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Abstract—Learning discriminative feature representations has
shown remarkable importance due to its promising perfor-
mance for machine learning problems. This paper presents
a discriminative data representation learning framework by
employing a simple yet powerful marginal regression function
with probabilistic graphical structure adaptation. A marginally
structured representation learning (MSRL) method is proposed
by seamlessly incorporating distinguishable regression targets
analysis, graph structure adaptation and robust linear structural
learning into a joint framework. Specifically, MSRL learns
marginal regression targets from data rather than exploiting the
conventional zero-one matrix that greatly hinders the freedom
of regression fitness and degrades the performance of regression
results. Meanwhile, an optimized graph regularization term with
self-improving adaptation is constructed based on probabilistic
connection knowledge to improve the compactness of the learned
representation. Additionally, the regression targets are further
predicted by utilizing the explanatory factors from the latent
subspace of data, which can uncover the underlying feature
correlations to enhance the reliability. The resulting optimiza-
tion problem can be elegantly solved by an efficient iterative
algorithm. Finally, the proposed method is evaluated by eight
diverse but related tasks, including object, face, texture, and scene
categorization datasets. The encouraging experimental results
and the explicit theoretical analysis demonstrate the efficacy of
the proposed representation learning method in comparison with
state-of-the-art algorithms.

Index Terms—Discriminative representation, low-rank repre-
sentation, sparse representation, block-diagonal structure, image
recognition.

I. INTRODUCTION

LEarning discriminative and effective visual representa-
tions of data makes extracting informative features easier

when constructing classifiers or other predictors. It is worth
noting that learning good data representations is beneficial to
the machine learning community, and an effective data repre-
sentation can disentangle the subtle but important underlying
information hidden in the observed data [1]. In addition to deep
representations [1], there are extensive data representation
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learning methods, such as manifold-inspired representations
[2]–[4], sparse and low-rank representations [5]–[10], and
dictionary representations [11]–[13].

It is known that high-dimensional data usually contain
certain redundant, irrelevant and noisy information, which
greatly hamper the use of a designed system. Manifold-
inspired representation learning mainly considers to determine
a lower-dimensional but the most expressive subspace. It
identifies a subset of significant features (i.e. feature selection)
or finds a projection or a transformation to approximate all
features with a certain criterion (i.e. feature extraction) [2]–
[4], [14]. Moreover, some linearized versions of subspace
learning algorithms can overcome the out-of-sample problem
[15]. However, computational infeasibility becomes one of the
main obstacles when applying them to a large number of local
features [16]. Additionally, learning desirable graph topology
of data plays a critical role in the success of graph-based
representations [17].

The research on sparse and low-rank representations [5], [7],
[8] has gained considerable attention due to their promising
performance when solving different computer vision problems.
For example, sparse representation classifier (SRC) [5], [6]
has been successfully applied to robust face recognition.
The nature of sparse representation learning is to select the
most discriminative representations from the observed data
and shrink the others. Some efficient representation learning
methods were proposed, such as collaborative representation
based classification (CRC) [18], locality-constrained linear
coding algorithm (LLC) [19], and linear repression classifier
(LRC) [20]. Instead of using the l1-norm minimization, they
employ the l2-norm regularization to achieve the compromised
goal that is computationally efficient without compressing
the performance. However, sparsity-inferred methods may be
incapable of capturing the global structure of data because
these algorithms are dedicated to searching the sparsest repre-
sentation of each sample individually. Such limitation has led
to the emergence of the low-rank representation [8]–[10]. The
low-rank based methods study the representation that jointly
uncovers the underlying correlations between samples and
globally preserves the membership of data. Robust principal
component analysis (RPCA) [21] is one of the most represen-
tative low-rank constrained methods. To generalize the low-
rank property to handle data from multiple subspaces, a low-
rank representation based method (LRR) [8] was introduced to
make subspace segmentation. Due to its simplicity and effec-
tiveness, a lot of LRR-based algorithms have been developed,
such as latent LRR (LatLRR) [22], Laplacian regularized LRR
[23] and low-rank ridge regression (LRRR) [24].
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The main objective of dictionary learning (DL) is to learn
more compact data representations adapted to various tasks
from the original data under certain criteria. For example,
K-SVD [11] is one of the most well-known DL algorithms
for signal restoration and denoising. However, K-SVD may
be ineffective in classification or regression, as it mainly
concentrates on reformulating an overcomplete dictionary that
best reconstructs the input data, ignoring any discriminating
metric such as the subspace and label information. To ac-
commodate machine learning tasks, a series of DL methods
have been developed to improve the discriminative ability
of the learned dictionary to deal with labeled data, such as
discriminative K-SVD (D-KSVD) [12], label consistent D-
KSVD (LC-KSVD) [13] and locality constrained and label
embedding dictionary learning (LCLE-DL) [25]. Moreover,
DLSI [26] learns each sub-dictionary individually by imposing
the structural incoherent information between classes, and
CBDS [27] constructs a class-wise block-diagonal structure for
discriminative dictionary learning. Linearized kernel DL [28]
composed of kernel matrix approximation and virtual sample
construction easily formulates some existing supervised and
unsupervised DL algorithms to their kernel versions.

However, existing representation learning algorithms are
not flexible and adaptive enough for machine learning tasks
such as recognition or regression. The main limitations of
these methods are fragility to the presence of outliers, com-
putational infeasibility and weak discriminability. Specifically,
manifold representations are learned by refining or projecting
the original data to a new subspace, but overcoming high
computation and finding the desirable graph structure become
two challenging topics. It is known that the conventional sparse
and low-rank representations cannot satisfy the demanding
needs of the real-time applications due to heavy computational
burden [5], [7], [8], [18], [21], [22]. Moreover, the learned
data representations still lack distinguishable capabilities of
capturing the potential explanatory factors for the observed
input from different subjects. To remedy these deficiencies,
this paper proposes a marginally structured representation
learning (MSRL) method for efficient and effective visual
representation learning. First, our MSRL algorithm is mainly
based on a simple but effective marginal regression targets
learning. Instead of utilizing the fixed zero-one matrix as
regression targets, MSRL directly constructs self-tuning re-
gression targets with a preferable near-optimal margin con-
straint. The regression results are more accurately measured.
The probabilistic graphical structure adaptation is developed
to capture underlying structures with data connectivity, which
in turn guides the construction of marginal regression targets.
In addition, the regression results are further predicted in the
discriminative latent subspace of data, which can capture the
underlying correlation patterns. The resulting formulation has
the close-form solutions with respective to each subproblem,
and can be elegantly solved by an efficient iterative algorithm.
MSRL can also easily be extended to the semi-supervised
version. Extensive experiments demonstrate the discrimination
and effectiveness of the learned visual representations when
solving different recognition tasks. In summary, the main con-
tributions of the proposed MSRL framework are as follows:

(1) We propose to formulate a novel marginal visual rep-
resentation learning framework based on joint flexible self-
tuning marginal targets analysis, discriminative latent sub-
space construction and probabilistic graph structure adaptation.
Therefore, the resulting data representations have obvious
discriminative capabilities with the near-optimal margins, and
our proposed methods achieve encouraging recognition results.

(2) The adaptive graph structure learning captures the
probabilistic connectivity between each pair of samples in the
regression task. The inherent structures of data are generally
estimated by exploiting the shared information from data.
Furthermore, the linear structural predictor learning employs
the original and latent correlated information of data to make
reliable predictions of regression task.

(3) Theoretical and experimental analyses of the conver-
gence property for the optimization algorithm are explicitly
presented, and the relationships between the proposed al-
gorithms and several well-known algorithms are explicitly
discussed. The extended semi-supervised version of MSRL is
also introduced, and the efficiency of MSRL is further verified
by the comparisons of the computational time.

The rest of this paper is organized as follows. We briefly
introduce some related works in Section II. Then, the pro-
posed MSRL method and theoretical analysis are described in
Section III, and Section IV gives the optimization algorithm.
Extensive experimental results are reported in Section VI, and
the conclusion remarks are presented in Section VII.

II. RELATED WORK

We first give some notations used in this paper. Matrices
are denoted by bold uppercase letters, e.g. X , and the i-th
row and the j-th column element of matrix X is denoted
as Xij . The bold lower letters indicate column vectors, e.g.
x. The Frobenius norm of matrix X is defined as ∥X∥2F =
tr(XTX) = tr(XXT ), where tr(•) is the trace operator.
∥X∥∗ is the nuclear norm of matrix X , i.e. ∥X∥∗ =

∑
i |σi|

where σi is the i-th singular value of matrix X . The transposed
matrix X is denoted as XT , and I denotes an identity matrix.

