databases. In this work, we select many
non-image databases, including the Cars, Vehicle, Isolet, and Yeast
databases'? for clustering evaluation.

Specially, we deeply compare the above clustering methods on
the USPS, COIL20, YaleB, and Umist datasets, in which a series
of experiments are conducted on a range of first ¢ sub-classes of
these databases. For the remaining databases, we directly perform
those methods on the corresponding whole database for evaluation
Fig. 5).

Experimental results of different clustering methods on the
above databases are shown in Table 3-7 and Fig. 6. From these
tables and figures, one can obtain that:

—

(1) From the comparison of K-means and other graph based clus-
tering methods, it is obvious to see that learning a low-
dimensional representation is effective to obtain a better clus-
tering performance than using the original features directly.
Most importantly, from Table 3-7 and Fig. 6, we can find that
the proposed method obtains the best performance in almost
all cases.

(2) Table 3 and Fig. 6(a) show the clustering accuracies and NMiIs of
different methods on the object database, i.e., COIL20 database.
One can see that in most cases, the clustering accuracies and
NMIs of Rcut and Ncut are much higher than the representa-
tion based graph learning methods, ie., SSC, LRR, and LatLRR,
etc. This demonstrates that the distance metric captures the
structure of data more accurately than the representation based
metrics on the COIL20 database.

(3) From the comparison of SSC, LRR, LatLRR, LapLRR, and NSHLRR
in Table 3-7 and Fig. 6, we can conclude that a better perfor-
mance can be obtained by integrating the manifold information,
i.e., nearest neighbor relationships. It should be noted that the
nearest neighbor relationships are also the distance relation-
ships between sample and its nearest neighbors. Therefore, this
also proves the valuable of distance relationships of samples to

1 Available at: http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
12 Available at: http://www.escience.cn/people/fpnie/papers.html
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Table 3
Clustering Acc (%) of different methods on the COIL20 datasets.
No. of class  K-means  Rcut Ncut SSC LRR LatLRR  LapLRR  NSHLRR  PGSL AWNLRR
4 62.15 8646 8264 6250 9653 9132 96.53 98.37 8125 100
6 48.36 91.68 9205 6270 6412 67.59 81.90 85.48 76.27 9338
8 43.66 8688 8696 7726  70.83 6528 74.31 78.24 78.07  92.08
10 46.06 83.82 86.04 6711 68.47  68.22 75.01 80.17 7764  86.59
12 53.41 8316 8170 7998 6299  66.81 78.54 83.65 81.01 88.66
14 56.81 83.01 8197  74.01 6636  75.00 78.98 80.24 78.40  90.02
16 60.83 8235 7981 7528 6933 7125 77.95 81.87 7595 9210
18 64.96 81.09 8262 7553 6654 6718 80.94 83.74 82.89  92.90
20 57.67 7649 7783 7792 6639  65.64 75.01 81.48 80.76  84.03
Note: bold numbers denote the best results.
Table 4
Clustering Acc (%) of different methods on the YaleB datasets.
No. of class ~ K-means Rcut Ncut SsC LRR LatLRR  LapLRR  NSHLRR  PGSL AWNLRR
2 50.85 9453 9453 100 78.13 96.88 99.22 99.22 9844  99.22
8 18.91 50.03 5030 8831 83.79 8320 83.67 84.05 62.83 8447
14 15.95 5433 5460 7871 8946  82.06 77.64 83.24 5479  88.78
20 1211 55.09 5589 7684 9044 80.10 76.55 86.78 5296  90.36
26 11.35 56.14 56.70  76.89  87.39 74.79 75.10 80.47 49.67  92.50
32 10.76 5144 5146 76.12 80.65 7718 81.23 83.96 4587 9192
38 9.39 48.77 4942 7389 7034  78.88 7729 80.54 4289  88.89
Note: bold numbers denote the best results.
Table 5
Clustering Acc (%) of different methods on the Umist datasets.
No. of class ~ K-means Rcut Ncut SSC LRR LatLRR  LapLRR  NSHLRR  PGSL AWNLRR
4 47.97 6634  67.05 60.16 6179 5155 84.55 88.62 78.78  93.50
6 52.91 7337 7357 7035 68.02 50.12 82.56 88.90 8471  90.70
8 48.45 7470 7690 6742 7047  60.37 86.85 80.69 71.03 9718
10 44.57 68.63 6858 7170 7460  70.04 77.64 78.53 69.43 8143
12 44.66 69.27 6937 6700 6487 68.77 69.78 72.22 64.63  79.04
14 41.52 69.85 6946  71.67 60.18 69.56 73.56 79.35 64.01 82.24
16 39.84 60.57 6137 6597 5463 6475 65.74 71.35 61.61 70.65
18 38.78 6134 6200 6730 5590 6134 65.40 68.73 63.59  69.76
20 41.58 6233 6257 6348 5628 61.04 65.78 66.15 65.67  70.10
Note: bold numbers denote the best results.
Table 6
Clustering Acc (%) of different methods on the USPS datasets.
No. of class ~ K-means Rcut Ncut SSC LRR LatLRR  LapLRR  NSHLRR  PGSL AWNLRR
2 97.50 9988 9988 99.75 99.75  99.25 99.88 99.63 9738  99.88
4 90.88 98.69 98.69 9831 9456 9119 98.94 99.00 96.73  99.19
6 76.83 86.87 8448 9354 8737 66.75 90.73 94.35 71.96  96.00
8 80.78 88.82 8344 8944 8431 71.25 87.65 90.25 8941  92.33
10 64.75 83.23 8257 7912 6739  65.78 75.34 82.18 8228  84.26
Note: bold numbers denote the best results.
Table 7
Clustering Acc (%) of different methods on remaining real datasets.
Dataset ~ K-means Rcut Ncut SSC LRR LatLRR  LapLRR  NSHLRR  PGSL AWNLRR
MNIST 55.30 6880 69.97 53.65 5455 42,01 63.65 60.24 6750 7234
AR 3119 4839 4852 6473 5637 5714 65.19 65.75 4713 70.94
LFW 2218 2379 2403 2929 2381 25.08 27.49 2798 23.04 3118
MSRA 50.70 5742 5742 6098 63.79  60.57 62.89 63.41 59.76  67.58
Cars 54.59 63.01 63.11 62.00 6250 67.96 64.09 62.34 60.69  68.62
Vehicle  45.86 46.53  46.64 4492 4575  46.57 45.89 45.98 4312 48.50
Yeast 3179 3442 3467 3934 3693 3740 3742 40.74 36.05 4344

