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Abstract - Several 2DPCA-based face recognition algorithms 
have been proposed hoping to achieve the goal of improving 
recognition rate while mostly at the expense of computation 
cost. In this paper, an approach named SI2DPCA is proposed 
to not only reduce the computation cost but also increase 
recognition performance at the same time. The approach 
divides a whole face image into smaller sub-images to 
increase the weight of features for better feature extraction. 
Meanwhile, the computation cost that mainly comes from the 
heavy and complicated operations against matrices is reduced 
due to the smaller size of sub-images. The experimental 
results have demonstrated that SI2DPCA works well on 
reaching the goals of reducing computation cost and 
improving recognition simultaneously after comparing its 
performance against several better-known approaches. 

Keywords: face recognition, feature extraction, principle 
component analysis, covariance computation, eigen-
decomposition. 

 

1 Introduction 
  Face recognition in image processing has been 

significantly important because it can be applied in human life 
efficaciously [1]-[10]. Several algorithms have been proposed 
in face recognition. The Yang et al.proposed the so-called 
two-dimensional principal component (2DPCA) algorithm 
aiming for better feature extraction of face images to increase 
recognition rate and reduce computation cost simultaneously 
[11]. Because 2DPCA has such good performance, various 
face recognition algorithms based on 2DPCA had been 
proposed and enhanced. For instance, the approach of 
“Two-directional two-dimensional PCA ((2D)2PCA)” 
proposed by Zhang et al. [12] is to process a face image 
from transverse and longitudinal axis respectively and then 
perform the recognition by analyzing their shortest dimension. 
Unfortunately, its improvement on recognition rate is not 
ubiquitous in relatively large scale of training samples [13]. 
Sanguansat et al. [14] proposed the approach of “Two-
dimensional principal component combined two-dimensional 
Linear discriminant analysis (2DPCA&2DLDA)” [14] to face 
recognition applications. Although this approach solves the 
small sample size problem, its computation cost is high due to 
the composition of 2DPCA and 2DLDA. Meng et al. [15] 

proposed the combination of 2DPCA with self-defined 
volume measure to perform feature extraction by 2DPCA first 
and then conduct classification by computing the distances of 
matrix volumes. This approach is more suitable to process 
applications with high dimensional data. Wang et al. [16] 
proposed “probabilistic two-dimensional principal component 
analysis” that combines 2DPCA with Gaussian distribution 
concept to mitigate the noise influence in face image 
recognition. Kim et al. [17] proposed “fusion method based 
on bidirectional 2DPCA” that reduces dimensions of both row 
and column vectors before performing face recognition 
procedure. It does increase recognition rate, but at the expense 
of high computation cost [18]. 
     Aforesaid face recognition algorithms based on 2DPCA 
have tried to either increasing recognition rate or reducing 
computation cost, but not both. In this paper, an approach 
named sub-image 2-dimensional principal component 
analysis (SI2DPCA) is proposed hoping to achieve not only 
reducing the computation but also increasing the recognition 
rate in face image recognition applications. Unlike 
conventional 2DPCA, the SI2DPCA divides a whole face 
image into smaller sub-images so that features can be better 
recognized and extracted. At the same time, computation cost 
can also be reduced due to smaller size of sub-images. 

2 The sub-image 2-dimensional 
principal component analysis 

2.1 Two-dimensional principal component 
analysis (2DPCA) 

   The 2DPCA approach by Yang et al. [11] in 2004 is 
proposed particularly for two dimensional image data. 
Suppose there is an image data set Z={A1, A2,…, AN } with N 
images, and the dimension of every image is n × n. The 
covariance matrix of the image data set is computed by Eq. (1) 
and the average value of the data set is computed by Eq. (2). 
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where Ai is an image in the data set, R is covariance matrix, 
and A  is data average. 



After eigen-decomposition is performed for covariance 
matrix, k eigenvectors corresponding to the k biggest 
eigenvalues are selected. These eigenvectors are the 
projection vectors of the original image data set and the 
features of the image can therefore be extracted from those 
projection vectors as shown in Eq. (3). 

i i=Y A X       i=1,2,…,k              (3) 
where Yi are projected feature vectors, Xi means eigenvectors. 
Suppose there are k biggest eigenvalues being selected, then a 
feature vector set B=[Y1 ,Y2 ,…,Yk ] in descending order of 
eigenvalues can be obtained and these projected feature 
vectors are the resultant principal components of an original 
image data A by 2DPCA.The maximum allowed number of 
pages is seven for Regular Research Papers (RRP) and 
Regular Research Reports (RRR); four for Short Research 
Papers (SRP); and two for Posters (PST). 