Due to its efficiency and effectiveness for data analysis,
least squares regression (LSR) has been extensively used in
many machine learning tasks. A series of improved algorithms
of LSR have been proposed, such as discriminative LSR
(DLSR) [29], discriminative elastic-net regularized LSR [30]
and retargeted LSR [31]. Many popular models are also closely
related to the original LSR model, such as sparse coding
[5], [7], ridge regression [18], [20] and linear SVM [32],
[33]. The conventional regularized LSR aims at learning a
regression matrix W ∈ ℜd×c, which projects the training
samples X = [x1, · · · ,xn] ∈ ℜd×n to the label matrix
Y ∈ ℜc×n by optimizing

min
W ,b

∥W TX − beTn − Y ∥2F + λ∥W ∥2F , (1)

where b is the regression error, en = [1, · · · , 1]T is a vector
with all 1s, and λ is the regularization parameter. d, c, and
n are respectively the dimension of sample, the number of
classes and the number of samples. The j-th column of matrix
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Y , i.e. yi = [0, · · · , 0, 1, 0, · · · , 0]T ∈ ℜc, is the one-hot label
vector of the i-th sample from the j-th class.

We can see that the regression targets Y of Eqn. (1) is a
binary matrix. For the i-th row of Y , i.e. yi ∈ {0, 1}n, the
elements corresponding to the data from the i-class are 1s,
otherwise 0s. However, the zero-one target matrix is too rigid
to make accurate regression. DLSR [29] utilizes the ε-dragging
technique to force the binary outputs of different classes far
away along opposite directions. The objective function of
DLSR is

min
W ,b,M

∥W TX − beTn − Y −B ⊙M∥2F + λ∥W ∥2F ,

s.t. M ≥ 0, (2)

where B ∈ ℜc×n is a constant matrix. If the j-th sample is
from the i-th class, Bij = +1, otherwise Bij = −1. It is
notable that DLSR [29] relaxes the binary matrix to a flexible
matrix R = Y +B ⊙M . Meanwhile, the margins between
different classes are implicitly enlarged.

However, excessively pursuing the largest margins and
greedily searching the best projection to fit the targets may
lead to over-fitting with a high possibility. The graph-based
learning technique [4], [14]–[16] provides a feasible approach
to overcome the problem of over-fitting [34]. A significant ad-
vantage of graph structure learning is its capability to naturally
capture diverse models of information or measurements, such
as the similarity relationship of data [35]. The flexible graph-
structure learning has been demonstrated its effectiveness in
image clustering [35]. Nie et al. [36] proposed to integrate
the stages of similarity matrix construction and unsupervised
feature selection into a unified formulation. In many cases, it
is beneficial to add a prominent graphical regularization term
in the objective function of learning models. In this paper,
a marginal visual representation learning method is proposed
by constructing a simple but powerful discriminative regres-
sion model with the linear structural predictors learning and
constructing favorable similarity relationships with optimized
probabilistic graph structure adaption.

III. THE PROPOSED MSRL FRAMEWORK

In this section, we present a novel marginal visual rep-
resentation learning framework for image understanding,
named marginally structural representation learning (MSRL),
in which the discriminative high-level semantic information of
data is extracted from low-level observed data.

The performance of machine learning methods is heavily
dependent on data representations. The essential semantic
information is always formulated by the combinations of
useful representations, which are more effective and favorable
than individual features. In light of this, the proposed marginal
visual representation learning model can be stated in the
following formula:

min
ri,f

n∑
i=1

L(xi, ri, f) + βΨ(f) + λΦ(f), (3)

where L(·) is the discriminative loss function measuring the
approximate regression error between the predefined marginal-
ized targets and the prediction results, Ψ(f) is the structural

predictor learning to control the complexity of f , and Φ(f)
is the adaptive graph learning to control the smoothness of
function f . Additionally, λ and β are two hyper-parameters to
balance the importance of the three terms.

A. The Loss Function

The choice of loss function L(·) empirically depends on
applications. There are three popular convex metric functions
for recognition, the least squares loss, logistic loss and hinge
loss. Among them, the simplest and most commonly used
loss function is the least squares loss function, because it is
both convex and smooth, and also can provide competitive
performance to the hinge loss metric function in most cases.
On the other hand, the logistic loss function is sensitive to
outliers in comparison with the least squares loss metric.
As a result, a tractable optimization problem based on the
empirically squared loss function is formulated as

L(xi, ri, f) =
n∑

i=1

∥f(xi)− ri∥22, (4)

where ri ∈ ℜc is the learned regression target.
The conventional LSR target vector is the label vector like

yi in Eqn. (1). However, taking the zero-one vector as the
regression target is too tight to provide enough space to fit
the regression problem. It is difficult to fully comply with
a zero-one vector, which leads to high regression error [29].
To overcome this deficiency, we propose to directly learn the
regression targets from data, and relax them to a flexible but
marginal space in a supervised manner. Specifically, when
optimizing the regression targets, we enforce a marginal con-
straint that the distance between the regression targets of the
true and false classes should be larger than C, i.e.

rili −maxj ̸=lirij ≥ C, (5)

where C is a constant, and li indicates the position of the
true class for the i-th sample. For example, if the i-th sample
from the k-th class (i.e. li = k), the k-th element of the
regression target ri, i.e. rik, is bigger than the rest of elements
by the margin of C. This simple learning trick can explicitly
reflect the separability of each sample such that the margins of
regression targets are enlarged and the inter-class separation is
enhanced. Moreover, the linear transformation W is utilized
as the mapping from the original data space ℜd to the marginal
target space ℜc:

L(xi, ri, f) =
n∑

i=1

∥W Txi − ri∥22

s.t. rili −maxj ̸=lirij ≥ C. (6)

B. The structural predictor learning

Reliable regularization is also an indispensable component
for robust data representation as well as computational effi-
ciency. To mine the underlying classes’ correlation patterns,
the low-rank regularization is imposed. More specifically, the
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rank of W is explicitly determined by s < min(c, n) and the
following optimization problem is constructed:

min
W ,ri

n∑
i=1

∥W Txi − ri∥22

s.t. rank(W ) ≤ s, rili −maxj ̸=lirij ≥ C, (7)

which can be rewritten as

min
A,B,ri

n∑
i=1

∥(AB)Txi − ri∥22

s.t. rili −maxj ̸=lirij ≥ C, (8)

where A ∈ ℜd×s and B ∈ ℜs×c. It is easy to find
that Eqn. (8) has the same solution of Eqn. (7), but W
has more interpretable yet discriminative low-rank property.
Interestingly, Eqn. (8) can be written as

min
A,B,ri

n∑
i=1

∥BT (ATxi)− ri∥22

s.t. rili −maxj ̸=lirij ≥ C. (9)

It is worth noting that matrix A can be viewed as a projection
that transforms the data from the original feature space to
a latent analytic subspace. Specifically, for each data point
xi ∈ ℜd, its corresponding representation in the latent sub-
space should be ATxi ∈ ℜs.

To further explore the underlying predictive structures, we
assume that the discriminative mapping consists of two com-
ponents: one is the observed high-dimensional feature map,
and the other one is the latent low-dimensional feature map.
In other words, the preferable linear predictor has the form as

fk(xi) = pT
k xi + bTk (A

Txi) (10)

where pk ∈ ℜd and bk ∈ ℜs herein can be viewed as the
weighting vectors for each specific predictor. Instead of only
using the latent prediction in Eqn. (9), the linear structural
prediction is constructed as

min
A,B,ri

n∑
i=1

∥(P +AB)Txi − ri∥22

s.t. rili −maxj ̸=lirij ≥ C. (11)

where P = [p1, · · · ,pc] and B = [b1, · · · , bc]. To sim-
plify the optimization problem, we define W = P + AB.
Therefore, we may eliminate P by using W , i.e. ∥P ∥2F =
∥W −AB∥2F , and the resulting predictive functions learning
is formulated as

min
W ,A,B,ri

n∑
i=1

∥W Txi − ri∥22 + γ∥W −AB∥2F

s.t. rili −maxj ̸=lirij ≥ C. (12)

To make the problem tractable, we add an orthogonal con-
straint on A, i.e. ATA = I . In addition, to obtain a more
stable result of problem (11), the Frobenius norm of W is
employed to capture the group characteristics of data [27],
[29], and then we define the following regularization term to
control the complexity of the optimization problem:

Ψ(f) = ∥W ∥2F +
γ

β
∥W −AB∥2F s.t. ATA = I. (13)

C. Adaptive Graph Structure Learning

It is easy to see that learning discriminative regression
targets is to highlight the inter-class separation of the learned
representation, but the intra-class compactness is significant
to discriminative representation learning as well. We propose
to construct an adaptive probabilistic graph to improve the
compactness of the learned representation. Specifically, it is
known that the pairwise similarity reflects the probabilistic
connectivity between each pair of samples. The conventional
unsupervised methods such as LLE [14] and LPP [15], con-
struct data connectivity based on distance similarity on the
original space, which contains many possible redundant and
noise information. So, these data connectivity can not faith-
fully capture the data structure and similarity, and using such
similarity matrices are surely unreliable and inaccurate for the
regression task. To this end, our paper applies an adaptive
process to determine the similarity matrix by fully considering
both supervised semantic label information and unsupervised
distance information. A probabilistic graph learning model
is built in the discriminative projected semantic space by
assigning the optimal neighbors for each data point based on
the local distances. It assumes that the closely-related predicted
targets should have higher possibilities to be connected, i.e.

