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Since in the feature space the eigenvector is a linear combination of all the samples from
the training sample set, the computational efficiency of KPCA-based feature extraction
falls as the training sample set grows. In this paper, we propose a novel KPCA-based
feature extraction method that assumes that an eigenvector can be expressed approx-
imately as a linear combination of a subset of the training sample set (“nodes”). The
new method selects maximally dissimilar samples as nodes. This allows the eigenvector
to contain the maximum amount of information of the training sample set. By using the
distance metric of training samples in the feature space to evaluate their dissimilarity,
we devised a very simple and quite efficient algorithm to identify the nodes and to pro-
duce the sparse KPCA. The experimental result shows that the proposed method also
obtains a high classification accuracy.
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1. Introduction

Principal component analysis (PCA) is a linear feature extraction technique that
has proven itself effective because of its ability to capture the most variable compo-
nents of sample data. PCA utilizes a number of eigenvectors of the generation matrix
(the covariance) of the sample data as transforming axes to transform the sample
data into a new space in which different components of the data are statistically
uncorrelated. A number of studies1−7 have shown that transforming the sample
into the new space allows PCA to use lower dimensional data to effectively repre-
sent the characteristics of the original sample data. However, PCA does not usually
do so well in representing samples using low-dimensional features when sample
data exhibits a complex distribution.1 In such cases, nonlinear feature extraction
techniques will be more appropriate than linear techniques.1
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Kernel PCA (KPCA) can be viewed as a nonlinear feature extraction method
derived from PCA.8,9 It has been shown that KPCA can perform well in extracting
features from samples whose components have nonlinear relation. This is because
KPCA owns the advantages of general nonlinear learning methods.10,11 KPCA
can be regarded as a combination of two processes, a first process that implicitly
transforms the input space into a new space, i.e. the so-called feature space, and
a second process that implements PCA in the feature space. The use of kernel
functions makes KPCA more computationally tractable than a general nonlinear
feature extraction method. However, KPCA-based feature extraction might be still
quite inefficient and even impractical in real-world applications that have a large
number of training samples. Indeed, this is a common difficulty of each kernel-
method-based feature extraction procedure.12−14 The reason for this is as follows.
As the reproducing kernel theory8,9 tells us, a transforming axis in the feature space
induced by KPCA can be expanded as a linear combination of all training samples
in the feature space. Thus, when projecting one sample in the feature space onto
the transforming axis, we should compute the dot products of the sample and each
of all the training samples. The kernel trick allows us to replace the dot product
of the sample and a training sample with a kernel function, so we should calculate
as many kernel functions as there are training samples. This also exposes the weak
point of KPCA-based feature extraction, that the larger the size of the training
sample set, the lower its computational efficiency.

Two approaches have been proposed to improve the computational efficiency of
KPCA on large-scale training sample sets. The first approach is based on the suppo-
sition that in the feature space one or more training samples can be (approximately)
expressed as a linear combination of the others.15 These methods commonly iden-
tify a so-called sparse subset of the training sample set, and a linear combination
of the sparse subset is used to approximately expand the eigenvector. They are also
referred to as sparse KPCA methods. Hereafter we refer to the elements of this
sparse subset as nodes. The second approach assumes that one eigenvector in the
feature space can be approximately expanded with reference to a small number of
synthetic vectors.15 Examples of this approach can be found in Ref. 16. In either
case, these approaches are more efficient than näıve KPCA because when extract-
ing features from a sample, they calculate fewer kernel functions. Typical examples
of the sparse KPCA method would include the methods shown below. Tipping17