Note: bold numbers denote the best results.

the graph learning. In other words, exploiting the distance rela-
tionships of data to regularize the graph has potential to learn a
more reasonable and discriminative graph so that a better clus-
tering performance can be obtained.
(4) From the experimental results of different methods on the
YaleB database (Table 4 and Fig. 6(b)), we can find that all of

the representation based methods achieve much better perfor-
mance than those of methods that only exploit the distance in-
formation, i.e.,, Ncut and Rcut. This illustrates that the represen-
tation based metrics are more robust than distance based met-
ric in capturing the intrinsic structure of data under the condi-
tion of various illuminations. This indicates that the represen-
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tation structures of data are also useful and contain discrimina-
tive information for data clustering.

(5) We should point out that both of the NSHLRR and the pro-
posed method not only take into account the global and local
structures of data, but also learns a sparsity graph. However,
from the comparison of the two methods, it is obvious that
the proposed method perform much better than NSHLRR. This
is mainly because that the proposed method has potential to
learn a more robust graph by introducing a weighted matrix to
adaptively reinforce the role of important features and simul-
taneously reduce the role of those redundant features during
graph learning.

From the above analyses, we can conclude that: (1) both dis-
tance relationships and representation relationships of data all
contain discriminative information; (2) the optimal graph can be
learned if and only if the two structures can be effectively ex-
ploited. Compared with other methods, the proposed method has
potential to learn a more robust graph than other methods owing
to its effective in uncovering the important features and improving
their roles during graph learning. The above experimental results
also prove the superiority of the proposed method which is ana-
lyzed in the Section 4.3.

5.3. Analysis of the graph initialization and parameter selection

From Algorithm 1, there are four uncertainty parameters, i.e.,
balanced parameters Aq, Ay, A3, and initialized nearest neighbor
number k. In this subsection, we will analyze the sensitivity of
these parameters to the proposed method. Fig. 7 shows the cluster-
ing accuracy (%) versus the number of initial nearest neighbor size
on the whole COIL20 and YaleB databases with the fixed parame-
ters of Aq, Ay, Az. In Fig. 7(b), the maximum and minimum accura-
cies are 88.99% and 88.81% when nearest neighbor sizes are 6 and
8, respectively. The error between the maximum and minimum ac-
curacies on the YaleB database is very small, i.e., 0.18%. By the way,
the maximum accuracy error on the COIL20 database is also very
small, ie., 0.23%. Therefore, we can conclude that the clustering
performance are very insensitive to the selection of nearest neigh-
bor size of the initial graph Z. The major factor leads to this good
property is that the proposed method can adaptively select near-
est neighbors for each sample in the stage of graph learning. In
the above experiments, we uniformly set the nearest neighbor size
to 10.

Next we analyze the sensitivity of the three balanced parame-
ters, i.e., Aq, Ay, and A3 to the proposed method. Specially, A; con-
trols the values of weighted matrix S. This term is used to avoid
the trivial solution to S. Usually, a small value such as {0.1, 0.01,
0.001} is a proper value to Aq. Figs. 8 and 9 show the clustering
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accuracies of the proposed method with respect to the three pa-
rameters on the COIL20 and YaleB databases. From Figs. 8 and 9,
one can see that when parameters A, and A3 are fixed, the clus-
tering performance is insensitive to the selection of parameter A,
in the range of [107#, 10*]. Compared with parameter A, the clus-
tering performance is very sensitive to parameters A, and A3. This
is mainly because they are regularized on the graph and directly
determine the roles of corresponding terms during graph learn-
ing. For example, a small A, will lead to a denser graph which
may produce a bad performance. So it is necessary to tune suit-
able values for these three parameters to obtain a satisfactory per-
formance.

