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Abstract

Deep learning techniques have obtained much attention in image denoising. However, deep learn-
ing methods of different types deal with the noise have enormous differences. Specifically, dis-
criminative learning based on deep learning can well address the Gaussian noise. Optimization
model methods based on deep learning have good effect on estimating of the real noise. So far,
there are little related researches to summarize different deep learning techniques for image de-
noising. In this paper, we make such a comparative study of different deep techniques in image
denoising. We first classify the (1) deep convolutional neural networks (CNNs) for additive white
noisy images, (2) deep CNNs for real noisy images, (3) deep CNNs for blind denoising and (4)
deep CNNs for hybrid noisy images, which is the combination of noisy, blurred and low-resolution
images. Then, we analyze the motivations and principles of deep learning methods of different
types. Next, we compare and verify the state-of-the-art methods on public denoising datasets in
terms of quantitative and qualitative analysis. Finally, we point out some potential challenges and
directions of future research.

Keywords: Deep learning, Image denoising, Real noisy images, Blind denoising, Hybrid noisy
images, A survey

1. Introduction

Digital image devices have widely applied in many fields, such as individual recognition
[106, 49, 192], and remote sensing [43]. The captured image is a degraded image from the la-
tent observation, where the degradation processing is affected by some factors, such as lighting
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and noise corruption [227, 218]. Specifically, the noise is generated in the processing of transmis-
sion and compression from the unknown latent observation. Thus, at first, it is very essential to
use image denoising techniques to remove the noise and recover the latent observation from the
given degraded image.

Image denoising techniques have attracted much attention in recent 20 years [198, 200]. As the
pioneer, sparse-based methods have been successfully applied in image denoising [39]. Specifi-
cally, a non-locally centralized sparse representation (NCSR) method used nonlocal self-similarity
to optimize the sparse method, and obtain great performance for image denoising [42]. To reduce
the computational cost, a dictionary learning method was used to quickly filter the noise [46]. To
recover the detailed information of the latent clean image, priori knowledge (i.e. total variation
regularization) can smooth the noisy image to deal with the corrupted image [147]. More compet-
itive methods for image denoising can be found in [136, 237, 221], including the Markov random
field (MRF) [162], weighted nuclear norm minimization (WNNM) [62], learned simultaneous
sparse coding (LSSC) [136], cascade of shrinkage fields (CSF) [162], trainable nonlinear reaction
diffusion (TNRD) [31] and gradient histogram estimation and preservation (GHEP) [237].

Although most of the above methods have achieved reasonably good performance in image
denoising, they suffer from the following drawbacks [132]: (1) optimization methods for the test
phase, (2) manual setting parameters, and (3) a certain model for single denoising task. Recently,
owing to the flexible architectures, deep learning techniques have strong abilities to effectively
overcome the drawbacks of these methods [132].

The original deep learning technologies were found in image processing in 1980s [53] and
were used in image denoising in 1980s by Zhou et al. [34, 235]. That is, the proposed denois-
ing work first used a neural network with both of the known shift-invariant blur function and
additive noise to recover the latent clean image. After that, the neural network used weighting
factor to remove complex noise [34]. To handle high computational cost, a feed-forward network
was proposed to make a tradeoff between denoising efficiency and performance [175]. The feed-
forward network can smooth the given corrupted image by Kuwahara filters, which was similar to
convolutions. Also, this research proved that the mean squared error (MSE) acted as loss func-
tion was not unique for neural networks [41, 61]. Subsequently, more optimization algorithms
were used to accelerate the convergence of the trained network and promote the denoising per-
formance [15, 40, 54]. Combining maximum entropy and primadual Lagrangian multipliers to
enhance expressive ability of neural networks was a good tool for image denoising [14]. To fur-
ther make a tradeoff between fast execution and denoising performance, the greedy algorithm and
asynchronous algorithm were applied in neural networks [148]. Alternatively, designing novel
network architecture was very competitive to eliminate the noise, such as increasing the depth or
changing activation function [167]. Cellular neural networks (CENNs) mainly used nodes with
templates to obtain the averaging function and effectively suppress the noise [167, 145]. Although
this proposed method can obtain good denoising result, it need manually set the parameters of the
templates. To resolve this problem, the gradient descent was developed [216, 103]. To a certain
degree, these deep techniques can improve the denoising performance. However, these networks
were not easy to add new plug-in units, which limited their applications in the real world [52].

Base on the reasons above, convolutional neural networks (CNNs) were proposed [127, 108].
The CNN as well as LeNet had a real-world application in hand-written digit recognition [102].
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However, due to the following drawbacks, they were not widely applied into computer systems
[98]. Firstly, deep CNNs can generate vanishing gradients. Secondly, activation functions (i.e.
sigmoid [139] and tanh [81]) resulted in high computational cost. Thirdly, the hardware platform
did not support the complex network. That was broken by AlexNet in 2012 ImageNet Large-Scale
Visual Recognition Challenge (ILSVRC) [98]. After that, deep network architectures (e.g. VGG
[166] and GoogleNet [173]) were widely applied in fields of image [193, 187], video [124, 112],
nature language processing [45] and speech processing [229], especially low-level computer vision
[153, 179].

Deep network was first applied in image denoising in 2015 [115, 201]. The proposed network
need not manually set parameters for removing the noise. After then, deep network were widely
applied in speech [230] and image restoration [138]. Mao et al. [138] used multiple convolutions
and deconvolutions to suppress the noise and recover the high-resolution image. For addressing
multiple low-level tasks via a model, a denoising CNN (DnCNN) [221] consisting of convolu-
tions, batch normalization (BN) [78], rectified linear unit (ReLU) [143] and residual learning (RL)
[68] was proposed to deal with image denoising, super-resolution, and JPEG image deblocking.
Taking into account between denoising performance and speed, a color non-local network (CNL-
Net) [105] combined non-local self-similarity (NLSS) and CNN to efficiently remove color-image
noise.

In terms of blind denoising, a fast and flexible denoising CNN (FFDNet) [223] presented dif-
ferent noise levels and the noisy image patch as input of denoising network to improve denosing
speed and process blind denoising. For handling unpaired noisy images, a generative adversarial
network (GAN) CNN blind denoiser (GCBD) [28] used two phases to resolve this problem. The
first phase was used to generate the ground truth. The second phase utilized obtained ground truth
into the GAN to train the denoiser. Alternatively, a convolutional blind denoising network (CBD-
Net) [64] removed the noise from the given real noisy image by two sub-networks. One was in
charge of estimating the noise of the real noisy image. The other was used to obtain latent clean
image. For more complex corrupted images, a deep plug-and-play super-resolution (DPSR) [225]
method was developed to estimate blur kernel and noise, and recover a high-resolution image.
There were also other important researches have done in the field of image denoising in recent
years, however, there was only few reviews to summarize the deep learning technique in image
denoising [180]. Although Ref. [180] referred to a lot of work, it lacked more detailed classi-
fication information of deep learning for image denoising. To give an example, related work of
unpaired real noisy images were not covered. To this end, we have a aim to provide a compre-
hensive overview of deep learning for image denoising both applications and method analysis.
That referred to all tables and visual figures can make readers more quickly understand this filed.
Finally, we empirically provide some discussion about the state-of-the-arts for image denoising,
which can be further expanded to the challenges and potential research directions in the future.
Outline of this survey is shown in Fig. 1.

This overview covers more than 200 papers about deep learning for image denoising in recent
years. The main contributions in this paper can be summarized as follows.

1. The overview illustrates the effect of deep learning methods on the whole field of image
denoising.

2. The overview summarizes the solutions of deep learning techniques for different types
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Figure 1: Outline of the survey. It consists of four parts, including basic frameworks, categories, performance com-
parison, challenges and potential directions. Specifically, categories comprise additive white noisy images, real noisy
images, blind denoising and hybrid noisy images.

of noise (i.e. additive white noise, blind noise, real noise and hybrid noise) and analyzes the
motivations and principles of these methods in image denoising. Finally, we evaluate the denoising
performance of these methods in terms of quantitative and qualitative analysis.

3. The overview points out some potential challenges and directions of deep learning for image
denoising.

The rest of this overview is organized as followed.
Section 2 introduces the popular deep learning frameworks for image applications. Section

3 presents the main categories of deep learning in image denoising, that is, additive white noisy
images, real noisy images, blind denoising and hybrid noisy images. And we compare and analyze
the differences of these methods. Section 4 gives the performance comparison of these denoising
methods. Section 5 discusses the challenges and potential research directions in the future. Section
6 offers the conclusions.
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2. Foundation frameworks of deep learning methods for image denoising

This section offers an illustration of deep learning, including the notions, main network frame-
works (techniques), and hardware and software, which is basis of deep learning techniques for
image denoising in this survey.