exploited a maximum-likelihood technique to approximate the transformed covari-
ance matrix of a sparse subset. Franc et al.18 proposed a greedy method to obtain
the approximate representation of the feature space. It iteratively extracts features
from the data in the feature space and terminates the feature extraction procedure
when the approximation error in the feature space falls below a threshold. Smola
et al.19 proposed the sparse kernel feature analysis (SKFA) method. If the num-
ber of extracted features is much smaller than the size of the training sample set,
SKFA will have a lower computational cost than näıve KPCA; otherwise, SKFA
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will have a higher computational cost. Garćıa-Osorio et al. recently implemented
SKFA using the bootstrapping and bagging method, and Jiang et al.20 proposed the
accelerated kernel feature analysis (AKFA) algorithm to further reduce the com-
putational cost of SKFA. Scholkopf et al.15 also presented two methods to produce
a sparse kernel method. These two methods selected nodes from the training sam-
ple set and attempted to approximate the genuine solution from the viewpoint of
numeral approximation. The first method used an iterative algorithm and identified
one node at a time. The second method was formulated as a quadratic program-
ming problem. Both of these two methods, in particular the first method, identified
the nodes at a high computational cost. We have also proposed an improved KPCA
(IKPCA) method in Ref. 22. We assumed that in the feature space an eigenvector
can be well approximated in terms of nodes and reformulated the KPCA genera-
tion matrix from the viewpoint of the PCA methodology. The eigenvector produced
from this generation matrix was used to identify the nodes and to determine a lin-
ear combination of the nodes that can best approximate the eigenvector. Using the
obtained eigenvector, we can efficiently implement KPCA-based feature extraction.
However, this method also identified the nodes at a high computational cost.

Other researchers have sought to improve KPCA by integrating it with other
techniques. For example, Chin and Suter23 devised an incremental KPCA method
that can be viewed as a combination of incremental learning technique and the
sparse KPCA method based on the constructed sparse subset of the training sample
set. Works from Refs. 24, 25, and 26, respectively exploited the prototype reduction
scheme (PRS), the gradient descent algorithm, and the Bootstrapping method to
produce a sparse kernel method. Kernel methods have also been applied to many
problems such as face recognition and data clustering.31−34 We also note that recent
studies on kernel methods have obtained some noticeable achievements.31−37 For
example, Gnecco et al. analyzed the upper bounds on the accuracy in approxi-
mating the optimal solution of KPCA.10,31 Georgiev et al.33 rigorously defined the
sparse component analysis (SCA) problem of sparse signals and presented sufficient
conditions for its solution.

The previous sparse KPCA methods have the following characteristic: though
these sparse KPCA methods are able to extract features computationally more effi-
ciently than näıve KPCA, they all achieve this capability at an extra computational
cost. Indeed, the extra cost might be very high and is usually much higher than the
cost of solving the eigenvectors of näıve KPCA. In this sense the complete procedure
to implement these improvements may be still computationally inefficient.

In this paper, we propose a novel method to obtain sparse KPCA (namely, effi-
cient sparse KPCA (ESKPCA)). The proposed method applies a dedicated algo-
rithm to select maximally dissimilar training samples as nodes (elements of the
corresponding sparse subset of the training sample set). The algorithm exploits the
kernel trick to convert the dissimilar metric of samples in the feature space into an
expression that contains only kernel functions. Provided that a number of nodes
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have been identified, the proposed method will reformulate KPCA as a new eigen-
value equation. Once the eigenvectors of the eigenvalue equation are solved, we can
obtain the eigenvectors of ESKPCA.

Compared with previous sparse KPCA methods, the proposed method has the
following remarkable advantages: first, differing from previous methods, the pro-
posed method provides a novel viewpoint and algorithm to produce sparse KPCA.
Second, the algorithm of the proposed method is much simpler and computationally
more efficient than those of previous methods, which usually employ some elabo-
rated criterions and procedures with a high complexity to obtain sparse KPCA.
Experimental results also show that ESKPCA classifies very accurately.

The remainder of the paper is organized as follows: In Sec. 2 we show that KPCA
is equivalent to the implementation of PCA in the feature space and present KPCA-
based feature extraction. In Sec. 3 we show how to obtain the sparse KPCA. In
Sec. 4 we compare computational costs of our approach and several other sparse
KPCA methods. In Sec. 5 we test our approach and the other methods. In Sec. 6
we offer our conclusion. Our contributions mainly appear in Secs. 3 and 4.

2. KPCA and KPCA-Based Feature Extraction

In this section we describe KPCA and KPCA-based feature extraction. KPCA is
a nonlinear PCA method. The implementation of KPCA seems to be equivalent to
the implementation of the following process: all the samples are first transformed
into a new space by using a nonlinear mapping. Then PCA is performed in the
new space and extracts the lower dimensional features of samples in the new space.
However, KPCA indeed does not need to explicitly perform the nonlinear mapping.
Instead, KPCA implicitly obtains the nonlinear mapping by exploiting the kernel
trick. This enables KPCA to have a promising computational cost in comparison
with a general nonlinear feature extraction method.