Due to the diversity of databases, it is difficult to find the com-
mon values of these three parameters for different databases. Here
we present a simple and effective way to find their optimal val-

ues. According to previous analysis, we can first simply fix pa-
rameter A; to a small value such as 0.01, then find the candi-
date combination of parameters A, and As; from the coarse set
of {1074,1073,1072, 1071, 10°, 10", 102, 103, 10%}. According to the
obtained best combination of these two parameters, we can further
define a fine candidate set for these two parameters that the opti-
mal values may be exist. Then we perform the method again with
different combinations of these two parameters selected from the
fine candidate range. In this way, we can finally obtain the optimal
parameters for A, and A3 so that the best clustering performance
is guaranteed.

5.4. Experiments in dealing with new sample

Following the experimental settings in 1, we chose two large-
scale datasets, i.e., PenDigits [59] and Covtype [60], to evaluate the
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Table 8

Performances of different methods on the PenDigits and Covtype datasets. Bold numbers denote the best results.
Dataset PenDigits Covtype
Algorithm  Acc (%) NMI (%) Time (s) Acc (%) NMI(%) Time (s) Computational complexity
K-means 68.38 65.88 - 27.03 5.80 - -
Reut 71.73 67.86 0.34 29.07 5.50 0.12 0o(n?)
Ncut 74.39 69.25 0.40 30.67 5.11 0.15 0o(n?)
SsC 76.59 70.96 5776 2713 5.55 223.01 O(tmn?)
LRR 76.21 67.91 713 30.14 6.71 148 0(t(d’>n+d?)), (d<n)
LatLRR 76.08 69.97 7.24 29.70 6.40 179 O(t(d’>n+d?)), (d<n)
LapLRR 7729 71.44 59.66 29.14 5.32 34.83 o(tn3)
NSHLRR 77.89 71.56 168.21 29.71 6.18 67.52 O(trn?), (r<n)
PGSL 75.91 71.05 43.43 32.26 6.18 17.49 Oo(z(n® +dn?)), (d<n)
AWLRR 80.11 73.87 35.60 34.30 7.68 11.46 o(trn?), (r<n)

Note: These methods all use the same approaches, i.e., spectral clustering and CRC, to obtain the final clustering
and classification results, which have the same computational cost in different methods, thus we report only the

running time of different methods in graph learning.

effectiveness of the proposed approach in dealing with new sam-
ples. PenDigits is a handwritten digit feature dataset which con-
tains 10,992 samples and 10 classes. Each sample in the PenDig-
its dataset has 16 features. The Covtype dataset is created for pre-
dicting forest cover types from cartographic variables. It is com-
posed of 581,012 samples provided by 7 classes, in which each
sample is represented by 54 features. For the two datasets, we
randomly select 100 samples from each class as training set (in-
sample) and treat the remaining samples as test set (out-sample),
respectively. We first perform different clustering methods on the
training set to obtain their corresponding clustering results and
then use Algorithm 3 to recognize the out-sample. All experiments
are conducted 10 times in the same hardware and software plat-
forms and the mean clustering accuracies (Acc) (%) and NMI (%)
are reported for comparing.

Table 8 shows the experimental results of different methods in
recognizing the new samples and clustering the in-samples. Be-
sides, the running times of different methods are also reported. It
is obvious that the proposed method outperforms the other meth-
ods in terms of the Acc and NMI on these two datasets. This also
proves the superiority of the proposed method in dealing with
the new sample. Moreover, from the comparison of the compu-
tational complexity and running time, we can find that the run-
ning time is generally consistent with the computational complex-
ity. The running time and the computational complexity of SSC are
much higher than the other methods. Although the computational
complexity of NSHLRR is lower than LapLRR and PGSL, its run-
ning time is higher than that of the two methods. This is mainly
because NSHLRR needs more iteration steps than the other two
methods to find the optimal solution. Compared with the similar
graph learning methods, i.e, LapLRR, SSC, and NSHLRR, the pro-
posed method is more efficient.

6. Conclusions

In this paper, a novel graph learning method called adaptive
weighted nonnegative low-rank representation is proposed to learn
the intrinsic graph for data clustering. By introducing an adaptive
weighted matrix to constrain the self-representation term, the role
of those redundant features especially the noise and outliers can
be effectively reduced so that a more robust graph can be ob-
tained. Compared with other methods, the proposed method si-
multaneously captures the global representation structure and lo-
cal geometric structure of data by integrating the distance regular-
ization term into the LRR model, and thus can learn a more dis-
criminative graph for data clustering. Experimental results on both
synthetic and real databases including face, handwritten digital,

object, and non-image databases show that the proposed method
achieves the best performance than other state-of-the art methods.
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