2.1. Machine learning methods for image denoising
Machine learning methods comprise supervised and unsupervised learning methods in general.

The supervised learning methods [119, 195] use the given label to make obtained features closer
to target for learning parameters and training the denoising model. To give an example, a given
denoising model y = x + µ, where x, y and µ represent the given clean image, noisy image
and additive Gaussian noise (AWGN) of standard deviation σ, respectively. From the equation
above and Bayesian knowledge, it can be seen that the learning of parameters of the denoising
model relies on pair {xk, yk}Nk=1, where xk and yk denote the kth clean image and noisy image,
respectively. Also, N is the number of noisy images. This processing can be expressed as xk =
f(yk, θ,m), where θ is parameters and m denotes the given noise level.

Unsupervised learning methods [104] use given training samples to find patterns rather than
label matching and finish specific task, such as unpair real low-resolution images [214]. The
recently proposed Cycle-in-Cycle generative adversarial network (CinCGAN) used two steps to
recover a high-resolution image. The first step estimated the high-resolution image as label. The
second step exploited the obtained label and loss function to train the super-resolution model.

2.2. Neural networks for image denoising
Neural networks are on the basis of machine learning methods, which are pioneer of deep

learning techniques [161]. Most of neural networks comprise neurons, inputX , activation function
f , weights W = [W 0,W 1, ...,W n−1] and biases b = [b0, b1, ..., bn]. The activation functions such
as Sigmoid [139, 93] and Tanh [81, 47] can convert the linear input into non-linearity through W
and b as follows.

f(X;W ; b) = f(W TX + b). (1)

It is noted that if the neural network has multiple layers, it is regarded as multilayer perceptron
(MLP) [22]. Also, the middle layers are treated as hidden layers beside the input and output layers.
This process can be expressed as

f(X;W ; b) = f(W nf(W n−1...f(W 0X + b0)...bn−1) + bn), (2)

where n is the final layer of the neural network. To make readers easier understand the neural
network, we use a visual example to show the principle of the neural network as shown in Fig. 2.

The two-layer fully connected neural network includes two layers: hidden layer and output
layer (input layer is not regarded as a layer of neural network in general). There are parameters
to be defined: x1, x2, x3 and o1 represent inputs and output of this neural network, respectively.
w1, w2, ..., w11, w12 and b1, b2, b3, b4 are the weights and biases, respectively. To give an example,
output of one neuron h1 via Eqs. (3) and (4) is obtained as follows:

f(zh1) = f(w1x1 + w4x2 + w7x3 + b1). (3)
5
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Figure 2: Two-layer neural network.

o(h1) = f(zh1). (4)

First, the output of the network o1 is obtained. Then, the network uses back propagation (BP)
[73] and loss function to learn parameters. That is, when the loss value is within specified limita-
tion, the trained model is considered as well trained. It should be noted that if the number of the
layers of a neural network is over 3, it is also referred to as a deep neural network. Specifically,
stacked auto-encoder (SAR) [72] and deep belief network (DBN) [16, 71] are typical deep neural
networks. They used stacked layers in an unsupervised manner to train the models and obtain good
performance. However, these networks were not simple to implement and need a lot of manual
settings to achieve an optimal model. Owing to this reason, end-to-end connected networks, espe-
cially CNN, were proposed [207]. CNNs have wide applications in the field in image processing,
especially image denoising, and they are presented in detail in next section.

2.3. Convolutional neural networks for image denoising
Due to plug-and-play network architectures, CNNs have obtained great success in image pro-

cessing [220, 131]. As pioneers of CNNs, LeNet [102] used convolutional kernels of different
sizes to extract features and obtain good performance in image classification. However, due to the
activation function, Sigmoid, LeNet had a slow convergence speed, which was a shortcoming for
real applications.

After LeNet, the proposed AlexNet [98] was a milestone for deep learning. Its success had the
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following reasons. Firstly, graphics processing unit (GPU) [139] provided strong computational
ability. Secondly, random clipping (i.e. dropout) can solve the overfitting problem. Thirdly,
ReLU [143] can improve the speed of stochastic gradient descent (SGD) rather than Sigmoid
[20]. Fourthly, data augmentation method can further address the overfitting problem. Although
AlexNet has obtained good performance, it could result in high memory due to big convolutional
kernels. That limited applications in the real world, such as smart cameras. After that, deeper
network architectures with small filters were preferred to improve the performance and reduce
computational costs from 2014 to 2016. Specifically, VGG [166] used stacked more convolutions
with of small kernel size to win the ImageNet large scale visual recognition (LSVR) challenge
2014 via stacked more convolutions with of small kernels. To give an example, we use Fig. 3 to
visually show the network architecture.
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Figure 3: Network architecture of VGG.

On the top of deeper networks, increasing the width was very popular. GoogleNet [173] in-
creased the width to improve the performance for image applications. Moreover, the GoogleNet
transformed a big convolutional kernel into two small convolution kernels to reduce the number
of parameters and computational cost. Additionally, the GoogLeNet used the inception module
[118] as well as Inception 1. Its visual network figure was descripted in Fig. 4.

        convolutions

Previous layer

Filter concatenation

1 1

3 3 5 5 1 1

1 1 1 1 3 3

 convolutions  convolutions

 convolutions  convolutions  max pooling

 convolutions

Figure 4: Network architecture of GoogLeNet (Inception 1).

Although VGG and GoogLeNet methods are effective for image applications, they are faced
with the following drawbacks: (1) if network is very deep, this network may result in vanishing or
exploding gradients. (2) If network is very wide, it may encounter overfitting phenomenon. For
overcoming these problems, ResNet [68] was proposed in 2016. That is, each block was added
residual learning operation in the ResNet to improve the performance of image recognition, which
also won ImageNet LSVR 2015. Here we use Fig. 5 to visually show the idea of the residual
learning.

Since 2014, deep networks have been widely used in the fields of image application in real
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Figure 5: Network architecture of ResNet.

world. However, captured images of many applications, such as real noisy images are not enough,
deep CNNs have poor performance of image applications. Generative Adversarial Networks
(GAN) [156] was developed based on this reason. The GAN had two networks: generative and
discriminative networks. The generative network (also referred to as generator) is used to generate
samples, according to input samples. The other network (also as well as discriminator) is used
to judge truth of both input samples and generated samples. Two networks are adversarial. It is
noted that if the discriminator can accurately distinguish real samples and generate samples from
generator, the trained model is regarded to finishing. The network architecture of the GAN can be
seen in Fig. 6. Due to the strong ability of constructing supplement training samples, the GAN
is very effective for small sample tasks, such as face recognition [182] and complex noisy image
denoising [28].

Real images Discriminator

Generator Fake imagesNoise

Update

Figure 6: Network architecture of GAN.
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2.4. Hardware and software of deep learning techniques
One reason of the success of deep learning is GPU. The GPU uses CUDA [146], OpenCL

[170] and Cudnn [33] to obtain stronger parallel computing ability, which exceeds 10-30 times
than CPU in speed. The CPU consists of a NVIDIA consumer (i.e. GTX 680, GTX 980, GTX
1070, GTX 1070Ti, GTX1080, GTX 1080Ti, RTX 2070, RTX 2080 and RTX 2080Ti), NVIDIA
(i.e. Tesla K40c, Tesla K80, Quadro M6000, Quadro GP100, Quadro P6000 and Tesla V100) and
AMD (i.e. Radeon Vega 64 and FE) [99].

Another important factor of deep learning techniques is software. The software can provide
some interfaces to call GPU and allow the users to implement functions, according to their de-
mands. Further, the popular software packages are presented as follows:

(1) Caffe [85] based on C++ is clear and efficient for deep learning. It provides C++, Python
and Matlab interfaces, which can also run on both CPU and GPU, respectively. It is widely used
for object detection task. However, the Caffe requires developers to master strong C++ basic
knowledge.

(2) Theano [17] is a compiler of math expressions to deal with large-scale neural networks.
The Theano provides Python interface and it is used in image super-resolution, denoising and
classification in general.

(3) Matconvnet [185] offers Matlab interface. It is usually utilized in image classification,
denoising and super-resolution, and video tracking. However, it requires users to expertly master
Matlab.