We also say that KPCA is an equivalent implementation of PCA in the feature
space (i.e. the new space mentioned above). We briefly present KPCA as follows.
Let x1, x2, . . . , xN be N training samples in the original space. Suppose that each
sample from the training sample set has been transformed into the feature space by
a nonlinear function φ. As a result, we can use φ(x1) · · ·φ(xN ) to denote the train-
ing samples in the feature space. If the samples in the feature space have zero mean,
then the covariance matrix is Σφ = 1

N

∑N
i=1 φ(xi)(φ(xi))T . We also refer to Σφ as

the generation matrix of the feature space. According to the PCA methodology,
the most useful eigenvectors of the feature space should be the eigenvectors corre-
sponding to large eigenvalues of Σφ. That is, the most useful eigenvectors should be
the solutions ui corresponding to large λi of Σφui = λiui. By exploiting the kernel
function k(xi, xj) to denote the dot product, i.e. k(xi, xj) = φ(xi)T φ(xj), we can
derive the following eigenvalue equation9:

Kα = λα, (1)
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where K is the so-called Gram matrix that has the entry (K)ij = k(xi, xj).
The principal component analysis method based on the eigenvalue equation (1)
is referred to as KPCA.

We formulate KPCA-based feature extraction as follows. We denote the m eigen-
vectors, corresponding to the first m largest eigenvalues λα

1 , λα
2 , . . . , λα

m of (1), by
α(1), α(2), . . . , α(m), respectively. Based on the reproducing kernel theory, we know
that the ith eigenvector ui of Σφ (the ith eigenvector in the feature space) is
ui =

∑N
j=1 α

(i)
j φ(xj), where α

(i)
j stands for the jth element of the vector α(i).

As a result, the ith feature of a sample φ(x) from the feature space can be
expressed as

∑N
j=1 α

(i)
j k(xj , x)/

√
λα

i and the most representative m-dimensional
features obtained using KPCA form the following vector22:

Y =


 N∑

j=1

α
(1)
j k(xj , x)

/√
λα

1

N∑
j=1

α
(2)
j k(xj , x)

/√
λα

2 · · ·

N∑
j=1

α
(m)
j k(xj , x)

/√
λα

m




T

. (2)

As can be seen, calculation of each component of the m-dimensional features for
the sample φ(x) depends on the N kernel functions defined in terms of x and all
the training samples. Therefore, we can conclude that the larger the size of the
training sample set, the lower the computational efficiency of KPCA-based feature
extraction.

3. Deriving Sparse KPCA

3.1. Idea of our approach

Our approach to deriving sparse KPCA assumes that one can use a linear combi-
nation of nodes to express one eigenvector in the feature space. If the nodes are
much fewer than training samples, sparse KPCA-based feature extraction will be
much faster than KPCA-based feature extraction.

Our approach, i.e. ESKPCA consists of two procedures. The first procedure
identifies the nodes and the second procedure determines the linear combination
of the nodes that can best express the eigenvector. The first procedure selects as
nodes training samples in the feature space that are maximally dissimilar. The
rationales are as follows: in expressing the eigenvector, if one sample is very similar
or correlated to another sample, the simultaneous use of the two samples is indeed
almost equivalent to the use of either of them. The maximization of the dissim-
ilarity also allows the linear combination of a fixed number of nodes to contain
the maximum amount of information of the training sample set. To determine the
linear combination of the nodes, which can best approximate the eigenvector, the
second procedure first reformulates KPCA as a new eigenvalue equation based on
the nodes. Then by solving the eigenvalue equation, the second procedure obtains
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the coefficients of the optimal linear combination. The main innovative idea of our
approach is to use maximally dissimilar samples as nodes, which is implemented in
the first procedure.