2.2 Sub-image 2-dimensional principal 
component (SI2DPCA) 

SI2DPCA is proposed in this paper to further increase 
the recognition accuracy and decrease the computation cost. 
As discussed previously, the high computation cost of PCA 
and 2DPCA comes from computing covariance matrix and 
eigen-decomposition [19]. Therefore, SI2DPCA proposes to 
equally divide a face image into smaller sub-images to be 
processed so that the total computation cost can be reduced.  
      The intuitive way is to equally divide a face image into 
four smaller sub-images for feature extraction. Suppose there 
is an m×m square matrix and the eigen-decomposition is to be 
performed against it. The eigenvalue λ is obtained by 
subtracting λ from each of diagonal elements of the square 
matrix, and then setting the value of the determinant of the 
square matrix to be zero. The process is described in Eq. (4). 
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The next step is to apply the extension method [19] to 
extend the square matrix in Eq. (4). The initial procedure is to 
choose the first element of every column from the determinant 
in Eq. (4) and multiply it by the smaller determinant that 
consists of the elements which belong to neither the column 
nor the row where the first element is located. The (-1)(i+j)  in 
Eq. (5) is used to get the coefficient sign (+ or -) of every 
smaller determinant. The symbols of “i” and “j” are the row 
and column of the first element of a determinant respectively.. 
Eq. (5) is the result of extending Eq. (4). 

             
(5) 

Similar extension process needs to be performed against 
every smaller determinant in Eq. (5). This procedure of 
performing extension process continues until no more 
determinant exists. At this moment, only scalar computation 
remains in the equation. Based on Eq. (5), it is obvious to 
observe that the higher dimension a square matrix has, the 
higher computation cost is.  
      Eq. (6) shows the result of dividing the determinant of 
the square matrix in Eq. (4) into four smaller ones. 
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(6) 
Because the time complexity of computing a determinant 

is O(n!), the total computation cost of computing the 
determinants for each of smaller square matrices in Eq. (6) is 
much less than the computation cost for Eq. (5). From the 
final equation that is set to be zero, several λ values can be 
obtained. The eigenvectors can consequently be calculated by 
substituting λ values into its corresponding matrix in Eq. (6). 
The eigenvector that is based on the largest λ value is the 
most important feature. The eigenvector based on the second 
largest λ value is the second important feature, and so on.  

    Because current computers are mostly binary-based 
systems, ill condition problem that gives incorrect result could 
be caused when computing eigen-decomposition [19]. To 
avoid such problem, many studies use singular value 
decomposition (SVD) to replace the process of eigen-
decomposition. For a matrix with dimension m×n, the 
computation cost of SVD can be described as Eq. (7) [20]. 

4m2n + 8mn2 + 9n3                    (7) 
The big-order of (15) is O(n3) when m < n, meaning the 

dimension variation causes significant difference in terms of 
computation cost. This infers that the idea of working on 
several smaller matrices rather than one original larger matrix 
by SI2DPCA can lower computation cost when performing 
eigen-decomposition process. 

The comparison of computation cost between the 
conventional 2DPCA and the proposed SI2DPCA is shown in 
Table 1 that details the formulas of computation cost. In Table 
1, the formula (a) that comes from Eq. (2) is to compute the 
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data average by 2DPCA. The N means computation 
summation of N images. The computation amount of m×n in 
Formula (a) is for matrix addition. Adding one in formula (a) 
is for the division operation in Eq. (2). Formula (b) is from Eq. 
(1) to compute the covariance matrix. The N and the plus-one 
have same meaning as in formula (a). There are three 
operations in Eq. (1). The first one is subtracting the data 
average obtained by formula (a) from the original image data, 
causing m×n computation. There are two such operations in 
Eq. (1), so the computation cost is 2×m×n. The second 
operation is the multiplication of the two matrices shown in 
Eq. (1). The computation cost of such matrix multiplication is 
n3. The third operation is the computation of transposing a 
matrix, causing m×n computation. Formula (c) comes from 
Eq. (7) and is the computation cost of eigen-decomposition 
for 2DPCA. 