(4) Tensorflow [1] is relatively high-order machine learning libraries. It is also faster than
Theano for compilation. The Tensorflow offers C++ and Python interfaces. It is suitable to object
detection, image classification, denoising and super-resolution and so on.

(5) Keras [36] based on Tensorflow and Theano is implemented by Python. The Keras offers
Python interface. It can be applied in image classification, object detection, image resolution,
image denoising and action recognition.

(6) Pytorch [152] is implemented by Python. The Pytorch presents Python interface. Addition-
ally, it is employed in image classification, object detection, image segment, action recognition,
image super-resolution, image denoising and video tracking.

3. Deep learning techniques in image denoising

3.1. Deep learning techniques for additive white noisy-image denoising
Due to insufficiency of real noisy images, additive white noisy images (AWNI) have been

widely used to train the denoising model [91]. The AWNI includes Gaussian, Poisson, Salt, Pep-
per and multiplicative noisy images [48]. Moreover, there are a lot of deep learning techniques
(i.e. CNN/NN, the combination of CNN/NN and common feature extraction methods and the
combination of optimization method and CNN/NN) for AWNI denoising.

3.1.1. CNN/NN for AWNI denoising
Automatic feature extraction methods are important to reduce computational costs for im-

age applications [206, 159, 129]. CNNs based on this reason are developed for image denoising
[140, 120]. Zhang et al. [221] proposed a model as well as DnCNN to deal with multiple low-level
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Table 1: CNN/NN for AWNI denoising.

References Methods Applications Key words (remarks)
Zhang et al. (2017) [221] CNN Gaussian image denoising, super-resolution and JPEG deblocking CNN with residual learning, and BN for image denoising
Wang et al. (2017) [189] CNN Gaussian image denoising CNN with dilated convolutions, and BN for image denoising

Bae et al. (2017) [12] CNN Gaussian image denoisng, super-resolution CNN with wavelet domain, and residual learning (RL) for image restoration
Jin et al. (2017) [90] CNN Medical (X-ray) image restoration Improved Unet from iterative shrinkage idea for medical image restoration

Tai et al. (2017) [174] CNN Gaussian image denoisng, super-resolution and JPEG deblocking CNN with recursive unit, gate unit for image restoration
Anwar et al. (2017) [11] CNN Gaussian image denoisng CNN with fully connected layer, RL and dilated convolutions for image denoising

McCann et al. (2017)] [91] CNN Inverse problems (i.e. denoising, deconvolution, super-resolution) CNN for inverse problems
Ye et al. (2018) [208] CNN Inverse problems(i.e. Gaussian image denoising, super-resoluion) Signal processing ideas guide CNN for inverse problems

Yuan et al. (2018) [213] CNN Hyper-spectral image denoising CNN with multiscale, multilevel features techniques for hyper-spectral image denoising
Jiang et al. (2018) [87] CNN Gaussian image denoising Multi-channel CNN for image denoising

Chang et al. (2018) [25] CNN Hyper-spectral image (HSI) denoising, HIS restoration CNN consolidated spectral and spatial coins for hyper-spectral image denoising
Jeon et al. (2018) [82] CNN Speckle noise reduction from digital holographic images Speckle noise reduction of digital holographic image from Multi-scale CNN

Gholizadeh-Ansari et al. (2018) [56] CNN Low-dose CT image denoising, X-ray image denosing CNN with dilated convolutions for low-dose CT image denoising
Uchida et al. (2018) [184] CNN Non-blind image denoising CNN with residual learning for non-blind image denoising
Xiao et al. (2018) [194] CNN Stripe noise reduction of infrared cloud images CNN with skip connection for infrared-cloud-image denoising
Chen et al. (2018) [30] CNN Gaussian image denoisng, blind denoising CNN based on RL and perceptual loss for edge enhancement
Yu et al. (2018) [212] CNN Seismic, random, linear and multiple noise reduction of images A survey on deep learning for three applications
Yu et al. (2018) [211] CNN Optical coherence tomography (OCT) image denoising GAN with dense skip connection for optical coherence tomography image denoising
Li et al. (2018) [107] CNN Ground-roll noise reduction An overview of deep learning techniques on ground-roll noise

Abbasi et al. (2018) [2] CNN OCT image denoising Fully CNN with multiple inputs, and RL for OCT image denoising
Zarshenas et al. (2018) [217] CNN Gaussian noisy image denoising Deep CNN with internal and external residual learning for image denoising

Chen et al. (2018) [26] CNN Gaussian noisy image denoising CNN with recursive operations for image denoising
Panda et al. (2018) [149] CNN Gaussian noisy image denoising CNN with exponential linear units, and dilated convolutions for image denoising

Sheremet et al. (2018) [163] CNN Image denoising from info-communication systems CNN on image denoising from info-communication systems
Chen et al. (2018) [27] CNN Aerial-image denoising CNN with multi-scale technique, and RL for aerial-image denoising

Pardasani et al. (2018) [150] CNN Gaussian, poisson or any additive-white noise reduction CNN with BN for image denoising
Couturier et al. (2018) [37] NN Gaussian and multiplicative speckle noise reduction Encoder-decoder network with multiple skip connections for image denoising

Park et al. (2018) [151] CNN Gaussian noisy image denoising CNN with dilated convolutions for image denoising
Priyanka et al. (2019) [155] CNN Gaussian noisy image denoisng CNN with symmetric network architecture for image denoising

Lian et al. (2019) [171] CNN Poisson-noise-image denoising CNN with multi scale, and multiple skip connections for Poisson image denoising
Tripathi et al. (2018) [183] CNN Gaussian noisy image denoising GAN for image denoising
Zheng et al. (2019) [233] CNN Gaussian noisy image denoising CNN for image denoising
Remez et al. (2018) [158] CNN Gaussian and Poisson image denoising CNN for image denoising

vision tasks, i.e. image denoising, super-resolution and deblocking through CNN, batch normal-
ization [78] and residual learning techniques [68]. Wang et al. [189], Bae et al. [12] and Jifara
et al. [90] also presented a residual learning and deeper CNN for image denoising, respectively.
However, deeper CNN technique depended on deeper layer rather than shallow layer, which re-
sulted in long-term dependency problem. To tackle this problem, a lot of signal-base methods
were proposed. Tai et al. [174] exploited recursive and gate units to adaptively mine more accu-
rate features and recover clean images. Inspired by low-rank Hankel matrix in low-level vision, Ye
et al. [208] provided convolution frames to explain the connection between signal processing and
deep learning by convolving local and nonlocal bases. For solving insufficient noisy images (i.e.
hyperspectral and medical images), a lot of recent works try to extract more useful information by
improved CNN [25, 70, 211, 125]. For example, Yuan et al. [213] combined deep CNN, residual
learning and multiscale knowledge to remove the noise from hyperspectral-noisy images. How-
ever, using these operations may increase computational costs and memory consumption, which
was not optimistic for real applications. For addressing the phenomenon, Gholizadeh et al. [56]
utilized dilated convolutions [55] to enlarge receptive field and reduce depth of network at no bring
extra cost for CT image denoising. Lian et al. [171] proposed a residual network via multi-scale
cross-path concatenation to suppress the noise. It is known from most of methods above relied
on improved CNNs to deal with the noise. Thus, designing network architectures is important for
image denoising [151, 107].

Changing network architectures has the following ways in general [212, 135]: (1) fusing fea-
tures from multiple inputs of a CNN. (2) Changing the loss function. (3) Increasing depth or
width of the CNN. (4) Adding some auxiliary plug-ins into CNNs. 5) Using skip connections or

10



cascade operations into CNNs. Specifically, the first way included three types: 1) different parts
of one sample as multiple inputs from different networks [2]. 2) Different perspectives for the
one sample as input, such as multiple scales [82, 27]. 3) Different channels of a CNN as input
[87]. The second way mainly designed different loss function according to characteristic of na-
ture images to extract more robust features [9]. For example, Chen et al. [30] jointed Euclidean
and perceptual loss functions to mine more edge information for image denoising. The third way
enlarged receptive field size to improve denoising performance via increasing the depth or width
of network [184, 217, 163]. The fourth way applied plug-ins, i.e. activation function, dilated
convolution, fully connected layer and pooling operations to enhance the expressive ability of the
CNN [149, 155, 150]. The final way utilized skip connections [194, 26, 37, 11] or cascade opera-
tions [171, 32] to provide complementary information for deep layer in CNN. Table 1 provides an
overview of CNNs for AWNI denoising.