3.2. Reformulate KPCA using nodes

In this subsection, provided that nodes have been identified, we show below how
to reformulate KPCA as a new eigenvalue equation and how to implement the
second procedure to produce the sparse KPCA. We assume that in the feature
space an eigenvector ui generated from the eigenvalue equation Σφui = λiui can
be approximated using

ui ≈ ũi =
s∑

j=1

γ
(i)
j φ(x0

j ), s < N, (3)

where x0
1, . . . , x

0
s denote s nodes selected from the set of the training samples. We

refer to ũi as the approximation eigenvector. We can obtain the feature by projecting
a sample in the feature space onto the approximation eigenvector ũi. For sample
xn from the training sample set, its feature generated from ũi is

fn = φ(xn)T ũi =
s∑

j=1

γ
(i)
j k(xn, x0

j), (4)

where n = 1, 2, . . . , N . The PCA methodology requires that the variance of all fn

should be maximized. Thus, if the features have zero mean, then

γ = [γ(i)
1 γ

(i)
2 · · · γ(i)

s ]T (5)

should be the eigenvector corresponding to the maximum eigenvalue of the following
eigenvalue equation28:

K ′K ′T γ = λγ, (6)

where K ′ is defined as

K ′ =




k(x1, x
0
1) . . . k(xn, x0

1)

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

k(x1, x
0
s) . . . k(xn, x0

s)



· γ

is also referred to as a coefficient vector since its elements are used as the coefficients
of the linear combination in (3). The second procedure of our approach to deriving
sparse KPCA should solve (6) and obtain the coefficient vector.

From (3), we know that the feature extraction result, with regard to ũi of a sam-
ple x should be

∑s
j=1 γ

(i)
j k(x0

j , x). This means that we should compute only s kernel
functions for producing the feature, whereas KPCA-based feature extraction should
calculate N kernel functions. Since it is usually that s � N , the proposed feature
extraction process will be computationally much more efficient than KPCA-based
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feature extraction. We refer to the sparse kernel PCA based on the eigenvalue
equation (6) as efficient sparse KPCA (ESKPCA).

3.3. The first procedure of our approach to deriving sparse KPCA

In this subsection we present the first procedure of our approach to deriving sparse
KPCA. The first procedure selects as nodes training samples that are maximally
dissimilar. We assess the dissimilarity between two samples in the feature space
using the squared distance between them. In the feature space, the squared distance
between two samples φ(xi) and φ(xj) can be expressed by

d2
f (xi, xj) = ‖φ(xi) − φ(xj)‖2 = (φ(xi) − φ(xj))T (φ(xi) − φ(xj)). (7)

Using the definition of the kernel function, we can convert (7) into

d2
f (xi, xj) = k(xi, xi) + k(xj , xj) − 2k(xi, xj). (8)

The first procedure of our approach (i.e. the algorithm to identify nodes) works as
follows:

Step 1. Calculate x̄ using x̄ =
P

i xi

N . Take x̄ as the first node and denote it by x0
1.

We represent the original training sample set by T1.
Step 2. Identify the second node.

First, we calculate the squared distance between each sample φ(xi) from
the set T1 and the first node, i.e. d2

f (xi, x
0
1), i = 1, 2, . . . , N . Then we select

the sample that has the maximum distance value as the second node. We
denote the second node by x0

2. We remove x0
2 from T1. The renewed T1 is

represented by T2.
Step 3. Identify the third node.

We identify the third node as follows: We first calculate the squared distance
between each sample from the set T2 and each of x0

1, x
0
2. For each of x0

1, x
0
2,

we calculate the sum of the squared distance values of every sample from
the set T2 and refer to this sum as the distance sum. Then we select the
sample that has the maximum distance sum as the third node. We denote
the third node by x0

3. We remove x0
3 from T2. The renewed T2 is denoted

by T3.
Step 4. Identify the qth node.

After the previous q−1 steps have identified the q−1 nodes x0
1, x

0
2, . . . , x

0
q−1,

we identify the qth node as follows: we first calculate the squared distance
between each sample from the set Tq−1 and each of x0

1, x
0
2, . . . , x

0
q−1. For

each of x0
1, x

0
2, . . . , x

0
q−1, we calculate the sum of the squared distance values

of every sample from the set Tq−1 and refer to this sum as the distance sum.
Then we select the sample that has the maximum distance sum as the qth
node. We denote the qth node by x0

q.

We explain the reasonability of the above algorithm as follows: first, x̄ can be
regarded as the center of the original sample space and can well represent the
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average information of the original sample data. Step 1 of our algorithm selects it
as the first node, considering that φ(x̄) can behave like one sample in the feature
space. Second, other steps of our algorithm allow the nodes identified later to have
maximal dissimilarities with previously identified nodes. This enables the nodes to
contain the maximum amount of information of the training sample set.