Φ(f) =

n∑
i,j=1

dist(W Txi,W
Txj)× Pij

s.t. 0 < Pij < 1,Pen = en,

(14)

where dist(a, b) measures the distance between a and b. The
constraints guarantee P being a transition probability matrix,
i.e. each of its rows is a probability distribution. In this work,
we simply define the distance between two predicted targets as
the square of Euclidean distance. Furthermore, instead of using
a fixed probability matrix P , we use a self-tuning technique
to learn a more feasible similarity measurement adaptively. To
achieve this goal and avoid a trivial solution of P , we add a
simple constraint on P as

Φ(f) =
n∑

i,j=1

(
∥W Txi −W Txj∥22Pij + σP 2

ij

)
s.t. 0 < Pij < 1,Pen = en,

(15)

where σ is a nonnegative trade-off parameter, but it can be au-
tomatically determined (shown in Section IV-C). It is notable
that the adaptive graph learning exploits the probabilistic data
connectivity in the learned discriminative projected space to
enhance the intra-class compactness.

Therefore, by combining the loss function (6), the complex-
ity regularization (12) and the graph smoothness term (15), the
final formulation of the proposed MSRL is

Γ(W ,A,B,R,P ) = ∥W TX −R∥2F + γ∥W −AB∥2F

+ β∥W ∥2F + λ
n∑

i,j=1

(
∥W Txi −W Txj∥22Pij + σP 2

ij

)
s.t. Rili −max

j ̸=li
Rij ≥ C,ATA = I,

0 ≤ Pij ≤ 1,Pen = en. (16)
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From the above objective function, it is easy to see that the
learned data representations W TX ∈ ℜc×n naturally own the
following attributes.

1) The learned representations are globally consistent. By
optimizing the regression targets with a marginal fine-
tuning constraint, the learned representations are consis-
tent with the groundtruth labels but discriminative.

2) The learned data representations are locally consistent.
Specifically, the adaptive similarity matrix P assigns
the adaptive and optimal neighbors for each data point
based on the probabilistic connectivity. The learned rep-
resentations are consistent with the nearby points in the
discriminative projected target space.

3) The forth term can avoid the over-fitting problem induced
by the effective context correlations W , and also inter-
polates the semantic links in designing the probabilistic
graph model with self-adaptation.

4) By jointly optimizing the mapping function and learn-
ing marginal representations, it is helpful to mutually
guide its counterpart to achieve more favorable results.
The proposed framework ensures that the learned data
representations are discriminative enough.

5) Unlike existing algorithms, the proposed method is more
flexible in that (a) it does not use the strict binary
regression targets but learns them from data by enlarging
the margins of different classes for each sample and
(b) the weights of graph embedding are automatically
inferred from the projected data instead of a fixed setting.

IV. SOLVING THE OPTIMIZATION PROBLEM

For the optimization problem (16), it is easy to verify that
the objective function cannot be directly optimized because
the variables (i.e. W ,A,B,R,P ) depend on each other.
Consequently, an iterative optimization algorithm is developed.

A. Update W, A, B given R and P

Following the common optimization process, the block
coordinate descent method is employed by iteratively updating
W ,A,B with fixed R and P , and then the optimization
problem (16) can be written as

Γ(W ,A,B) = ∥W TX −R∥2F + γ∥W −AB∥2F + β∥W ∥2F

+ λ
n∑

i,j=1

∥W Txi −W Txj∥22Pij s.t. A
TA = I, (17)

which can be converted into an equivalent problem:

Γ(W ,A,B) = ∥W TX −R∥2F + γ∥W −AB∥2F + β∥W ∥2F
+ λtr(W TXLXTW ) s.t. ATA = I, (18)

where L is the graph Laplacian matrix of P , which is defined
as L = D − P , and D is a diagonal matrix whose main
diagonal elements are column sums of matrix P , that is, Dii =∑n

j=1 Pij .
Updating B: It is easy to find that the optimal B in Eqn.

(18) can be expressed in terms of A and W . Based on

constraint ATA = I , we can infer the solution of B by setting
the first-order derivation ∂Γ

∂B = 0, and then

2γ(ATAB −ATW ) = 0 ⇔ B = ATW . (19)

Updating W : Similarly, when we fix A and B and
substitute B in Γ with Eqn. (18), objective function Γ is
reformulated as follows:

Γ =∥W TX −R∥2F + λtr(W TXLXTW )

+β∥W ∥2F + γtr[W T (I −AAT )(I −AAT )W ].
(20)

As (I −AAT )(I −AAT ) = I −AAT , by setting the first-
order derivation ∂Γ

∂W = 0 for Eqn. (20), it leads to

W = (G− γAAT )−1XRT , (21)

where G = XXT + λXLXT + (β + γ)I .
Updating A: To obtain a more efficient solution, we give a

simple solution. By ignoring the constant terms independent
of A, minimizing (18) becomes:

min
A

∥W −AB∥2F s.t. ATA = I, (22)

which is the famous Orthogonal Procrustes problem. The
following lemma gives the optimal solution to the optimization
problem (22).
Lemma 1: Let the SVD of WBT = UΣV T , and then
A = UV T is the optimal solution of problem (22).

B. Update R given P, W, A, B

Similarly, if we remove the constant terms independent
of R, the objective function Γ with Eqn. (16) is written as
follows:

min
R

∥W TX −R∥2F s.t. Rili −max
j ̸=li

Rij ≥ C. (23)

Similar to SVM [32], we set the marginal value of constant
C = 1 here, and then problem (23) is reformulated as

min
R

∥F −R∥2F s.t. Rili −max
j ̸=li

Rij ≥ 1, (24)

where F = W TX . Problem (24) is a convex constrained
quadratic programming problem [37] and we decompose it
into n independent subproblems. For the i-th columns of
F and R, we denote f = [f1, · · · ,fc]

T ∈ ℜc and r =
[r1, · · · , rc]T ∈ ℜc. Assuming that the i-th sample is from
the mth-class, the i-th subproblem of problem (24) is

min
r

∥f −r∥22 =
c∑

j=1

(fj −rj)
2
2 s.t. rm−max

j ̸=m
rj ≥ 1. (25)

To optimize problem (25), we introduce an auxiliary variable
z ∈ ℜc, and zj = fj + 1 − fm, where zj ≤ 0 indicates the
predictive targets are coincident with the marginal constraint,
otherwise unsatisfied results. We assume that rm = fm + ζ,
where ζ is a learning factor. For ∀j ̸= m, rm − rj ≥ 1, and
then the j-th subproblem of (25) is

min
rj

(fj − rj)
2
2 s.t. fm + ζ − rj ≥ 1, ∀j ̸= m. (26)
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Algorithm 1. Solving Problem (25)

Input: r = [r1, · · · , rc]T ∈ ℜc, the true class index m.
Initialization: ∀j,zj = fj + 1− fm, ζ = 0, t = 0.
for j ̸= m do

if ψ′(zj) > 0 then ζ = ζ + zj , t = t+ 1 end
end
Define ζ = ζ/(1 + t), and then update rj by Eqn.(27).
Output: Marginal target vector r.

Clearly, the above problem is a simple quadratic programming
problem, and the optimal solution is rj = fj+min(ζ−zj , 0)
and then the optimal solution of problem (25) is given by

rj =

{
fj + ζ, if j = m,
fj +min(ζ − zj , 0), otherwise.

(27)

Thus, problem (25) is transformed into

min
ζ
ψ(ζ) = ζ2 +

∑
j ̸=m

(min(ζ − zj , 0))
2, (28)

where its first-order derivation ψ′(ζ) = 2(ζ+
∑

j ̸=mmin(ζ−
zj , 0)). By taking ψ′(ζ) = 0, the optimal value of learning
factor ζ is calculated as

ζ =

∑
j ̸=m zjΩ(ψ

′(zj) > 0)

1 +
∑

j ̸=m zjΩ(ψ′(zj) > 0)
, (29)

where Ω(·) is the indicator operator. The detailed procedures
of learning the optimal solution of the i-th column of R are
summarized in Algorithm 1.