3.1.2. CNN/NN and common feature extraction methods for AWNI denoising
Feature is used to represent the whole image in image processing, and it is important for ma-

chine learning [116, 130, 204]. However, deep learning technique is black box, and cannot choose
features, which cannot guarantee obtained features are the most robust [164, 191]. Motivated
by this reason, common feature extraction method embedded into CNN was conducted in im-
age denoising. That can be divided into five categories: weak edge-information, non-linear, high
dimensional and non-salient noisy images, and high computational costs.

For weak edge-information noisy images, CNN with transformation domain method including
Guan et al. [63], Li et al. [109], Liu et al. [123], Latif et al. [100] and Yang et al. [203] was very
popular to remove the noise. Specifically, in [123], it used wavelet method and U-net to eliminate
the gridding effect of dilated convolutions on enlarging receptive field for image restoration.

For non-linear noisy images, CNN with kernel method was useful [13, 202]. These methods
had three steps in general [142]. First step used CNN to extract features. Second step utilized
kernel method to convert obtained non-linear features into linearity. Final step exploited the RL to
construct the latent clean image.

For high dimensional noisy images, the combination of CNN and dimensional reduction method
were proposed [196, 65]. For example, Khaw et al. [95] used CNN with principal component anal-
ysis (PCA) for image denoising. This had three phases. First phase used convolution operations
to extract features. Second phase utilized the PCA to reduce the dimension of obtained features.
Final phase employed convolutions to deal with obtained features from the PCA and reconstruct a
clean image.

For non-salient noisy images, signal processing idea can guide CNN to extract salient fea-
tures [83, 92, 157, 2]. Specifically, skip connection operation was a typically operation of signal
processing [92].
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Table 2: CNN/NN and common feature extraction methods for AWNI denoising.

References Methods Applications Key words (remarks)
Bako et al. (2017) [171] CNN Monte Carlo-rendered images denoising CNN with kernel method for estimating noise piexls

Ahn et al. (2017) [7] CNN Gaussian image denoising CNN with NSS for image denoising
Khaw et al. (2017) [95] CNN Impulse noise reduction CNN with PCA for image denoising
Vogel et al. (2017) [186] CNN Gaussian image denoising U-net with multi scales technique for image denoising

Mildenhall et al. (2018) [142] NN Low-light synthetic noisy image denoising, real noise Encoder-decoder with multi scales, and kernel method for image denoising
Liu et al. (2018) [123] CNN Gaussian image denoisng, super-resolution and JPEG deblocking U-net with wavelet for image restoration

Yang et al. (2018) [203] CNN Gaussian image denoisng CNN with BM3D for image denoising
Guo et al. (2018) [65] CNN Image blurring and denoising CNN with RL, and sparse method for image denoising
Jia et al. (2018) [83] CNN Gaussian image denoisng CNN with multi scales, and dense RL operations for image denoising

Ran et al. (2018) [157] CNN OCT image denoising, OCT image super-resolution CNN with multi views for image restoration
Li et al. (2018) [140] CNN Medical image denoising, stomach pathological image denoising CNN consolidated wavelet for medical image denoising
Ahn et al. (2018) [8] CNN Gaussian image denoisng CNN with NSS for image denoising

Xie et al. (2018) [196] CNN Hyper-spectral image denoising CNN with RL, and PCA for low-dose CT image denoising
Kadimesetty et al. (2019) [92] CNN Low-Dose computed tomography (CT) image denoising CNN with RL, batch normalization (BN) for medical image denoising

Guan et al. (2019) [63] CNN Stripe noise reduction CNN with wavelet-image denoising
Abbasi et al. (2019) [2] NN 3D magnetic resonance image denoising, medical image denoising GAN based on encoder-decoder and RL for medical denoising
Xu et al. (2019) [202] CNN Synthetic and real noisy and video denoising CNN based on deformable kernel for image and video denoising

For high computational cost tasks, CNN with nature of image was very effective to decrease
complex [2, 8, 7]. For example, Ahn et al. [7] used CNN with NSS to filter the noise, where
similar characteristics of the given noisy image can accelerate speed of extraction feature and
reduce computational cost.

More detailed information of these methods mentioned are summarized in Table 2.

3.1.3. The combination of optimization method and CNN/NN for AWNI denoising
It is known that machine learning uses optimization techniques [76, 114] and discriminative

learning methods [110, 121] to deal with image applications in general. Although optimization
methods have good performance on different low-level vision tasks, these methods need manual
setting parameters, which were time-consuming. The discriminative learning methods have fast
speed in image restoration. However, they are not flexible for various low-level vision tasks.
To make a tradeoff between efficiency and flexibility, discriminative learning optimization-based
method [141, 18] was presented for image applications, such as image denoising. The CNN with
prior knowledge via regular term of loss function is common method in image denosing [74],
which can mainly divide two categories to filter the noise: 1) improvement of denoising speed. 2)
Improvement of denoising performance.

For improving denoising speed, optimization method cooperated CNN was a good tool to
rapidly find optimal solution in image denoising [35, 51]. For example, a GAN with maximum a
posteriori (MAP) was used to estimate the noise and deal with other tasks, such as image inpainting
and super-resolution [209]. An experience-based greedy and transfer learning strategies with CNN
can accelerate genetic algorithm to obtain a clean image [122]. Noisy image and noise level
mapping were as inputs of CNN, which had faster execution in predicting the noise [178].
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Table 3: The combination of optimization method and CNN/NN for AWNI denoising.

References Methods Applications Key words (remarks)
Hong et al. (2018) [74] CNN Gaussian image denoising Auto-Encoder with BN, and ReLU for image denoising
Cho et al. (2018) [35] CNN Gaussian image denoising CNN with separable convolution, and gradient prior for image denoising
Fu et al. (2018) [51] CNN Salt and pepper noise removal CNN with non-local switching filter for salt and pepper noise

Yeh et al. (2018) [209] CNN Image denoising super-resolution and inpainting GAN with MAP for image restoration
Liu et al. (2018) [122] CNN Medical image denoising, computed tomography perfusion for image denoising CNN with genetic algorithm for medical image denoising

Tassano et al. (2019) [178] CNN Gaussian image denoisng CNN with noise level, upscaling, downscaling operation for image denoising
Heckel et al. (2018) [69] CNN Image denoisng CNN with deep prior for image denoising

Jiao et al. (2017) [89] CNN Gaussian image denoisng, image inpainting CNN with inference, residual operation for image restoration
Wang et al. (2017) [188] CNN Image denoising CNN with total variation for image denoising

Li et al. (2019) [113] CNN Image painting CNN with split Bregman iteration algorithm for image painting
Sun et al. (2018) [172] CNN Gaussian image denoisng GAN with skip-connections, and ResNet blocks for image denoising
Zhi et al. (2018) [234] CNN Gaussian image denoising GAN with multiscale for image denoising
Du et al. (2018) [44] CNN Gaussian image denoising CNN with wavelet for medcial image restoration

Liu et al. (2019) [126] CNN Gaussian image denoising, real noisy image denoising, rain removal Dual CNN with residual operations for image restoration
Khan et al. (2019) [94] CNN Symbol denoising CNN with quadrature amplitude modulation for symbol denoising

Zhang et al. (2019) [228] CNN Image Possian denoising CNN with variance-stabilizing transformation for poisson denoising
Cruz et al. (2018) [38] CNN Gaussian image denoising CNN with nonlocal filter for image denoising
Jia et al. (2019) [84] CNN Gaussian image denoising CNN based on a fractional-order differential equation for image denoising

For improving the denoising performance, CNN combined optimization methods to make
noisy image smooth [69, 58, 89]. CNN with total variation (TV) reduced the effect of noise pixels
[188]. Spliting Bregman iteration algorithm and CNN [113] can enhance pixels through image
depth to obtain the latent clean image. A dual-stage CNN with feature matching can better recover
the detailed information of the clean image, especially noisy images [172]. The GAN with nearest
neighbor had good effect between noisy and clean images, and filtered the noisy image [234].
Wavefront coding jointed CNN to enhance pixels of latent clean image via transform domain
[44]. Additionally, there are other excellent denoising methods as shown in [126, 94, 59]. Table
3 shows that detailed information of the combination of optimization method and CNN/NN in
AWNI denoising.