The proposed algorithm can be terminated by setting the number of nodes or
some other condition such as by setting the ratio of the number of nodes to the total
number of the training samples. For a real-world application, the proper number
of nodes can be determined empirically. In the experimental section of this paper
presented later, in order to observe the performance of the proposed method, we
will show the variation with the number of nodes of the classification accuracy of
ESKPCA.

Once the nodes have been identified, the sample φ(x) in the feature space can
be represented by

f =


 s∑

j=1

γ
(1)
j k(x0

j , x)

/√
λ1

s∑
j=1

γ
(2)
j k(x0

j , x)

/√
λ2 · · ·

s∑
j=1

γ
(m)
j k(x0

j , x)

/√
λm




T

,

where γ(i) = [γ(i)
1 γ

(i)
2 · · · γ(i)

s ]T . γ(1), γ(2), . . . , γ(m) respectively stand for the first
m eigenvectors corresponding to the first m largest eigenvalues λ1, λ2, . . . , λm of
the eigenvalue equation (6). To obtain the features of a sample, ESKPCA-based
feature extraction should calculate s kernel functions in advance, whereas KPCA-
based feature extraction should calculate N kernel functions.

It should be pointed out that when the center of a data distribution happens to
lie within the distribution, our first step that takes the center of the samples as the
first node is very reasonable. However, if the center is out of the data distribution,
the first step seems to be problematic. As a result, the following strategy seems to
be more reasonable: for a simple data distribution whose center is within the distri-
bution, we choose the center of the samples as the first node. However, for arbitrary
distributions we take the sample that is closest to the center as the first node.

4. Comparison Between Different Sparse KPCA Methods

In this section, we compare computational efficiencies of the feature extraction
procedure and the training phase to produce the sparse KPCA of ESKPCA and
other sparse KPCA methods. The training phase of a sparse KPCA method is the
procedures to produce the sparse KPCA. The training phase of ESKPCA indeed
consists of the first and second procedures to produce the sparse KPCA shown in
Sec. 3. The feature extraction procedure of ESKPCA has a similar computational
cost to those of other sparse KPCA such as IKPCA in Ref. 22. This is because
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the computational cost of feature extraction depends on the number of nodes, and
both ESKPCA and IKPCA can produce a similar number of nodes that are much
fewer than the samples of the training sample set. If both ESKPCA and IKPCA
use s nodes, both of them should calculate s kernel functions, which need O(s)
operations, to perform feature extraction for a sample. In other words, they do this
at the same computational cost. On the other hand, as shown later, ESKPCA has
a much more computationally efficient training phase than other methods such as
the methods proposed in Refs. 18–20.

We first analyze computational cost of the training phase of the IKPCA method
proposed in Ref. 22 as follows: Most of the computational cost of the training phase
of IKPCA comes from its procedure of identifying nodes. IKPCA identifies one node
by assessing each candidate from the training sample set. For a certain candidate,
IKPCA first produces an eigenvalue equation using the current candidate, the pre-
viously identified nodes, and all the training samples. Then IKPCA assesses the
candidate by the eigenvalues of the produced eigenvalue equation. In the (r + 1)th
step of the procedure of identifying nodes, IKPCA solves the eigenvalues at the com-
putational cost of O((r + 1)3) (r is the number of the previously identified nodes)
for assessing a certain candidate. This is also the major computational burden
when identifying nodes. Since there are N − r candidates, the computational cost
of assessing all the candidates is O((N −r)(r+1)3). The computational cost of solv-
ing the eigenvalues dramatically increases with the increase of r. Moreover, when
the procedure of identifying the (r + 1)th node obtains the eigenvalue equations,
it should perform the matrix operations K1(K1)T in advance at the computational
cost of O((N − r)r2N), r = 1, 2, . . . , s.

K1 and K2 are defined as

K1 =




k(x1, x
ikpca
1 ) . . . k(xn, xikpca

1 )

. . . . . . . . .

k(x1, x
ikpca
r ) . . . k(xn, xikpca

r )




and

K2 =




k(xikpca
1 , xikpca

1 ) . . . k(xikpca
1 , xikpca

r )

. . . . . . . . .

k(xikpca
r , xikpca

1 ) . . . k(xikpca
r , xikpca

r )


 ,

respectively. xikpca
j stands for the jth node obtained using IKPCA. To obtain the K1

and K2 for all the candidates, IKPCA also should calculate a large number of kernel
functions. We note that, for the computational costs shown above, O((N − r)r2N)
is the largest. Thus, we can conclude that when IKPCA identifies the (r+1)th node,
the needed computational cost is O((N − r)r2N). This shows that as r increases,
the computational cost of identifying the next node also increases dramatically. As
a result, the computational cost of the entire training phase will be quite high. For
simplicity, we can consider that IKPCA completes the entire training phase at the
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computational cost of O((N − s)s2N), where s is the total number of the nodes
identified.