C. Update P given R, W, A, B

By removing all the irrelevant terms with respect to P , the
objective function of problem (16) is written as follows:

n∑
i,j=1

(
∥fi − fj∥22Pij + σP 2

ij

)
s.t. 0 ≤ Pij ≤ 1,Pen = en,

(30)

where fi = W Txi, and it can be decoupled into n indepen-
dent subproblems, and each of them has the following form

min
pi

n∑
j=1

(
∥fi − fj∥22Pij + σP 2

ij

)
s.t. 0 ≼ pi ≼ 1,pT

i en = 1,

(31)

By defining dij = − 1
2σ∥fi−fj∥22, problem (31) can be further

written as follows

min
pT
i

1

2
∥dT

i − pT
i ∥22 s.t. 0 ≼ pT

i ≼ 1,pT
i en = 1, (32)

where pi and di here are the i-th rows of P and D,
respectively. Its Lagrangian function is

min
pT
i

1

2
∥dT

i − pT
i ∥22 − µ(pT

i en − 1)− ηpT
i , (33)

where µ and η are the Lagrangian multipliers. To achieve
better performance and accelerate the computation time, it
is favorable to learn a k-sparse pi, i.e. only the k-nearest

neighbors are preserved to be locally connected. Based on the
KKT condition, problem (33) has a closed form solution:

pi = max(di + z, 0), z =
1

k
(1−

k∑
j=1

d̆ij), (34)

where d̆i is a sorted vector of di in an ascending order. More-
over, for each subproblem we have the following inequality

k

2
di,k − 1

2

k∑
j=1

di,j < σi ≤
k

2
di,k+1 −

1

2

k∑
j=1

di,j . (35)

Because we expect that only k nearest neighbors are used
to construct the local information of the data, i.e. exactly k
non-zero values in σi, σi has to satisfy the above inequality,
and the mean value of non-zero entries in each row of P is
approximate to k (k = 15 in this work). Therefore, the value
of σ could be set to

σ =
1

n

n∑
i=1

k

2
di,k+1 −

1

2

k∑
j=1

di,j

 . (36)

Based on the above analysis, an iterative optimization
method is developed to solve the objective function of (16),
and the main optimization steps of MSRL are summarized
in Algorithm 2. The convergence criterion used in our ex-
periments is that the number of iterations is up to 30 or
|Γt+1−Γt|/Γt < 0.001, where Γt is the value of the objective
function in the t-th iteration. Once the regression matrix
W is obtained, we directly use W to obtain the learned
data representations of training and test samples, respectively.
Finally, we employ the simple nearest-neighbor (NN) classifier
to make final recognition.

D. Semi-supervised Extension of MSRL

In this subsection, we show that the proposed MSRL can
be easily extended to its semi-supervised case. There is a set
of labeled data with l instances X = [x1, · · · ,xl], and the
unlabeled data with u instances X̂ = [x̂1, · · · , x̂u]. All the
available data are denoted as X̃ = [X, X̂] ∈ ℜd×N and N =
l + u. It is notable that the labels of X are used to train
the marginal target R. The resulting semi-supervised MSRL
(SMSRL) can be developed as:

min
W ,A,B,R,P

∥W TX −R∥2F + γ∥W −AB∥2F + β∥W ∥2F

+ λ

N∑
i,j=1

(
∥W T x̃i −W T x̃j∥22Pij + σP 2

ij

)
(37)

s.t. Rili −max
j ̸=li

Rij ≥ C,ATA = I,

0 ≤ Pij ≤ 1,Pen = en,

where P ∈ ℜN×N , and x̃i denotes the i-th sample from the
whole dataset, i.e. X̃ . Specifically, the first term is devoted to
learn discriminative mapping W from the labeled data X to
the marginalized targets R, while the second and third terms
are the same as MSRL for structural predictor learning. The
last term is designed to construct adaptive probabilistic graph
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Algorithm 2. Solving the MSRL Optimization Problem

Input: Feature Matrix X; Label Matrix Y ;
Parameters λ, β, γ, k and s.

1: Set iter = 0; Initialize W using basic LSR, R = Y , and
set A,B,P as identity matrices;

2: repeat
3: B = ATW ;
4: G = XXT + λXLXT + (β + γ)I;
5: W = (G− γAAT )−1XRT ;
6: [U,Σ, V T ] = svd(WBT );
7: A = UV T ;
8: Update the target matrix R column-by-column using Algorithm 1;
9: Update the i-th row of P , i.e. pi, row-by-row using Eqn.(34);
10: iter = iter + 1;
11: until Convergence criterion satisfied
Output: Converged W,A,B,T,P .

on both labeled and unlabeled data. It is notable that the se-
mantic labels of the labeled samples are employed to optimize
the marginalized targets R. SMSRL employs the adaptive
graph regularization term to build the relations between the
labeled and unlabeled data, which is a common strategy to
build the semi-supervised model. Specifically, SMSRL takes
full consideration of all the available samples X̃ based on the
graph regularization. The optimization problem (37) can be
solved by Algorithm 2, where the graph Laplacian matrix is
constructed on all the available samples X̃ , and R is learned
on the labeled samples X .

V. ALGORITHM ANALYSIS

A. Convergence Analysis

As shown in Algorithms 1 and 2, we can easily get the
following proposition.
Proposition 1: The optimization problem (16) is convex with
respect to W,A,B,R and P , respectively.

Proof. The detailed proof of Proposition 1 is moved to Ap-
pendix A for better flow of the paper.

Based on Proposition 1, the proposed iterative algorithm can
be demonstrated to converge to a unique optimal solution, and
the following theorem is satisfied.
Theorem 1: The iterative optimization algorithm shown in
Section IV monotonically decreases the value of the objective
function (16) in each iteration.

Proof. The detailed proof of Theorem 1 is moved to Appendix
B for better flow of the paper.

Based on Theorem 1, it is easy to see that the developed
iterative method in Algorithm 2 can converge to a local
optimal solution. In the experiments, we demonstrate that our
algorithm can efficiently converge within 30 iterations.

B. Computational Complexity Analysis

In this section, we briefly analyze the computation com-
plexity of the proposed iterative optimization method for the
MSRL model. In each iteration, the cost of calculating B
needs O(dns), where d, n and s are the dimension of features,
the number of labeled images and the dimension of the latent
subspace, respectively. The complexity of computing G is

O(dn2 + d2n). We notice that the construction of W is
computed with the cost of O(dn2 + d2n + dnc), while the
complexity of obtaining A is O(d2s + ds2). As shown in
Algorithm 1, R is computed with the cost of O(nc). Finally,
the probabilistic matrix P is obtained with the time complexity
of O(cn2). Thus, the total cost of our MSRL method for each
iteration is O(dnc + dn2 + d2n) on account of s < d and
s < n in our experiments.

It is worth pointing out that our MSRL can converge within
30 iterations, which will be testified in the experiment section.
So, the computational cost of our method is acceptable. By
comparison, we briefly analyze the computational complexities
of some compared methods as follows. For SRC [5], it should
iteratively optimize (N -n) independent l1-norm regularization
problems [5], [7], [10], and its computational complexity is
about O((N −n)(n2 +nd), which is slower than our method
due to more iterations. RPCA and LRSI include two phases,
i.e. learning representations and SRC based classification,
which are much slower than our method. For some accelerated
methods such as SLRM, LLC, LRC and CRC, they need to
compute the representation coefficients of the training samples,
and then calculate the representation residuals of each class
for classification, which have similar computational costs of
our method. The computation complexities of LRLR, LRRR
and SLRR are about O(dn+ n2d), which is little faster than
our method. For RLSL, DKSVD and LC-KSVD, they have
similar or little higher computation complexity of our method
in a single iteration, but the number of iterations are much
larger than ours. The low-rank and sparse representation based
methods such as SRRS, CBDS and LatLRR need at least
O(n3 + n2d), because they simultaneously computes SVD of
feature matrix and solves simple sparse optimization problem.
In generally, the overall computation burden of our MSRL is
lower than these low-rank and sparse representation methods.

C. Connection to some previous algorithms

In this subsection, we establish the relationships between
our method and some related data representation learning
algorithms, including LSR, DLSR [29], SVM [32], LRRR
[24], and the semi-supervised low-rank mapping (SLRM)
method [34].

1) Comparison of MSRL, LSR and DLSR: From the objec-
tive function of LSR in (1), we can see that LSR aims at learn-
ing a regression matrix W and enforces the regression results
to approximate a zero-one matrix, i.e. 0 and 1 respectively
represent the false and true classes. On the other hand, DLSR
using (2) projects the original features to a positive-negative
matrix, that is, the positive and negative values denote the true
and false classes, respectively. However, both LSR and DLSR
utilize the conventional zero-one matrix as their regression
targets, which can not precisely estimate the regression results.
In contrast, our MSRL method directly learns the regression
targets for each data point, and enforces the regression results
to have relative marginal characteristics. That is, the values
of the true classes are larger than that of the false classes
with a certain criterion. Therefore, MSRL not only guarantees
the flexible but marginal regression targets but also can more
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accurately measure the regression results in comparison with
LSR and DLSR.

Moreover, other important advantages are that MSRL uses
the discriminative features in the discriminant latent subspace
to predict the regression targets instead of the original feature.
The adaptive graphical structure is employed to avoid the over-
fitting deficiency. As a result, MSRL is essentially a favorable
and discriminative learning method for data representation.