3.2. Deep learning techniques for real noisy image denoising
The main focus of real applications on deep learning for image denoising has two kinds: single

end-to-end CNN and the combination of prior knowledge and CNN.
For the first method, changing the network architecture is popular to remove the noise from

the given real corrupted image. Multiscale is very effective for image denoising. For example, a
CNN comprising of convolution, ReLU and RL employed different phase features to enhance the
expressive ability of the low-light image denoising model [177]. To overcome the blurry and false
image artifacts, a dual U-Net with skip connection was proposed for CT image reconstruction
[66]. To address resource-constraint problem, Tian et al. [181] used a dual CNN with batch
renormalization [77], RL and dilated convolutions to deal with real noisy image. According to
the nature of light image, two CNNs utilized anisotropic parallax analysis to generate structural
parallax information for real noisy images [29]. Additionally, using CNN to resolve remote sense
[86] and medical images [96] under low-light condition is very effective [88]. To extract more
detailed information, recurrent connections were used to enhance the representative ability to deal
with corrupted image in the real world [57, 231]. To deal with unknown real noisy images, a
residual structure was utilized to facilitate low-frequency features, then, an attention mechanism
can be applied to extract more potential features from channels [10]. From the point of view of
producing the noisy image, imitating cameral pipelines to construct the degradation model was
very effective to filter the real noisy [80]. Detailed information of these researches can be shown
in Table 4.
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Table 4: CNNs for real noisy image denoising.

References Methods Applications Key words (remarks)
Tao et al. (2019) [177] CNN Real noisy image denoising, low-light image enhancement CNN with ReLU, and RL for real noisy image denoising
Chen et al. (2018) [28] CNN Real noisy image denoising, blind denoising GAN for real noisy image denoising
Han et al. (2018) [66] CNN CT image reconstruction U-Net with skip connection for CT image reconstruction

Tian et al. (2018) [181] CNN Gaussian image denoising and real noisy image denoising CNN with BRN, RL and dilated convolutions for image denosing
Chen et al. (2018) [29] CNN Real noisy image denoising CNNs with anisotropic parallax analysis for real noisy image denoising
Jian et al. (2018) [86] CNN Low-light remote sense image denoising CNN for image denoising

Khoroushadi et al. (2019) [96] CNN Medical image denoising, CT image denoising CNN for image denoising
Jiang et al. (2018) [88] CNN Low-light image enhancement CNN with symmetric pathways for low-light image enhancement

Godard et al. (2018) [57] CNN Real noisy image denoising CNN with recurrent connections for real noisy image denoising
Zhao et al. (2019) [231] CNN Real noisy image denoising CNN with recurrent conncetions for real noisy image denoising
Anwar et al. (2019) [10] CNN Real noisy image denoising CNN with RL, attention mechanism for real noisy image denoising

Jaroensri et al. (2019) [190] CNN Real noisy image denoising CNN for real noisy image denoising
Green et al. (2018) [60] CNN CT image denoising, real noisy image denoising CNN for real noisy image denoising
Brooks et al. (2019) [21] CNN Real noisy image denoising CNN with image processing pipeline for real noisy image denoising

For the second method, combining CNN and prior can better deal with both speed and complex
noise task in real noisy image. Zhang et al. [222] proposed to use half quadratic splitting (HQS)
and CNN to estimate the noise from the given real noisy image. After that, Guo et al. [64]
proposed a three-phase denoising method. The first phase used Gaussian noise and in-cameral
processing pipeline to synthesize noisy image. The synthetic and real noisy images are merged to
better represent real noisy images. The second phase used sub-network with asymmetric and total
variation losses to estimate the noise of real noisy image. The third phase exploited original noisy
image and estimated noise to recover the latent clean image. Additionally, CNN with channel
prior was effective for low-light image enhancement [176]. To make readers easily observe, we
use Table 5 to show the detailed information of these researches.

Table 5: CNNs for real noisy image denoising.

References Methods Applications Key words (remarks)
Zhang et al. (2017) [222] CNN Real-noisy image denoising CNN with HQS for real noisy image

Guo et al. (2019) [64] CNN Real-noisy image denoising CNN and cameral processing pipeline for real noisy image
Tao et al. (2019) [176] CNN Low-light image enhancement CNN with channel prior for low-light image enhancement
Ma et al. (2018) [134] CNN Tomography image denoising GAN with edge-prior for CT image denoising
Yue et al. (2018) [215] CNN Real-noisy image denoising, blind denoising CNN with variational inference for blind denoising and real-noisy image denoisng

Song et al. (2019) [169] CNN Real noisy image denoising CNN with dynamic residual dense block for real noisy image denoising
Lin et al. (2019) [117] CNN Real noisy image dneoising GAN with attentive mechanism and noise domain for real noisy image denoising

3.3. Deep learning techniques for blind denoising
In the real world, the image is easily corrupted and noise is complex. Thus, blind denoising

technique is important [128]. At first, FFDNet [223] used noise level and noise as the input of
CNN to train a denoiser for unknown noisy image. Then, scholars proposed a lot of methods to
solve blind denoisng problem. According to the mechanism of image device, Kenzo et al. [79]
utilized soft shrinkage to adjust the noise level for blind denoising. For unpaired noisy image,
using CNNs to estimate noise became a good tool [168]. Yang et al. [205] used known noise
level to train a denoiser, then, they utilized this denoiser to estimate the level of noise. For random
noise attenuation problem, CNN with RL was used to filter complex noise [219, 165]. Addition-
ally, changing network architecture can promote the denoising performance for blind denoising.
Majumdar et al. [137] presented to use auto-encoder to tackle unknown noise. For mixed noise,
cascaded CNNs were effective to remove the AWAG and impulse noise, respectively [4]. To clear
show these denoising methods, Table 6 is designed as follows.
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Table 6: Deep learning techniques for blind denoising.

References Methods Applications Key words (remarks)
Zhang et al. (2018) [223] CNN Blind denoising CNN with varying noise level for blind denoising
Kenzo et al. (2018) [79] CNN Blind denoising CNN with soft shrinkage for blind denoising

Soltanayev et al. (2018) [168] CNN Blind denoising CNN for unpaired noisy images
Yang et al. (2017) [205] CNN Blind denoising CNNs with RL for blind denoising
Zhang et al. (2018) [219] CNN Blind denoising, random noise CNN with RL for blind denoising

Si et al. (2018) [165] CNN Blind denoising, random noise CNN for image denoising
Majumdar et al. (2018) [88] NN Blind denoising Auto-encoder for blind denoising

Abiko et al. (2019) [57] CNN Blind denoising, complex noisy image denoising cascaded CNNs for blind denoising
Cha et al. (2019) [205] CNN Blind denoising GAN for blind image denoising

3.4. Deep learning techniques for hybrid noisy image denoising
In the real world, the captured images were affected by complex environments. Motivated

by that, hybrid-noisy-image denoising techniques were proposed. Li et al. [111] proposed the
combination of CNN and warped guidance to resolve the noise, blur, JPEG compression questions.
Zhang et al. [224] used a model to deal with multiple degradations, such as noise, blur kernel and
low-resolution image. To enhance the raw sensor data, Kokkinos et al. [97] presented residual
CNN with iterative algorithm for image demosaicking and denoising. To handle arbitrary blur
kernels, Zhang et al. [225] proposed to use cascaded deblurring and SISR networks to recover
plug-and-play super-resolution image. These hybrid noisy image denoising methods are presented
in Table 7 as follows.

Table 7: Deep learning techniques for hybrid noisy image denoising.

References Methods Applications Key words (remarks)
Li et al. (2018) [111] CNN Noise, blur kernel, JPEG compression The combination of CNN and warped guidance for multiple degradations

Zhang et al. (2018) [224] CNN Noise, blur kernel, low-resolution image CNN for multiple degradations
Kokkinos et al. (2019) [97] CNN Image demosaicking and denoising Residual CNN with iterative algorithm for image demosaicking and denoising

4. Experimental results

4.1. Datasets
4.1.1. Training Datasets

Training Datasets are divided into two categories: gray- and color- noisy images. Gary noisy
image datasets can be used to train Gaussian denoiser and blind denoiser. They included BSD400
[19] and Waterloo Exploration Database [133]. The BSD400 was composed of 400 images with
format of ‘.png’. And this dataset was cropped into size of 180 × 180 for training a denoisng
model. The Waterloo Exploration Database consisted of 4,744 nature images with format of
‘.png’. Color noisy image included BSD432 [221], Waterloo Exploration Database and polyU-
Real-World-Noisy-Images dataset [197]. Specifically, the polyU-Real-World-Noisy-Images con-
sisted of 100 real noisy images. The 100 real noisy images were obtained by five cameras, such
as Nikon D800, Canon 5D Mark II, Sony A7 II, Cannon 80D and Canon 600D with size of
2, 784× 1, 856.
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4.1.2. Test Datasets
Test Datasets included gray- and color- noisy image datasets. The gray noisy image dataset

was composed of Set12 and BSD68 [221]. The Set12 had 12 different scenes. The BSD68 had
68 different nature images. They were used to test the Gaussian denoiser, denoiser of blind noise.
The color noisy image dataset included CBSD68, Kodak24 [50], McMaster [226], cc [144], DND
[154], NC12 [101], SIDD [3] and Nam [144]. The Kodak24 and McMaster contained 24 and 18
color noisy images, respectively. The cc was composed of 15 real noisy image of different ISO,
i.e. 1,600, 3,200 and 6,400. The DND contained 50 real noisy image and the clean images were
captured by low-ISO images. The NC12 had 12 noisy images and it did not ground-truth clean
image. The SIDD was real noisy images from smart phones, which consisted of 320 image pairs
of noisy and ground-truth images. The Nam included 11 different scenes, where was saved as the
format of ‘JPEG’.