For the method proposed by Franc,18 when identifying the (r + 1)th node, the
method will perform the matrix inversion operation at a computational cost of
O(N(r + 1)3). Thus, the method identifies the (r + 1)th node at a computational
cost of not less than O(N(r +1)3), r = 1, 2, . . . , s− 1. For simplicity, we can regard
O(Ns3) as the computational cost of the training phase of this method, where s is
the number of the identified nodes.

We analyze the computational costs of SKFA, AKFA, and näıve KPCA as fol-
lows. As we know, most of the computational cost of the training phase of näıve
KPCA comes from its procedure of solving the eigenvalue equation. Näıve KPCA
needs the computational cost of O(N3) to implement this procedure. When extract-
ing features from a sample, näıve KPCA requires O(N) operations to calculate the
N kernel functions. We note that both SKFA and AKFA use an integrated pro-
cess to work out the training phase and the consequent feature extraction. SKFA
proposed by Smola et al.19 extracts m features using O(m2N2) operations. If the
number of extracted features, m, is much smaller than the size of the training sam-
ple set, N , the computational cost of SKFA will be lower than näıve KPCA. On
the other hand, once if m > N1/2, the computational cost of SKFA will be greater
than O(N3). AKFA proposed by Jiang et al.20 aims to improve SKFA and extracts
m features for a sample at the computational cost of O(mN2).

As for our approach, when identifying the node, we should calculate only the
kernel functions of the candidate and each of the previous identified nodes, and
it does not need to solve any eigenvalue equation. There is also not any matrix
operation. When identifying the (r+1)th node, our approach should calculate only
3(N − r + 1)r kernel functions. As a result, compared to IKPCA and the method
in Ref. 18, our approach identifies nodes at a much lower computational cost.

After all the nodes have been identified, our approach needs to solve only one
eigenvalue equation in the form of (6), which allows the eigenvectors to be finally
obtained. Our approach completes this at only a computational cost of O(s3), where
s is the number of the identified nodes. In addition, our approach needs an extra
computational cost of O(s2N) to produce the eigenvalue equation. Thus, we con-
clude that the entire training phase of our approach produces the sparse KPCA at a
computational cost of O(s2N). As shown in the experimental section, s can be much
smaller than N . As a result, the training phase of our approach usually needs a
quite low computational cost and will be much more computationally efficient than
SKFA, AKFA, and IKPCA. We summarize the computational costs of the node
identifying procedure and the entire training phase of each method using Table 1.

5. Experiments

We tested ESKPCA and other methods using several benchmark datasets.38 The
dataset “Image” includes 20 subsets. Each of the other datasets includes 100 subsets.
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Table 1. Computational costs of the node identifying procedure and the entire
training phase of each method.

Methods Procedure of Identifying Entire Training Phase
the (r + 1)th Node

Näıve KPCA / O(N3)
SKFA / O(m2N2)
AKFA / O(mN2)
Method in Ref. 18 O((r + 1)3N) O(s3N)
IKPCA O((N − r)r2N) O((N − s)s2N)
ESKPCA 3(N − r + 1)r kernel functions O(s2N)

Each subset of these datasets consists of one training subset and one test subset.
We adopted the Gaussian kernel function

k(xi, xj) = exp
(
−‖xi − xj‖2

2σ2

)
.

σ2 was set to the square of Frobenius norm of the covariance matrix of the first
training subset. For every dataset, the first training subset was used to obtain the
sparse KPCA and the samples of all the test subsets were used as test samples
in the classification experiment. When using each method to conduct experiments,
we extracted features of each sample from the first training subset and all the test
subsets. We then exploited the nearest neighbor classifier to classify the test sam-
ples. For each dataset, since every test subset has a classification error rate, we
show both the mean of the classification error rates of all the test subsets from a
dataset and the standard deviation of the classification error rates using Tables 2–7.
In each table, the number in the bracket denotes the standard deviation and the
number before the bracket stands for the mean of the classification error rates. Here-
after “mean” and “standard deviation” represent the average value and standard
variance of the classification error rates, respectively. The meaning of the column
“Number of features (nodes)” in these tables is as follows: For näıve KPCA, it rep-
resents the number of the features extracted. For other methods, it simultaneously
stands for the number of the exploited nodes and the extracted features. In other
words, if s nodes were identified and employed by one sparse KPCA method, we

Table 2. Means and standard deviations of the error rates (%) of three feature
extraction methods on the dataset “Image.”