2) Comparison of MSRL and Hinge Loss in SVM: The
hinge loss in SVM is closely related but different to the
marginal regression targets learning process. Based on the
variables’ definitions in (24) and (25), the hinge loss is

δi = max{1 + max
j ̸=m

Fij − Fim, 0}, (38)

The classifiers are formulated as

min
W

n∑
i=1

δi + α∥W ∥2F , or min
W

n∑
i=1

δ2i + α∥W ∥2F , (39)

which are l1-SVM and l2-SVM, respectively. It is observed
that the above functions are the modification of the empirical
loss functions other than redefinition of target matrix of LSR.
Therefore, the discriminative target learning in MSRL can
be considered as a reformulation of the hinge loss for data
representation. Moreover, MSRL is better than SVM. The
main reason is that, in addition to marginalized regression
target learning, MSRL optimizes the projection matrix W by
exploring the linear structural predictor learning and improves
the compactness of the projected data with the adaptive
probabilistic graph regularization.

3) Comparison of SMSRL and SLRM: Since SLRM is
a semi-supervised method, we compare our SMSRL with
SLRM. SLRM identifies the favorable mapping function by
collaboratively exploiting the low-rank constraint to capture
the correlations between labels and constructing a manifold
regularization to preserve the geometric structure of data. The
objective function of SLRM is

∥W T X̃ − Y ∥2F + β∥W ∥∗ + λtr(∥W TXL̄XTW ), (40)

where Pij = exp
(

−∥xi−xj∥2

ϱ2

)
is the similarity matrix defined

in their paper, and L̄ is defined similarly to (18). ∥W ∥∗ is the
nuclear norm of W , which is a convex relaxation of low-
rank minimization. Based on the observation [24]: ∥W ∥∗ =
minW=AB

1
2 (∥A∥2F + ∥B∥2F ), the proposed MSRL problem

(37) can be reformulated as

Γ = ∥W T X̃ −R∥2F + γ∥W ∥∗ + β∥W ∥2F
+ λ(tr(∥W TXLXTW ) + σ∥P ∥2F ) s.t. ATA = I,

Rili −max
j ̸=li

Rij ≥ C, 0 ≤ Pij ≤ 1,Pen = en.

(41)

It is easy to see that the distance metric Q is fixed prior without
any adaptation, while P in SMSRL is an automatically self-
tuning metric in each iteration. Moreover, without considering
the adaptive graph-embedding regularization, the first three
terms in (41) have the following proposition.
Proposition 2: The first three terms of the objective function
(41) lead to a discriminative linear regression problem with
an elastic-net regularization of singular values.

Proof. The detailed proof of Proposition 2 is moved to Ap-
pendix C for better flow of the paper.

It is known that the elastic-net regularization is a robust
model. Therefore, SLRM is a special case of SMSRL, while
SMSRL is more discriminative than SLRM.

VI. EXPERIMENTAL RESULTS

To evaluate the proposed MSRL framework, we compare it
with 23 state-of-the-art data representation learning methods.
We empirically validate the superiority of our method on
four different but related applications, including object, face,
texture and scene recognition. The promising experimental
results show that our MSRL and SMSRL are better than
some representative data representation learning algorithms.
Furthermore, extensive experimental analyses demonstrate that
our method is of a well-balanced tradeoff between the discrim-
inative capability, efficiency and effectiveness.

A. Experimental Settings

We conduct comparative experiments with the state-of-the-
art data representation learning algorithms, including low-rank
linear regression (LRLR) [24], LRRR [24], sparse low-rank
regression (SLRR) [24], SVM [32], capped SVM (CapSVM)
[33], CRC [18], LRC [20], LLC [19], SRC [5], ProCRC [38],
CBDS [27], DLSI [26], discriminative sparse representation
method (DSRM) [6], RLSL [39], DLSR [29], RPCA [21],
LatLRR [22], SLRM [34], DKSVD [12], LC KSVD [13],
and manifold-inspired representation learning algorithm, i.e.
principal coefficients embedding (PCE) [16] and LDA [4]. It
should be noted that SLRM [34] is a semi-supervised method.
To show the indispensability of the adaptive graph learning,
we remove the adaptive graph term, and denote the remaining
part as MSRL-G. All the algorithms are repeated ten times
with different random splits of training and test data.

To make fair comparisons, we re-implemented all the
compared methods by using the released codes from the
corresponding authors. We search the best parameters for
each algorithm by tenfold cross-validation, or directly use
the suggested parameter settings. Specifically, LatLRR is used
for feature extraction, and then we utilize the obtained latent
features to fit model (1) followed by the 1-NN classifier. For
RPCA, we first use RPCA to preprocess the samples, and then
employ SRC for classification [26]. For LLC, the numbers of
local bases for LLC and LLC* are set to 15 and 30 respective-
ly, which are similar to [13], [19]. In addition, the one-versus-
rest rule is exploited in SVM to learn training parameters,
and the LibSVM [32] toolbox is employed for recognition.
The important cost parameter C in SVM is selected by cross
validation from the candidate set {0.001, 0.01, 0.1, 1.0, 10.0}.
In our experiments, the values of γ in both MSRL and
SMSRL are simply fixed with 0.05. To fairly compare different
algorithms, the optimal parameters are cross-validated from
the candidate set {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1.0} for
achieving optimal recognition accuracies. In order to obtain
better recognition results, in the training phase of SMSRL,
all the training samples used for MSRL are treated as the
labeled samples of SMSRL, and the test samples are used
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TABLE I: Recognition accuracies (mean±std %) of different
methods on the PFID database.

Alg. 6 8 10 12
LRLR 41.13±1.18 47.03±2.42 49.41±1.96 52.81±2.62
LRRR 49.62±1.91 52.90±1.12 53.18±1.44 55.49±2.29
SLRR 49.44±2.07 52.95±1.08 54.36±1.40 56.09±1.85
SVM 52.02±1.31 57.44±1.61 60.51±1.69 63.03±2.05

CapSVM 55.71±1.71 60.57±2.54 64.63±0.92 66.83±1.12
CRC 52.54±1.74 55.54±1.71 57.34±1.01 59.54±2.71
LLC 54.88±1.99 57.98±1.70 59.41±2.35 62.08±2.12
LRC 48.83±1.74 53.61±1.80 56.66±1.22 59.29±2.43
SRC 52.09±1.04 55.18±1.29 56.89±1.58 59.13±2.36

ProCRC 53.83±1.34 54.10±1.39 55.74±2.08 56.01±1.27
CBDS 56.78±2.11 60.92±1.72 62.30±1.65 64.56±1.63
DLSI 53.19±1.50 56.36±1.35 57.98±1.65 61.96±2.30

DSRM 53.42±1.39 58.52±1.68 62.70±1.42 66.39±1.21
DLSR 56.49±1.75 61.43±1.36 64.47±2.58 65.85±2.69
RLSL 58.11±1.09 62.26±1.58 66.50±1.39 68.66±1.79
RPCA 49.41±1.81 59.48±2.11 62.30±1.56 64.24±2.02

LatLRR 51.89±1.71 56.79±1.65 60.27±1.61 65.50±2.95
SLRM 54.77±1.87 59.57±0.85 61.56±1.73 63.44±2.77

DKSVD 51.64±1.04 54.03±1.68 56.31±1.91 59.55±1.36
LC KSVD 52.43±1.78 55.74±1.05 58.47±1.57 60.84±1.25

LDA 40.72±1.21 43.61±1.86 46.11±1.85 51.44±1.29
PCE 51.09±1.83 53.93±1.75 56.35±1.04 59.56±2.05

SRRS 52.24±2.05 56.80±1.97 60.23±2.44 62.84±1.21
MSRL-G 56.69±2.22 62.00±1.56 64.52±1.58 66.94±2.21

MSRL 61.48±1.86 67.02±1.79 70.12±1.38 73.11±1.95
SMSRL 62.69±1.42 67.93±1.56 70.86±1.30 74.45±2.13

as the unlabeled samples of SMSRL. That is, the labels of
all the training samples and the training and test features are
simultaneously used as the inputs to train SMSRL. Specif-
ically, the semantic labels of all the training samples are
simultaneously employed to learn discriminative marginalized
regression targets, which is the same as MSRL. Meanwhile,
the adaptive probabilistic graph structure is trained to improve
the compactness of the learned training and test representations
on the projected semantic space.

We implement recognition experiments on diverse publicly
available image datasets of four different types: 1) Object
datasets including the Pittsburgh food image dataset (PFID)
[40] and COIL-100 [41]; 2) Face image datasets consisting of
Extended YaleB [42], CMU PIE [43] and AR [44]; 3) Texture
image datasets including KTH-TIPS [45] and CurRet [46];
4) The Fifteen-scene categories recognition dataset [47] for
scene recognition. For each dataset, we randomly select several
images from each class as training samples, and the remaining
images are used for testing. All the experiments1 are conducted
ten times, and the average accuracies and standard deviations
are reported.

B. Experiments for Object Recognition

To demonstrate the effectiveness of our method for handling
the object recognition problem, we evaluate the performance
of the proposed MSRL and SMSRL methods on the PFID
and COIL-100 datasets. Descriptions of the two datasets are
as follows:

The Pittsburgh Food Image Dataset (PFID): The PFID
dataset is a released food recognition dataset, which is com-

1The MATLAB codes of our MSRL and SMSRL has been released at
http://www.yongxu.org/lunwen.html.