4.2. Experimental results
To verify the denoising performance of some methods above in Section 3, we conduct some

experiments on Set12, BSD68, CBSD68, Kodak24, McMaster, DND, SIDD, Nam, cc and NC12
in terms of quantitative and qualitative evaluations. The quantitative evaluation mainly uses peak
signal to noise ration (PSNR) [75] values of different denoisers to test the denoising effects. Ad-
ditionally, we use running time of denoising of an image to support the PSNR for quantitative
evaluation. The qualitative evaluation uses some visual figures to show the recovered clean im-
ages. The more information of quantitative and qualitative analysis is given in next subsections.

4.2.1. Deep learning techniques for additive white noisy-image denoising
It is known that denoising methods should be compared in the same standard. However, ad-

ditive white noise include Gaussian, Poisson, low-light noise, salt and pepper noise with different
noise levels has big difference. Also, different tools of different methods have influence on denois-
ing results. For the reasons above, we choose typical Gaussian noise to test the denoising perfor-
mance of different methods. Additionally, most of denoising methods use PSNR as quantitative
index. Thus, we use the BSD68, Set12, CBSD68, Kodak24 and McMaster to test the denoising
performance of deep learning techniques for additive white noisy-image denoising as follows. For
quantitative analysis, Table 8 shows that PSNR values of different networks with different noise
levels for gray additive white noisy image denoising. To test the ability of dealing with single gray
additive white noisy image from different networks, the Set12 is used to conduct experiments as
illustrated in Table 9. Table 10 proves the denoising performance of different methods for color
additive white noisy image denoising. Additionally, we use Table 11 to present the efficiency of
different methods for image denoising. For qualitative analysis, we magnify one area in the latent
clean image from different methods as observation. As shown Figs. 7-10, the observed area is
clearer, the corresponding method has better denoising performance.

4.2.2. Deep learning techniques for real-noisy image denoising
For testing the denoising performance of deep learning techniques for real-noisy image, the

public datasets, such as DND, SIDD, Nam and CC are chosen to design experiments. Because
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Table 8: PSNR (dB) of different methods on the BSD68 for different noise levels (i.e. 15, 25 and 50).

Methods 15 25 50
BM3D [39] 31.07 28.57 25.62
WNNM [62] 31.37 28.83 25.87
EPLL [236] 31.21 28.68 25.67
MLP [22] - 28.96 26.03
CSF [162] 31.24 28.74 29.11
TNRD [31] 31.42 28.92 25.97

ECNDNet [179] 31.71 29.22 26.23
RED [138] - - 26.35

DnCNN [221] 31.72 29.23 26.23
DDRN [189] 31.68 29.18 26.21
PHGMS [12] 31.86 - 26.36

MemNet [174] - - 26.35
EEDN [30] 31.58 28.97 26.03

NBCNN [184] 31.57 29.11 26.16
NNC [217] 31.49 28.88 25.25

ELDRN [149] 32.11 29.68 26.76
PSN-K [9] 31.70 29.27 26.32
PSN-U [9] 31.60 29.17 26.30
DDFN [37] 31.66 29.16 26.19
CIMM [11] 31.81 29.34 26.40

DWDN [109] 31.78 29.36 -
MWCNN [123] 31.86 29.41 26.53

BM3D-Net [203] 31.42 28.83 25.73
MPFE-CNN [92] 31.79 29.31 26.34

IRCNN [222] 31.63 29.15 26.19
FFDNet [223] 31.62 29.19 26.30
BRDNet [181] 31.79 29.29 26.36

ETN [188] 31.82 29.34 26.32
NN3D [38] - - 26.42

FOCNet [84] 31.83 29.38 26.50

the ground-truth clean images from the NC12 are unavailable, we give up the NC12. Also, to
make readers better understand these methods, we add some traditional denoising methods such
as BM3D as comparative methods. From Tables 12 and 13, we can see that the DRDN obtains the
best results on the DND and SSID in real-noisy image denoising, respectively. For compressed
noisy images, the AGAN obtains excellent performance as listed in Table 14. For real noisy
images of different ISO values, the SDNet and BRDNet achieve the best and second denoising
performance, respectively, as descripted in Table 15.

4.2.3. Deep learning techniques for blind denoising
It is known that noise is ruleless and complex in the real world. Thus, blind denoising tech-

niques, especially deep learning techniques are developed. For this reason, comparing the denois-
ing performance of different deep learning techniques is very meaningful. The state-of-the-art
denoising methods such as DnCNN, FFDNet, SCNN and G2G1 on the BSD68 and Set12 are cho-
sen to design experiments. As shown in Tables 16 and 17, the FFDNet is superior to other methods
in blind denoising.

4.2.4. Deep learning techniques for hybrid-noisy-image denoising
In the real world, the corrupted image may include multi noise [67], which is very hard to

recover the latent clean image. For resolving this problem, base multi-degradation idea deep
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Table 9: PSNR (dB) of different methods on the Set12 for different noise levels (i.e. 15, 25 and 50).

Images C.man House Peppers Starfish Monarch Airplane Parrot Lena Barbara Boat Man Couple Average
Noise Level σ = 15
BM3D [39] 31.91 34.93 32.69 31.14 31.85 31.07 31.37 34.26 33.10 32.13 31.92 32.10 32.37
WNNM [62] 32.17 35.13 32.99 31.82 32.71 31.39 31.62 34.27 33.60 32.27 32.11 32.17 32.70
EPLL [236] 31.85 34.17 32.64 31.13 32.10 31.19 31.42 33.92 31.38 31.93 32.00 31.93 32.14
CSF [162] 31.95 34.39 32.85 31.55 32.33 31.33 31.37 34.06 31.92 32.01 32.08 31.98 32.32
TNRD [31] 32.19 34.53 33.04 31.75 32.56 31.46 31.63 34.24 32.13 32.14 32.23 32.11 32.50

ECNDNet [179] 32.56 34.97 33.25 32.17 33.11 31.70 31.82 34.52 32.41 32.37 32.39 32.39 32.81
DnCNN [221] 32.61 34.97 33.30 32.20 33.09 31.70 31.83 34.62 32.64 32.42 32.46 32.47 32.86

PSN-K [9] 32.58 35.04 33.23 32.17 33.11 31.75 31.89 34.62 32.64 32.52 32.39 32.43 32.86
PSN-U [9] 32.04 35.03 33.21 31.94 32.93 31.61 31.62 34.56 32.49 32.41 32.37 32.43 32.72
CIMM [11] 32.61 35.21 33.21 32.35 33.33 31.77 32.01 34.69 32.74 32.44 32.50 32.52 32.95

IRCNN [222] 32.55 34.89 33.31 32.02 32.82 31.70 31.84 34.53 32.43 32.34 32.40 32.40 32.77
FFDNet [223] 32.43 35.07 33.25 31.99 32.66 31.57 31.81 34.62 32.54 32.38 32.41 32.46 32.77
BRDNet [181] 32.80 35.27 33.47 32.24 33.35 31.85 32.00 34.75 32.93 32.55 32.50 32.62 33.03

Noise Level σ = 25
BM3D [39] 29.45 32.85 30.16 28.56 29.25 28.42 28.93 32.07 30.71 29.90 29.61 29.71 29.97
WNNM [62] 29.64 33.22 30.42 29.03 29.84 28.69 29.15 32.24 31.24 30.03 29.76 29.82 30.26
EPLL [236] 29.26 32.17 30.17 28.51 29.39 28.61 28.95 31.73 28.61 29.74 29.66 29.53 29.69
MLP [22] 29.61 32.56 30.30 28.82 29.61 28.82 29.25 32.25 29.54 29.97 29.88 29.73 30.03
CSF [162] 29.48 32.39 30.32 28.80 29.62 28.72 28.90 31.79 29.03 29.76 29.71 29.53 29.84
TNRD [31] 29.72 32.53 30.57 29.02 29.85 28.88 29.18 32.00 29.41 29.91 29.87 29.71 30.06