The rest of formulas in Table 1 are for SI2DPCA. 
Suppose an original image with dimension m×n is equally 
divided into k smaller images, where k can be square-rooted 
and m and n are times of k1/2. That is, the dimension of each 
smaller matrix is ((m/ k1/2) × (n/ k1/2)). The Eq. (2), Eq. (1) 
and Eq. (7) need to be applied for each of k smaller matrices 
in that order. As explained previously for formulas (a) to (c), 
the computation costs indicated in formulas (d) to (f) are self-
explained by reducing dimension to be ((m/ k1/2) × (n/ k1/2)) 
for each smaller matrix and summing up the whole 
computation cost of k smaller matrices.  

 
Table 1: Analysis of computation cost  

 

Computation type 2DPCA SI2DPCA 

Data average 
computation  

N×(m×n)+1 
(a) 

k×N×[(m×n)/k]+k 
(d) 

Covariance 
computation 

N×(2×m×n+ 
n3+m×n)+1 

(b) 

k×N×[2×(m×n)/ 
k+(n/k1/2)3 

+(m×n)/ k]+k 
(e) 

Eigen- 
decomposition 
computation 

4×m2×n 
+8×m×n2 

+9×n3  
(c) 

k×(4×(m/k1/2)2×(n/k1/2)
+8×(m/k1/2)×(n/k1/2)2+9

×(n/k1/2)3) 

(f) 

 
In previous discussions, an original image is assumed in 

m×n dimension. In reality, a 2-dimensional human face image 
generally has same dimension on columns and rows, meaning 
m equals n. Under this assumption, the time complexity in big 
order for Table 1 can therefore be summarized in Table 2. 
Although Table 2 shows SI2DPCA has no advantage over 
2DPCA in terms of time complexity, its actual computation 
cost is much less when k is greater than one. The bigger the k 
is, the greater the decreased amount is for computation cost. 
In general, the most reasonable k is 4 meaning at least roughly 
half computation cost is reduced by SI2DPCA.  

 
Table 2: Time complexity analysis in big order for matrices 

 

Computation type 2DPCA  SI2DPCA 

Data average 
computation  m2 m2 

Covariance 
computation m3 (m/ k1/2)3 

Eigen-decomposition 
computation m3 (m/ k1/2)3 

 
Above discussions prove that SI2DPCA can reduce 

computation cost. However, the fundamental goal is to 
perform face image recognition. That is, hoping the proposed 
SI2DPCA does not improve its computation cost at the 
expense of recognition performance. 
In SI2DPCA, after an original face image is equally divided 
into several smaller sub-images, each of the sub-images is 
processed individually for feature extraction. Because the size 
of a sub-image is smaller, any important features existing in 
this sub-image can be easier to be found and therefore to be 
extracted. For example, a sub-image may include only 
features of eyes and hair, and these features and their detailed 
textures would then be so obvious to be recognized and 
extracted in this relatively small image. On the other hand, a 
whole image includes not only eyes and hair but also many 
other features. In this situation, the features of eyes and hair 
may not be so outstanding in such immense image data and 
therefore can not be easily recognized. Even these two 
features have been recognized, their weights in its image may 
not be as great as those extracted from smaller sub-images 
because of the co-existence of other features in the whole 
bigger image. 

3 Experiments and analysis 
3.1 The ORL database 
 The ORL database [21] is a well-known face image 
database and is used in this paper for experiments. There are 
40 individual faces in ORL database. Each individual face 
has 10 different images making totally 400 face images in the 
database. The images were taken with a tolerance of some 
tilting and rotation of the face for up to 20 degrees [11][21]. 
In ORL database, all images are grayscale with dimension of 
112×92. The pixel value range is 0~255. 

3.2 Experiments and analysis of SI2DPCA  
   According to Table 1, the computation cost of 
SI2DPCA and 2DPCA can be calculated for the images in 
ORL database. Every image has dimension of 112×92, 
meaning m and n in Table 1 are 112 and 92 respectively. And 
each image is divided into 4 smaller sub-images, meaning the 
value of k in Table 1 is 4. Suppose 200 images are taken as 
training data, meaning N in Table 1 is 200, and 8 features are 



selected and extracted. Putting these values into Table 1, the 
result is shown in Table 3. 
      Table 3 shows that the computation cost for SI2DPCA 
is only half of 2DPCA. When calculating covariance matrix 
and eigen-decomposition, there are many quadratic or cubic 
power computations. Smaller image dimensions operated in 
SI2DPCA can greatly reduce the computation cost, as 
discussed previously 
      