TABLE II: Recognition accuracies (mean±std %) of different
methods on the COIL-100 database.

Alg. 10 15 20 25
LRLR 66.12±0.73 70.59±0.64 72.79±0.82 74.47±0.70
LRRR 65.98±0.94 70.11±0.65 73.22±0.71 75.64±0.59
SLRR 68.17±0.76 71.85±0.59 73.81±0.70 73.69±0.53
SVM 79.25±0.52 84.80±0.62 88.15±0.47 90.79±0.65

CapSVM 83.29±0.50 88.27±0.63 91.49±0.36 93.44±0.43
CRC 76.20±0.61 81.36±0.42 84.33±0.59 86.33±0.52
LLC 81.63±0.82 86.93±0.49 90.25±0.46 92.50±0.50
LRC 84.23±0.60 89.32±0.50 91.88±0.55 93.71±0.41
SRC 78.33±0.61 85.10±0.62 87.43±0.50 90.89±0.65

ProCRC 74.35±1.00 82.82±0.55 87.48±0.26 90.85±0.29
CBDS 71.46±0.54 78.56±0.37 79.28±0.36 82.65±0.89
DLSI 79.79±0.57 87.87±0.39 91.56±0.47 93.74±0.51

DSRM 82.97±0.48 88.23±0.52 91.10±0.42 92.93±0.37
DLSR 84.59±0.55 88.07±0.50 90.19±0.39 92.09±0.46
RPCA 82.56±0.65 88.31±0.87 91.72±0.31 93.53±0.35
RLSL 84.89±0.62 88.95±0.30 91.36±0.47 93.01±0.44

LatLRR 83.27±0.74 88.30±0.37 91.18±0.32 93.24±0.38
SLRM 83.72±0.75 88.86±0.22 91.56±0.36 93.80±0.45

DKSVD 78.99±0.67 83.80±0.54 86.51±0.59 88.53±0.31
LC KSVD 79.99±0.65 85.15±0.56 87.94±0.60 90.13±0.36

LDA 53.55±0.44 69.56±0.35 79.13±0.91 84.53±0.60
PCE 78.61±0.31 84.86±0.65 88.08±0.42 90.81±0.77

SRRS 84.42±0.66 89.81±0.59 91.71±0.68 93.48±0.73
MSRL-G 86.48±0.48 91.18±0.34 94.06±0.37 95.74±0.44

MSRL 88.40±0.59 93.32±0.57 95.87±0.41 97.15±0.30
SMSRL 93.71±0.40 96.50±0.31 97.70±0.49 98.38±0.31

posed of fast food images and videos from chain restaurants.
A subset of 61 categories of food items (e.g., McDonalds Big
Mac) are used in our experiments. Each category of food is
from three different restaurants, and each restaurant provides
six images in six different viewpoints. That is, each category
of food has eighteen images. We can see that this dataset is
very difficult for recognition, and we employ the gray-scale
PRICoLBP [48] for feature extraction. We randomly choose
6, 8, 10, 12 images of each category as training samples, and
the rest of images are used for testing.

The COIL-100 Dataset: The COIL-100 dataset includes dif-
ferent views of 100 objects under different lighting conditions.
Each image is resized to 32×32 pixels and the challenge of this
dataset is evaluated on alternative viewpoints. We randomly
select 10, 15, 20, 25 images per object as training samples,
and the remaining images are treated as test samples.

Each experiment is repeated 10 times, and the experimen-
tal results on the PFID and COIL-100 datasets of different
methods are shown in Tables I and II, respectively. From both
tables, it is easy to find that our methods can achieve the
highest recognition results in comparison with all the com-
pared algorithms. In most cases, the semi-supervised algorithm
SMSRL can obtain higher results than MSRL. Compared with
the related methods such as DSRM, SLRM and PCE, our
method still has remarkable superiorities on this dataset. Our
SMSRL also has obvious superiority in comparison with the
semi-supervised SLRM. For Table II, when the number of
the training samples is 20, at least 3.7% performance gain is
obtained in comparison with the rest of algorithms, and our
method achieves the encouraging average recognition accuracy
as high as 97.15% when using 25 training samples.
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TABLE III: Recognition accuracies (mean±std %) of different
methods on the Extended YaleB database.

Alg. 10 15 20 25
LRLR 82.72±0.89 86.21±0.74 85.37±0.94 87.67±0.86
LRRR 83.22±1.52 87.26±1.45 89.29±0.71 90.59±0.80
SLRR 83.77±1.55 88.37±1.46 90.34±0.55 91.33±0.67
SVM 80.88±1.82 89.35±1.24 92.74±0.87 95.07±0.57

CapSVM 87.98±1.33 93.54±0.99 94.98±0.93 96.93±0.79
CRC 86.22±1.34 92.43±0.77 94.99±0.50 96.73±0.49
LLC 79.82±0.46 88.63±0.31 91.52±0.48 94.20±0.58
LRC 82.67±1.52 89.50±0.82 91.86±0.77 93.53±0.74
SRC 85.23±1.12 93.45±0.68 95.35±0.62 96.18±0.50

ProCRC 86.18±0.82 92.52±0.68 95.36±0.67 97.57±0.51
CBDS 85.59±1.44 93.18±1.19 95.53±0.80 96.46±0.62
DLSI 87.01±0.63 92.71±0.58 94.26±0.33 96.16±0.55

DSRM 89.08±0.84 92.95±0.78 94.62±0.59 96.54±0.46
DLSR 86.44±0.97 93.60±0.73 94.78±0.71 95.84±0.42
RLSL 88.41±0.78 93.16±0.50 94.66±0.18 95.56±0.30
RPCA 86.21±0.26 90.52±0.44 93.52±0.61 95.41±0.36

LatLRR 83.65±2.03 90.40±1.19 93.59±1.00 95.85±0.58
SLRM 83.70±1.47 89.92±1.19 93.10±0.97 95.28±0.86

DKSVD 83.67±0.77 85.58±0.32 89.50±0.26 92.34±0.71
LC KSVD 84.15±1.79 89.59±0.93 93.24±0.69 94.34±0.72

LDA 83.19±1.13 86.14±1.06 89.00±1.63 91.54±1.28
PCE 84.78±1.50 90.69±1.27 93.49±0.68 95.57±0.85

SRRS 83.53±1.63 91.54±1.16 93.83±0.86 95.97±0.95
MSRL-G 86.92±1.16 92.96±0.92 95.50±0.91 97.23±0.68

MSRL 89.89±1.05 94.97±0.99 96.88±0.58 98.09±0.47
SMSRL 93.58±1.21 97.29±0.78 98.41±0.29 99.09±0.22

C. Experiments for Face Recognition

We apply MSRL and SMSRL to three real face recognition
scenarios to evaluate the performance of our method.

The Extended YaleB Dataset: The extended YaleB dataset
contains 2414 front face images from 38 individuals and each
individual has around 64 images under various illumination
conditions.The main challenge of this set is to deal with
varying illumination conditions and expressions.

The CMU PIE Dataset: The CMU PIE face dataset includes
41,368 face images of 68 subjects. Our experiments are
performed on the images under five poses (C05, C07, C09,
C27 and C29), in which each subject has 170 images.

The AR Dataset: The AR face dataset contains about 4, 000
color face images of 126 subjects, which consist of the
frontal faces with different illuminations, disguises and facial
expressions. Each subject provides 26 images captured in two
separate sessions under different conditions. In this experimen-
t, we select a subset including 2600 images from 50 female
and 50 male subjects. Similar to the implementation in [13],
we project all the images onto 540-dimension with a randomly
generated matrix from a zero-mean normal distribution.

For the Extended YaleB and CMU PIE datasets, we ran-
domly select 10, 15, 20, 25 images for each subject as the
training set, and regard the rest of the images as the test
set. For the AR dataset, we randomly select 8, 11, 14, 17
images of each subject as the training set, and the remaining
images as the test set. The average recognition results on these
datasets are respectively shown in Tables III, IV and V. It can
be observed that the proposed MSRL and SMSRL methods
achieve the highest recognition rates, which also verify that our
methods are effective enough to yield promising recognition
results. Specifically, SMSRL achieves about 3% improvement

TABLE IV: Recognition accuracies (mean ± std %) of differ-
ent methods on the CMU PIE database.