ECNDNet [179] 30.11 33.08 30.85 29.43 30.30 29.07 29.38 32.38 29.84 30.14 30.03 30.03 30.39
DnCNN [221] 30.18 33.06 30.87 29.41 30.28 29.13 29.43 32.44 30.00 30.21 30.10 30.12 30.43

PSN-K [9] 30.28 33.26 31.01 29.57 30.30 29.28 29.38 32.57 30.17 30.31 30.10 30.18 30.53
PSN-U [9] 29.79 33.23 30.90 29.30 30.17 29.06 29.25 32.45 29.94 30.25 30.05 30.12 30.38
CIMM [11] 30.26 33.44 30.87 29.77 30.62 29.23 29.61 32.66 30.29 30.30 30.18 30.24 30.62

IRCNN [222] 30.08 33.06 30.88 29.27 30.09 29.12 29.47 32.43 29.92 30.17 30.04 30.08 30.38
FFDNet [223] 30.10 33.28 30.93 29.32 30.08 29.04 29.44 32.57 30.01 30.25 30.11 30.20 30.44
BRDNet [181] 31.39 33.41 31.04 29.46 30.50 29.20 29.55 32.65 30.34 30.33 30.14 30.28 30.61

Noise Level σ = 50
BM3D [39] 26.13 29.69 26.68 25.04 25.82 25.10 25.90 29.05 27.22 26.78 26.81 26.46 26.72
WNNM [62] 26.45 30.33 26.95 25.44 26.32 25.42 26.14 29.25 27.79 26.97 26.94 26.64 27.05
EPLL [236] 26.10 29.12 26.80 25.12 25.94 25.31 25.95 28.68 24.83 26.74 26.79 26.30 26.47
MLP [22] 26.37 29.64 26.68 25.43 26.26 25.56 26.12 29.32 25.24 27.03 27.06 26.67 26.78

TNRD [31] 26.62 29.48 27.10 25.42 26.31 25.59 26.16 28.93 25.70 26.94 26.98 26.50 26.81
ECNDNet [179] 27.07 30.12 27.30 25.72 26.82 25.79 26.32 29.29 26.26 27.16 27.11 26.84 27.15
DnCNN [221] 27.03 30.00 27.32 25.70 26.78 25.87 26.48 29.39 26.22 27.20 27.24 26.90 27.18

PSN-K [9] 27.10 30.34 27.40 25.84 26.92 25.90 26.56 29.54 26.45 27.20 27.21 27.09 27.30
PSN-U [9] 27.21 30.21 27.53 25.63 26.93 25.89 26.62 29.54 26.56 27.27 27.23 27.04 27.31
CIMM [11] 27.25 30.70 27.54 26.05 27.21 26.06 26.53 29.65 26.62 27.36 27.26 27.24 27.46

IRCNN [222] 26.88 29.96 27.33 25.57 26.61 25.89 26.55 29.40 26.24 27.17 27.17 26.88 27.14
FFDNet [223] 27.05 30.37 27.54 25.75 26.81 25.89 26.57 29.66 26.45 27.33 27.29 27.08 27.32
BRDNet [181] 27.44 30.53 27.67 25.77 26.97 25.93 26.66 29.73 26.85 27.38 27.27 27.17 27.45

learning techniques are proposed, where more information is offered in Section 3.4. Here we
introduce the denoising performance of the multi-degradation model as shown in Table 18, where
the WarpNet method is very competitive in comparison with other popular denoising methods such
as the DnCNN and MemNet.

5. Discussion

Deep learning techniques in image denoising have been widely applied in recent years. This
paper has offered a survey to make readers comprehensively understand these methods. The pre-
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Table 10: PSNR (dB) of different methods on the CBSD68, Kodak24 and McMaster for different noise levels (i.e. 15,
25, 35, 50 and 75).

Datasets Methods σ = 15 σ = 25 σ = 35 σ = 50 σ = 75

CBSD68

CBM3D [39] 33.52 30.71 28.89 27.38 25.74
DnCNN [221] 33.98 31.31 29.65 28.01 -
DDRN [189] 33.93 31.24 - 27.86 -
EEDN [30] 33.65 31.03 - 27.85 -
DDFN [37] 34.17 31.52 29.88 28.26 -
CIMM [11] 31.81 29.34 - 26.40 -

BM3D-Net [203] 33.79 30.79 - 27.48 -
IRCNN [222] 33.86 31.16 29.50 27.86 -
FFDNet [223] 33.80 31.18 29.57 27.96 26.24
BRDNet [181] 34.10 31.43 29.77 28.16 26.43

GPADCNN [35] 33.83 31.12 29.46 - -
FFDNet [178] 33.76 31.18 29.58 - 26.57

ETN [188] 34.10 31.41 - 28.01 -

Kodak24

CBM3D [39] 34.28 31.68 29.90 28.46 26.82
DnCNN [221] 34.73 32.23 30.64 29.02 -
IRCNN [222] 34.56 32.03 30.43 28.81 -
FFDNet [223] 34.55 32.11 30.56 28.99 27.25
BRDNet [181] 34.88 32.41 30.80 29.22 27.49
FFDNet [178] 34.53 32.12 30.59 - 27.61

McMaster

CBM3D [39] 34.06 31.66 29.92 28.51 26.79
DnCNN [221] 34.80 32.47 30.91 29.21 -
IRCNN [222] 34.58 32.18 30.59 28.91 -
FFDNet [223] 34.47 32.25 30.76 29.14 27.29
BRDNet [181] 35.08 32.75 31.15 29.52 27.72

Table 11: Running time of 11 popular denoising methods for the noisy images of sizes 256 × 256, 512 × 512 and
1024 × 1024.

Methods Device 256 × 256 512 × 512 1024 × 1024
BM3D [39] CPU 0.65 2.85 11.89
WNNM [62] CPU 203.1 773.2 2536.4
EPLL [236] CPU 25.4 45.5 422.1
MLP [22] CPU 1.42 5.51 19.4
CSF [162] CPU 2.11 5.67 40.8
CSF [162] GPU - 0.92 1.72
TNRD [31] CPU 0.45 1.33 4.61
TNRD [31] GPU 0.010 0.032 0.116

ECNDNet [179] GPU 0.012 0.079 0.205
DnCNN [221] CPU 0.74 3.41 12.1
DnCNN [221] GPU 0.014 0.051 0.200
FFDNet [223] CPU 0.90 4.11 14.1
FFDNet [223] GPU 0.016 0.060 0.235
IRCNN [222] CPU 0.310 1.24 4.65
IRCNN [222] GPU 0.012 0.038 0.146
BRDNet [181] GPU 0.062 0.207 0.788

vious sections have shown the detailed information of existing methods. This section mainly
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(a) (b) (c) 

(d) (e) (f) 

(g)    (h) (i)

Figure 7: Denoising results of different methods on one image from the BSD68 with σ=15: (a) original image,
(b) noisy image/24.62dB, (c) BM3D/35.29dB, (d) EPLL/34.98dB, (e) DnCNN/36.20dB, (f) FFDNet/36.75dB, (g)
IRCNN/35.94dB, (h) ECNDNet/36.03dB, and (i) BRDNet/36.59dB.

presents the potential research points for image denoising and points out unsolved problems as
follows.
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(a) (b)     (c) 

(d)    (e)     (f) 

(g)    (h) (i)

Figure 8: Denoising results of different methods on one image from the Set12 with σ=25: (a) original image, (b)
noisy image/20.22dB, (c) BM3D/29.26dB, (d) EPLL/29.44dB, (e) DnCNN/30.28dB, (f) FFDNet/30.08dB, (g) IR-
CNN/30.09dB, (h) ECNDNet/30.30dB, and (i) BRDNet/30.50dB.

     (a)    (b)    (c)  

  (d)   (e) (f)

Figure 9: Denoising results of different methods on one image from the McMaster with σ=35(a) original image, (b)
noisy image/18.46dB, (c) DnCNN/33.05B, (d) FFDNet/33.03dB, (e) IRCNN/32.74dB, and (f) BRDNet/33.26dB.
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(d)   (e) (f)

Figure 10: Denoising results of different methods on one image from the Kodak24 with σ=50: (a) original image, (b)
noisy image/14.58dB, (c) DnCNN/25.80B, (d) FFDNet/26.13dB, (e) IRCNN/26.10dB, and (f) BRDNet/26.33dB.