Table 3: Analysis of computation cost for ORL database 
 

Computation 
type 2DPCA SI2DPCA 

Data average 
computation  

200×(112×92)+1 
=2060801 

4×200×(56×46)
+4=2060804 

Covariance 
matrix 

computation 

200×(2×112×92 
+ 923+112×92)+1 

= 161920001 

4×200×(2×56×46
+463+56×46)+4

=84051204 

Eigen- 
decomposition 
computation 

4×1122×92 + 
8×112×922 + 9×923 

=19208128 

4×(4×562×46+8×5
6 

×462+9×463) 
= 9604064 

Sum of  
computation cost 183188930 95716072 

 
 Besides the computation cost, the proposed SI2DPCA 

and conventional 2DPCA also need be compared on their 
recognition performance. The recognition is performed by the 
nearest neighbor rule (NNR) [11] that is based on Euclidean 
distance.  
      In this experiment, the first 5 images of every face are 
treated as training and the remained 5 images of every face 
are treated as testing images. That is, there are 200 images for 
training and 200 images for testing. Eight important features 
are extracted in the experiment, meaning a 8-elements feature 
vector is obtained for each of images. The projected feature 
vector of each of training and testing images can be calculated 
by multiplying the 8-elements feature vectors to the data of 
every training and testing images. The classification for each 
of testing images can then be performed by NNR against the 
training images. 
      The recognition rate comparison between 2DPCA and 
SI2DPCA is shown in Table 4. Earlier discussions argued that 
important features can be better recognized and extracted in 
smaller sub-images. This can be observed in Table 4 that 
shows slight better recognition rate for SI2DPCA over 
conventional 2DPCA. Both Table 3 and Table 4 together 
show that the SI2DPCA reduces computation cost without 
compromising its recognition performance. 
 
 
 

Table 4: Recognition comparison between 2DPCA and 
SI2DPCA 

 
Strategy  Recognition rate 
2DPCA 93% 

SI2DPCA 93.5% 
 

Various methodologies based on 2DPCA have been 
proposed. Table 5 shows the performance comparison in 
terms of recognition rate and computation cost among some 
of better-known approaches and SI2DPCA. All the 
experiments for the approaches in Table 5 are conducted 
based on the face images in ORL database. In Table 5, the 
computation costs of method 1, method 2 and method 3 are all 
higher than SI2DPCA while the recognition rates are either 
lower than or same as SI2DPCA. This is because SI2DPCA 
operates against matrices in smaller dimensions. For methods 
(4), (5) and (6) in Table 5, they even put additional processes 
to 2DPCA. Method 5 combines 2DPCA with Kernel 
algorithm. This approach projects image data to high 
dimensional space, causing high computation cost. Although 
its recognition rate is slightly better than the proposed 
SI2DPCA, the much higher computation cost makes it 
difficult for practical applications. Method 6 combines feature 
fusion with 2DPCA in order to increase recognition rate. The 
resultant recognition rate is very good at 98.1% that is better 
than the rate of 93.5% by SI2DPCA in the experiment. 
Unfortunately, the computation cost of this approach is so 
high, at least 10 times higher than 2DPCA, that it is 
impossible to be applied to any practical applications.  
 
Table 5: Comparison among other methods and SI2DPCA 
 

Metho
d 

number

Method Recognitio
n 

rate 

Computation 
cost 

1 (2D)2PCA [12] 90.5% high 
2 2DPCA+Fusion 

method based on 
bidirectional [17] 

92.5% high 

3 2DPCA+2DLD
A [14] 

93.5% high 

4 SI2DPCA 
(proposed) 

93.5% low 

5 2DPCA+Kernel 
[22] 

94.58% very high 

6 2DPCA+Feature 
fusion approach 

[23] 

98.1% very very 
high 

 
4 Conclusions 
 The feature extraction algorithm 2DPCA is specially 
developed for face recognition. Its characteristics are low 
computation cost and good feature extraction, making 
2DPCA a popular approach for face recognition. In this paper, 
an enhanced approach “SI2DPCA” is proposed to operate at 



even lower computation cost without compromising its good 
recognition performance. Both of the two goals of reducing 
computation cost and maintaining good recognition rate have 
been shown in the results of the conducted experiments in 
this paper. 
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