Number of Näıve KPCA-Based ESKPCA-Based IKPCA-Based
Features Feature Extraction Feature Extraction Feature Extraction

95 1.31 (0.57) 1.44 (0.61) 5.24 (2.00)
85 1.31 (0.57) 1.15 (0.49) 5.85 (2.15)
75 1.35 (0.59) 1.19 (0.52) 5.13 (1.83)
65 1.35 (0.59) 1.31 (0.62) 4.23 (1.61)

Note: In this table and other tables the nodes used for ESKPCA and IKPCA are
as many as the features extracted.
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Table 3. Means and standard deviations of the error rates (%) of three feature extraction
methods on the dataset “Cancer.”

Number of Näıve KPCA-Based ESKPCA-Based IKPCA-Based
Features Feature Extraction Feature Extraction Feature Extraction

56 8.53 (3.00) 8.78 (3.14) 8.75 (3.33)
48 9.01 (3.11) 8.78 (3.14) 9.44 (3.50)
40 9.82 (3.32) 9.58 (3.40) 8.97 (3.34)
32 10.17 (3.38) 8.44 (3.04) 9.70 (3.48)
24 10.17 (3.38) 8.08 (3.01) 9.82 (3.53)

Table 4. Means and standard deviations of the error rates (%) of three feature extraction
methods on the dataset “Heart.”

Number of Näıve KPCA-Based ESKPCA-Based IKPCA-Based
Features Feature Extraction Feature Extraction Feature Extraction

40 7.26 (2.48) 8.78 (2.93) 9.15 (3.00)
35 8.03 (2.62) 8.15 (2.75) 10.05 (3.08)
30 8.03 (2.62) 8.96 (3.06) 9.42 (2.83)
25 8.03 (2.62) 8.70 (3.04) 9.15 (2.95)
20 7.35 (2.47) 8.69 (3.02) 10.09 (3.05)

Table 5. Means and standard deviations of the error rates (%) of three feature extraction
methods on the dataset “Banana.”

Number of Näıve KPCA-Based ESKPCA-Based IKPCA-Based
Features Feature Extraction Feature Extraction Feature Extraction

40 13.80 (0.20) 13.80 (0.20) 13.92 (0.20)
30 13.80 (0.20) 13.68 (0.20) 13.51 (0.20)
20 1.3.8 (0.20) 13.87 (0.20) 13.48 (0.20)

10 13.7 (0.20) 13.94 (0.22) 13.69 (0.19)

Table 6. Means and standard deviations of the error rates (%) of three feature extraction
methods on the dataset “Thyroid.”

Number of Näıve KPCA-Based ESKPCA-Based IKPCA-Based
Features Feature Extraction Feature Extraction Feature Extraction

20 0.99 (0.84) 1.44 (1.14) 1.95 (1.20)

15 0.99 (0.84) 0.51 (0.65) 2.29 (1.41)
10 0.99 (0.84) 0.99 (0.92) 1.47 (1.06)

also extracted s features using this method and then classified the testing samples
using the obtained features.

Tables 2–7 show that for all the databases except for “Banana” and “Heart,”
ESKPCA can obtain a lower classification error rate than IKPCA. Especially,
the experimental result of the dataset “Image” shows that ESKPCA can classify
much more accurately than IKPCA. ESKPCA also has a similar classification
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Table 7. Means and standard deviations of the error rates (%) of three feature extraction
methods on the dataset “German.”

Number of Näıve KPCA-Based ESKPCA-Based IKPCA-Based
Features Feature Extraction Feature Extraction Feature Extraction

75 9.00 (3.15) 8.33 (2.73) 10.13 (3.54)
65 9.50 (3.25) 9.09 (3.10) 9.89 (3.35)
55 9.46 (3.28) 8.07 (2.80) 10.91 (3.64)
45 9.26 (3.23) 8.43 (2.89) 10.35 (3.55)
35 9.38 (3.19) 9.67 (3.33) 10.39 (3.63)
25 9.64 (3.28) 9.78 (3.35) 9.80 (3.40)

Table 8. The ratio of the sum of variances of the first feature, the first five features, and the
first ten features to the sum of variances of all the features.