Alg. 10 15 20 25
LRLR 79.89±1.17 83.70±0.57 85.73±0.58 86.80±0.45
LRRR 82.55±0.84 86.98±0.83 89.19±0.65 90.23±0.84
SLRR 83.93±0.73 87.65±0.70 89.61±0.69 90.52±0.82
SVM 77.95±1.06 86.66±0.75 90.70±0.63 92.66±0.53

CapSVM 85.99±0.68 91.12±0.52 93.46±0.35 94.72±0.29
CRC 85.51±0.54 90.43±0.48 92.62±0.45 93.73±0.39
LLC 80.46±0.40 86.62±0.57 91.90±0.25 93.27±0.36
LRC 75.42±0.92 85.61±0.62 90.17±0.52 92.65±0.38
SRC 83.98±0.71 89.97±0.66 91.55±0.39 92.92±0.38

ProCRC 87.37±0.97 91.97±0.32 93.76±0.32 94.70±0.16
CBDS 81.74±0.92 88.33±0.82 91.37±0.55 93.21±0.66
DLSI 82.54±0.51 87.56±0.58 90.60±0.36 93.25±0.61

DSRM 85.60±0.61 90.94±0.46 93.08±0.35 94.49±0.52
DLSR 85.21±0.61 91.06±0.45 92.53±0.45 93.68±0.29
RLSL 87.25±0.64 91.43±0.41 93.22±0.37 94.38±0.33
RPCA 81.69±0.36 84.26±0.41 88.24±0.32 91.06±0.12

LatLRR 81.74±0.79 84.68±0.55 88.36±0.63 91.83±0.48
SLRM 84.24±0.73 88.60±0.62 91.74±0.63 93.24±0.53

DKSVD 81.83±0.86 88.86±0.73 91.77±0.34 93.69±0.29
LC KSVD 83.62±0.67 89.66±0.68 92.44±0.34 93.95±0.31

LDA 77.78±0.53 81.86±0.70 83.86±0.88 90.07±0.73
PCE 83.87±0.54 87.76±0.50 88.69±0.52 88.98±0.33

SRRS 80.57±1.47 87.27±0.86 91.01±0.61 93.16±0.35
MSRL-G 85.47±0.85 91.19±0.68 93.18±0.44 94.61±0.31

MSRL 89.51±0.62 93.39±0.47 95.02±0.27 95.96±0.22
SMSRL 90.23±0.63 93.78±0.37 95.49±0.28 96.25±0.23

TABLE V: Recognition accuracies (mean±std %) of different
methods on the AR database.

Alg. 8 11 14 17
LRLR 76.75±1.37 88.93±0.86 93.02±0.63 94.92±0.68
LRRR 90.16±0.55 93.34±0.67 94.54±0.56 95.19±0.69
SLRR 88.61±0.57 92.23±0.72 93.89±0.46 95.45±0.84
SVM 80.74±1.58 85.59±1.15 92.00±0.78 95.21±0.95

CapSVM 89.25±0.75 94.37±0.76 96.37±0.63 97.71±0.64
CRC 86.48±0.92 91.67±0.62 94.29±0.53 95.59±0.62
LLC 81.01±1.17 86.03±1.29 89.71±1.03 92.18±0.95
LRC 77.17±1.53 85.62±0.97 90.68±1.07 93.98±1.04
SRC 83.74±0.99 89.59±1.10 93.14±0.61 95.19±0.80

ProCRC 89.31±0.62 93.52±0.50 95.48±0.49 96.61±0.60
CBDS 88.68±0.86 93.19±0.44 95.19±0.41 96.31±0.46
DLSI 78.78±1.02 85.93±1.01 89.92±0.76 93.17±0.97

DSRM 88.96±1.11 93.13±0.92 94.58±1.00 95.78±1.44
DLSR 87.76±1.42 93.68±0.88 94.36±0.62 95.18±0.46
RLSL 90.03±0.86 93.00±0.81 96.28±0.57 97.94±0.56
RPCA 77.32±1.43 84.39±1.33 88.82±0.90 92.62±0.77

LatLRR 87.85±1.36 93.71±0.87 95.49±0.47 96.13±0.50
SLRM 86.18±1.35 92.64±0.98 95.97±0.43 96.78±0.57

DKSVD 83.86±1.03 90.66±0.98 93.95±0.88 95.91±0.78
LC KSVD 89.24±0.82 92.43±0.80 93.47±0.80 96.08±0.95

LDA 79.47±1.01 88.93±1.25 90.50±0.89 92.11±0.58
PCE 87.60±0.86 91.65±0.78 94.08±0.66 96.00±0.58

SRRS 84.20±1.14 90.17±1.25 94.11±1.24 96.17±0.68
MSRL-G 84.40±0.79 91.00±1.01 94.67±1.00 96.33±0.74

MSRL 91.97±0.81 95.33±0.64 96.83±0.46 97.89±0.65
SMSRL 95.11±0.65 97.30±0.66 98.28±0.44 98.64±0.42

in comparison with other algorithms on different datasets.

D. Experiments for Texture Recognition

In this experiment, we evaluate the performance of the
proposed algorithm on two widely used texture datasets, i.e.
the KTH-TIPS and CurRet datasets. The KTH-TIPS dataset
includes 10 static texture categories, and each image is cap-
tured at nine scales, three different poses, and under three
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TABLE VI: Recognition accuracies (mean±std %) of different
methods on the KTH-TIPS database.

Alg. Accuracy Alg. Accuracy
LLC 95.32±0.87 CapSVM 95.55±1.28

LLC∗ 95.71±1.44 ProCRC 93.83±1.45
LRC 90.41±2.26 RLSL 95.20±0.91
CRC 95.44±1.43 LDA 92.93±2.36

LRLR 82.90±1.45 CBDS 95.44±1.22
LRRR 82.78±1.28 DLSR 95.27±1.40
SLRR 82.12±2.22 SRC 93.77±0.99
RPCA 95.20±1.37 DKSVD 95.85±0.87
PCE 95.76±0.57 DSRM 95.63±1.23

LC KSVD 96.01±1.15 SLRM 93.51±1.54
SRRS 95.56±1.11 MSRL-G 93.83±1.05
DLSI 96.00±2.00 MSRL 97.31±1.20

LatLRR 94.93±1.73 SMSRL 97.88±0.91

TABLE VII: Recognition accuracies (mean±std %) of differ-
ent methods on the CUReT database.

Alg. Accuracy Alg. Accuracy
LLC 95.63±0.87 CapSVM 96.94±0.33

LLC∗ 96.03±0.94 ProCRC 91.92±0.50
LRC 95.27±0.30 RLSL 96.90±0.34
CRC 92.28±0.43 LDA 91.93±0.45

LRLR 88.40±0.71 CBDS 88.36±0.39
LRRR 88.17±0.77 DLSR 95.80±0.43
SLRR 89.90±0.81 SRC 93.06±0.41
RPCA 93.67±0.61 DKSVD 92.59±0.58
PCE 90.64±0.44 DSRM 94.86±0.49

LC KSVD 92.75±0.51 SLRM 95.89±0.30
SRRS 96.12±0.28 MSRL-G 98.34±0.21
DLSI 96.20±0.12 MSRL 98.72±0.18

LatLRR 95.86±0.29 SMSRL 98.80±0.19

different illuminations. Each category has 81 samples.The
CUReT data set is another popularly used texture recognition
dataset. A subset containing 61 categories with 92 samples in
each category is employed in our experiments. All the images
are collected under different viewpoint directions and various
illumination conditions. To obtain compact features of these
texture images on both datasets, we utilize the PRICoLBP
features [48] to construct our data representation learning
model. For both texture datasets, we randomly select 40 sam-
ples per category to form the training set, and the remaining
images are regarded as the test samples. The experimental
results using different methods are summarized in Table VI
and Table VII, respectively. As can be seen in both tables, our
MSRL and SMSRL methods achieve competitive performance
on both KTH-TIPS and CurRet datasets. It is worth noting
that the proposed MSRL and SMSRL methods learn marginal
representations and outperform the state-of-the-art algorithms,
which reveal their strong capabilities in texture recognition.

E. Experiments for Scene Recognition

Scene recognition is a classic problem in computer vision.
To evaluate the performance of the proposed MSRL and
SMSRL methods in scene recognition, we implement our
method on the fifteen scene categories dataset to demonstrate
its effectiveness. This dataset contains totally 4485 indoor and
outdoor scene images from 15 categories, such as livingroom
and outdoor street. Instead of using the original features,
we employ the features presented in [13] for recognition.

TABLE VIII: Average recognition accuracies (%) of different
methods on the Fifteen scene categories database.

Alg. Accuracy Alg. Accuracy
LLC 89.2 CapSVM 96.6
LRC 91.9 ProCRC 97.5
CRC 92.3 RLSL 98.1

LRLR 94.4 LDA 92.7
SRC 91.8 CBDS 95.7

LRRR 87.2 DLSR 95.9
SLRR 89.5 SVM 93.6
RPCA 92.1 DSRM 97.6
PCE 96.4 Lazebnik [47] 81.4

LC KSVD 92.9 DKSVD 89.1
SRRS 97.9 MSRL-G 97.9
DLSI 92.4 MSRL 98.5

LatLRR 91.5 SMSRL 99.0

(a) Original features (b) Learned representation

Fig. 2: t-SNE visualization of (a) the original features and
(b) the learned representation obtained by using MSRL on
Extended YaleB, respectively. It is obvious that semantically
similar categories of our method are distributed closely and
otherwise faraway. From (b), we can clearly see that there are
38 categories.