ESKPCA-Based Näıve KPCA-Based IKPCA-Based
Feature Extraction Feature Extraction Feature Extraction

Image 96.49%; 99.77%; 99.97% 78.32%; 93.09%; 97.44% 78.42%; 93.20%; 97.55%
Cancer 61.62%; 86.05%; 93.88% 26.62%; 51.36%; 65.36% 32.11%; 61.46%; 77.53%
Heart 78.56%; 92.11%; 96.65% 31.80%; 52.31%; 65.06% 39.92%; 64.84%; 79.21%
Banana 54.51%; 98.02%; 99.97% 45.15%; 89.80%; 98.25% 45.18%; 89.84%; 98.29%
Thyroid 89.68%; 99.07%; 99.93% 76.32%; 92.53%; 97.57% 76.96%; 93.24%; 98.15%

German 50.89%; 61.73%; 70.07% 11.21%; 20.55%; 28.28% 24.13%; 42.95%; 57.73%

performance to näıve KPCA. Most importantly, as presented earlier, ESKPCA
needs a much lower computational cost than other sparse KPCA methods.

We use Table 8 to show the ratio of the sum of variances of the first number of
features to the sum of variances of all the features (referred to as variance sum). For
each method, we show the ratios on the first feature, the first five, and the first ten
features, respectively. For example, in Table 8, 96.49%; 99.77%; 99.97% mean that in
our approach the first feature, the first five, and the first ten features can capture the
96.49%, 99.77%, and 99.97% variance sum of all the features of the training samples
in dataset “Image,” respectively. We also say that the approach can use first feature,
the first five, and the first ten features to capture the 96.49%, 99.77%, and 99.97%
“energy” of the samples in dataset “Image,” respectively. Moreover, we see that
using the same number of features, our approach can capture more energy than
näıve KPCA and IKPCA. For each dataset, the number of nodes exploited in both
our approach and IKPCA is the largest number of nodes shown in Tables 2–7. For
instance, both our approach and IKPCA used 95 nodes to perform the experiment
on dataset “Image.”

To visually illustrate the distribution of training samples as shown in Ref. 39,
we use Fig. 1 to show the 2D distribution of samples of a two-class toy dataset
(the red and blue circles represent samples from the two classes, respectively).
Figures 2 and 3, respectively show the distributions of the first 2D features of the
samples obtained using näıve KPCA and ESKPCA. It is clear that ESKPCA and
näıve KPCA can produce a similar data distribution.
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Fig. 1. 2D distribution of samples of the toy dataset.

Fig. 2. The distribution of the first 2D features of the samples, obtained using näıve KPCA.

Fig. 3. The distribution of the first 2D features of the samples, obtained using ESKPCA. ESKPCA
took 30% of the original samples as nodes.
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6. Conclusions and Discussion

In this paper, we propose a novel computationally efficient sparse KPCA method
namely ESKPCA. ESKPCA consists of two procedures. The first procedure selects
a small number of nodes from the training sample set using the criterion that nodes
should be dissimilar as much as possible, which actually allows the nodes to convert
the maximum amount of information of the training sample set to the consequent
eigenvector. This procedure first takes the mean of all the training samples as the
first node. Then this procedure identifies other nodes with the requirement that
it should be far from previously identified nodes as much as possible. Requiring
the feature extracted using the approximate eigenvector has the maximum vari-
ance, the second procedure obtains the eigenvalue equation of ESKPCA. By solving
the eigenvaule problem, the second procedure then gets the optimal approximate
eigenvectors.

Since the nodes are much fewer than the training samples, the ESKPCA-based
feature extraction process is much more efficient than näıve KPCA-based feature
extraction. More importantly, among all known sparse KPCA methods, ESKPCA
identifies nodes at the lowest computational cost. Indeed, in terms of the computa-
tional cost of the entire training phase, ESKPCA is also the most efficient among
all the known sparse KPCA methods. Moreover, experimental result shows that
ESKPCA obtains a high classification accuracy.
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