Following the experimental protocols used in [13], [19], we
randomly select 100 images of each category as training
samples, and treat the rest of images as testing samples. To
make fair comparisons, some experimental results are directly
cited from literature [13]. Table VIII shows the average ex-
perimental accuracies by different methods. It is doubtless that
our methods maintain the best performance and outperform all
other algorithms. It should be noted that SMSRL achieves an
overwhelmingly high average accuracy of 99.0%. Moreover,
we notice that the proposed MSRL method can achieve very
high recognition results for each category, and the worst
recognition result is still as high as 96%, which indicates that
our method is suitable to handle the scene recognition task.

F. Experimental Analysis

From the above eight tables, we can see that the proposed
MSRL and SMSRL achieve superior recognition performance
on four different applications. Based on these experimental
results, a number of interesting points are achieved as follows.
(1) In most cases, the results demonstrate that, compared
to the state-of-the-art data representation learning algorithms,
our methods are consistently better on all the eight datasets.
This testifies our claim that MSRL is capable of learning
discriminative visual representations and improving the recog-
nition accuracies. To clearly illustrate the discrimination of the
learned representations, we randomly choose three images per
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(a) SLRR (b) DLSR (c) SLRM (d) MSRL

Fig. 1: 2D visualization of learned data representations of SLRR, DLSR, SLRM and MSRL.
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(h) Fifteen Scene (#Tr 100)

Fig. 3: The performance evaluation (%) of MSLR versus parameters λ and β on eight datasets.
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Fig. 4: Convergence curves of the proposed method on eight different databases.

subject from the Extended YaleB dataset, and 2D visualization
of learned data representations are shown in Fig. 1. Obviously,
the margins between different classes using our MSRL are
highlighted in comparison with the related algorithms, i.e.
SLRR, DLSR and SLRM. Therefore, it is reasonable that
the proposed MSRL gains better performance. (2) Compared
with the linear regression methods, i.e. LRLR, LRRR, SLRR

and SLRM, MSRL and SMSRL make significant improve-
ments. This manifests the necessity and advantages of learning
predicted targets from the robust latent subspace and the
adaptive probabilistic graph structure. The results also provide
quantitative supports to our argument that MSRL encourages
the optimal hidden information to be saturated in the learned
data representations. (3) SLRM and SMSRL are better than
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sparse and low-rank representation based methods as well as
the dictionary learning methods. The main reason is that they
focus on exploring the best reconstruction of the original data,
which does not mean the best discrimination. This result clear-
ly demonstrates that the discriminative information coded by
the marginal constraint, and the graph regularizer contributes
positively in improving intra-class compactness. Fig. 2 shows
the t-SNE visualization of the original and learned features,
respectively. (4) DLSR, MSRL and SMSRL achieve promising
results due to the relaxation of the regression targets. However,
the marginal targets of MSRL and SMSRL are directly learned
from the data other than the binary regression targets, and the
graph structure adaptation provides a preferable solution of
addressing the over-fitting issue. This proves that both proper-
ties are important for learning marginal visual representations.
(5) SLRM, DSRM, MSRL and SMSRL are superior to the
other methods in general, which indicates the effectiveness
of the graph structure learning on the predicted targets such
that visually similar data can implicitly share common targets
and are scattered together. (6) In general, the semi-supervised
methods have clear tendency to achieve better recognition
results. This demonstrates that interpolation of the unlabeled
information on dynamical graph structure design can enhance
the subtle distinction of the learned representations on the
projected semantic space. In the training stage, MSRL only
enforces that when two instances from the training samples
are close in the same semantic space, they should have
a much higher possibility to be connected in the adaptive
probabilistic graph learning. However, the test samples are
not taken into account of the learning process, but directly
take WX̂ as the test representation. In contrast, based on the
experimental settings, SMSRL not only ensures the optimal
mapping matrix from the training samples to discriminative
target space, but also confirms the probabilistic connectivity
between the training and test samples in the learned new
representations using the adaptive probabilistic connectivity
on the whole dataset. Among the global graph embedding
learning processing, the connective relationship between the
learned training representation WX and testing representation
WX̂ is fully considered, which is the main reason why
SMSRL is superior to MSRL.

Overall, SLRM and SMSRL learn marginal visual represen-
tations by seamlessly incorporating the robust latent subspace
learning, probabilistic graph structure adaptation and flexibly
marginalized regression construction into a unified framework.
It is observed that SLRM and SMSRL can achieve the state-
of-the-art performance, which shows that the learned represen-
tations of our methods are distinctive and discriminative for
recognition.

G. Parameter Sensitivity

In this section, we examine the parameter sensitivity of
MSRL, and there are several regularization parameters to
be tuned in our proposed framework. In our experiments,
the dimensionality s of the latent subspace should be lower
than the full-rank of the data to preserve the low-rank fit-
ness, and is tuned in the range of [c/2, c) where c is the

number of classes. The experimental results show that the
value of s does not greatly influence the outputs, and we
empirically set the value of s near to c-1. For simplicity,
we directly set the parameter γ=0.05 in our experiments.
Here we concentrate on discussing the influence of parameters
λ and β by examining the variability of MSRL recogni-
tion performance with different values of both parameter-
s. These two parameters are tuned from the candidate set
{0.00001, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1.0, 10.0}, and the
recognition results versus the values of parameters on eight
datasets are shown in Fig. 2, where Tr(#) means the number
of training samples per class. It can be easily observed that
the performance variations are different on respective datasets,
but our MSRL method is not sensitive to the values of
the regularization parameters when they are not very large.
This also indicates that the probability graphical structure
adaptation and the elastic-net regularization are both critical
and indispensable to marginal data representation learning.

H. Convergence Study

Based on Proposition 1 and Theorem 1, the proposed model
in (16) is convex with respect to each variable, and the conver-
gence property of the proposed optimization algorithm is the-
oretically guaranteed. In this section, we experimentally verify
convergence nature of the proposed optimization algorithm on
eight datasets. The convergence curves are shown in Fig. 3. We
notice that Algorithm 2 performs well in terms of convergence,
and the objective function of MSRL monotonically decreases
with respect to the number of iterations. It is apparent that for
all the eight datasets, the objective function of MSRL becomes
relatively stable within 30 iterations, which also justifies the
effectiveness of the proposed optimization algorithm.

I. Time Comparison

To explicitly show the computational complexity of the
proposed method, we compare the efficiency of competing
methods. The Matlab codes of all algorithms are obtained
from the corresponding authors, and all algorithms were
implemented in MATLAB on a 3.30-GHz CPU Windows 7
machine with 8 GB memory. As an example, we perform
experiments on the Extended YaleB dataset, and randomly
select 25 images per subject as training samples and the rest
as testing samples. The run time comparisons of different
algorithms with respect to the training and test time are listed
in Table IX. It should be pointed out that LLC, LRC, CRC,
SRC and DSRM have no training time. Table IX manifests
that the proposed MSRL is very efficient as the seventh
fastest algorithm among the 22 competing methods, while
the performance of MSRL is greatly superior to the faster
algorithms. Consequently, the proposed MSRL framework not
only achieves highest recognition accuracies but also enjoys
high efficiency in comparison with the competing methods.

VII. CONCLUSION

In this paper, an effective marginal visual representation
learning framework was proposed based on marginal re-
gression targets learning, robust latent subspace construction
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TABLE IX: Run time comparisons of different algorithms (s).

Alg. Train Test Alg. Train Test
LLC — 42.83 PCE 1.39 0.30
LRC — 59.50 DLSI 9.29 44.41
CRC — 43.39 CBDS 153.90 1.71
SRC — 899.55 DLSR 5.56 0.54

CapSVM 6.43 0.26 LDA 3.95 0.32
LRLR 3.74 0.13 DKSVD 76.72 0.53
LRRR 2.58 0.14 RLSL 65.44 4.23
SLRR 20.44 0.16 LC KSVD 64.50 0.84
RPCA 89.43 0.61 SLRM 10.97 6.81

LatLRR 128.80 0.63 DSRM — 92.67
SRRS 205.18 2.90 MSRL 7.07 0.20

and probabilistic graph structure adaptation. It seamlessly
incorporates the local and global consistencies on regression
targets into a common framework that tackles the problem
of data representation. The marginal targets learning from
data provide sufficient flexibilities of fitting regression tasks.
Moreover, the underlying latent information of data is explored
to make targets prediction. The learned data representations are
more informative and discriminative in comparison with other
representations mentioned in this paper. The resulting problem
was efficiently solved by an iterative optimization strategy,
in which its convergence property is demonstrated from both
theoretical and experimental perspectives. In addition, the
experimental results on eight datasets have demonstrated that
our method outperforms the state-of-the-art data representation
algorithms, which shows the efficacy of the proposed MSRL
method. On the other hand, our method can be easily extended
to the problem of semi-supervised data representation learning,
where information of the unlabeled samples is embedded
into the graph structure learning. Thus, the proposed MSRL
framework of marginal visual representation learning can be
used for both supervised and semi-supervised discriminative
data representation learning.
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