Table 12: PSNR (dB) of different methods on the DND for real-noisy image denoising.

Methods DND
EPLL [236] 33.51
TNRD [31] 33.65
NCSR [42] 34.05
MLP [22] 34.23

BM3D [39] 34.51
FoE [160] 34.62

WNNM [62] 34.67
KSVD [6] 36.49

CDnCNN-B [221] 32.43
FFDNet [223] 34.40

MCWNNM [123] 37.38
TWSC [199] 37.94
GCBD [28] 35.58
CIMM [11] 36.04

CBDNet [64] 37.72
VDN [215] 39.38

DRDN [169] 39.40
AGAN [117] 38.13

Base deep learning techniques image denoising mainly has good effect on denoising perfor-
mance, denoising efficiency and complex denoising task. For promoting the denoising perfor-
mance, there are the following solutions.

1) Enlarging the receptive field can capture more context information to improve the denoising
performance. Increasing the depth and width of the networks are the common ways to enlarge the
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Table 13: PSNR (dB) of different methods on the SIDD for real-noisy image denoising.

Methods SIDD
CBM3D [39] 25.65
WNNM [62] 25.78

MLP [22] 24.71
DnCNN-B [221] 23.66

CBDNet [64] 33.28
VDN [215] 39.23

DRDN [169] 39.60

Table 14: PSNR (dB) of different methods on the Nam for real-noisy image denoising.

Methods Nam
NI [5] 31.52

TWSC [199] 37.52
BM3D [39] 39.84
NC [101] 40.41

WNNM [62] 41.04
CDnCNN-B [221] 37.49
MCWNNM [123] 37.91

CBDNet [64] 41.02
CBDNet(JPEG) [64] 41.31

DRDN [169] 38.45
AGAN [117] 41.38

Table 15: PSNR (dB) of different methods on the cc for real-noisy image denoising.

Camera Settings CBM3D [39] MLP [22] TNRD [31] DnCNN [221] NI [5] NC [101] WNNM [62] BRDNet [181] SDNet [232]

Canon 5D ISO=3200
39.76 39.00 39.51 37.26 35.68 38.76 37.51 37.63 39.83
36.40 36.34 36.47 34.13 34.03 35.69 33.86 37.28 37.25
36.37 36.33 36.45 34.09 32.63 35.54 31.43 37.75 36.79

Nikon D600 ISO=3200
34.18 34.70 34.79 33.62 31.78 35.57 33.46 34.55 35.50
35.07 36.20 36.37 34.48 35.16 36.70 36.09 35.99 37.24
37.13 39.33 39.49 35.41 39.98 39.28 39.86 38.62 41.18

Nikon D800 ISO=1600
36.81 37.95 38.11 35.79 34.84 38.01 36.35 39.22 38.77
37.76 40.23 40.52 36.08 38.42 39.05 39.99 39.67 40.87
37.51 37.94 38.17 35.48 35.79 38.20 37.15 39.04 38.86

Nikon D800 ISO=3200
35.05 37.55 37.69 34.08 38.36 38.07 38.60 38.28 39.94
34.07 35.91 35.90 33.70 35.53 35.72 36.04 37.18 36.78
34.42 38.15 38.21 33.31 40.05 36.76 39.73 38.85 39.78

Nikon D800 ISO=6400
31.13 32.69 32.81 29.83 34.08 33.49 33.29 32.75 33.34
31.22 32.33 32.33 30.55 32.13 32.79 31.16 33.24 33.29
30.97 32.29 32.29 30.09 31.52 32.86 31.98 32.89 33.22

Average 35.19 36.46 36.61 33.86 35.33 36.43 35.77 36.73 37.51

Table 16: Different methods on the BSD68 for different noise levels (i.e. 15, 25 and 50).

Methods 15 25 50
DnCNN-B [221] 31.61 29.16 26.23

FFDNet [223] 31.62 29.19 26.30
SCNN [79] 31.48 29.03 26.08

DnCNN-SURE-T [168] - 29.00 25.95
DnCNN-MSE-GT [168] - 29.20 26.22

G2G1(LM,BSD) [24] 31.55 28.93 25.73

receptive field. However, that results in higher computational cost and more memory consumption.
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Table 17: Average PSNR (dB) results of different methods on Set12 with noise levels of 15, 25 and 50.

Images C.man House Peppers Starfish Monarch Airplane Parrot Lena Barbara Boat Man Couple Average
Noise Level σ = 25

DnCNN-B [221] 29.94 33.05 30.84 29.34 30.25 29.09 29.35 32.42 29.69 30.20 30.09 30.10 30.36
FFDNet [223] 30.10 33.28 30.93 29.32 30.08 29.04 29.44 32.57 30.01 30.25 30.11 30.20 30.44

DNCNN-SURE-T [168] 29.86 32.73 30.57 29.11 30.13 28.93 29.26 32.08 29.44 29.86 29.91 29.78 30.14
DNCNN-MSE-GT [168] 30.14 33.16 30.84 29.40 30.45 29.11 29.36 32.44 29.91 30.11 30.08 30.06 30.42

Noise Level σ = 50
DnCNN-B [221] 27.03 30.02 27.39 25.72 26.83 25.89 26.48 29.38 26.38 27.23 27.23 26.91 27.21

FFDNet [223] 27.05 30.37 27.54 25.75 26.81 25.89 26.57 29.66 26.45 27.33 27.29 27.08 27.32
DNCNN-SURE-T [168] 26.47 29.20 26.78 25.39 26.53 25.65 26.21 28.81 25.23 26.79 26.97 26.48 26.71
DNCNN-MSE-GT [168] 27.03 29.92 27.27 25.65 26.95 25.93 26.43 29.31 26.17 27.12 27.22 26.94 27.16

Table 18: Different methods on the VggFace2and WebFace for image denoising.

Methods
VggFace2 [23] WebFace [210]
4 × 8 × 4 × 8 ×

DnCNN [221] 26.73 23.29 28.35 24.75
MemNet [174] 26.85 23.31 28.57 24.77
WarpNet [111] 28.55 24.10 32.31 27.21

For resolving the problem, dilated convolution technique is a good choice to make performance
and efficiency, which is very effective to mine more edge information.

2) The simultaneous use of extra information (also called prior) and CNN is very beneficial to
facilitate more accurate features. That is implemented by designing the loss function.

3) Combining local and global information can enhance the memory abilities of the shallow
layers on deep layers to better filter the noise. The residual operation and recursive operation are
typical methods to address this problem.

4) Single processing methods can better suppress the noise. Inspired by that, the single pro-
cessing technique fused into the deep CNN can pursue excellent performance. For example, the
wavelet technique is gathered into the U-Net to deal with image restoration [123].

5) Data Augmentation, such as horizontal flip, vertical flip and color jittering can make the
denoising methods learn more types of noise, which can enhance the expressive ability of the
denoising models. Additionally, using the GAN to construct virtual noisy image is also useful for
image denoising.

6) Transfer learning, graph and neural architecture search methods can obtain good denoising
results.

7) Improving the hardware or camera mechanism can reduce the effect of noise on the captured
image.

For improving denoising efficiency, compressing deep network has obtained great success.
Reducing the depth or the width of deep network can reduce the complexity of deep network
in image denoising. Also, using small convolutional kernel and group convolution can reduce
the number of parameters for accelerating the speed of training. Fusion of dimension reduction
method, such as principal component analysis (PCA) and CNN also better improves the denoising
efficiency.

For tackling complex noisy image, step-by-step processing is very popular. For example, using
two-step mechanism deals with a noisy image with low-resolution. The first step recovers a high-
resolution image by a CNN. The second step uses a novel CNN to filter the noise of the high-
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resolution image. The two CNNs are implemented via cascade operation. Additionally, utilizing
CNN to deal with unsupervised noise is also a good choice.

Although deep learning techniques have obtained great success in three aspects above, there
are still some challenges in image denoising.

1) Deeper denoising networks require more memory resource.
2) Training deeper denoising networks is not stable for real noisy image, unpaired noisy image

and multi-degradation tasks.
3) Real noisy images are not easily captured, which results in inadequate training samples.
4) Deep CNNs are difficult to solve unsupervised denoising task.
5) Find more accurate metrics for image denoising. The PSNR and SSIM are popular metrics

for image restoration task. However, the PSNR suffers from excessing smoothing, which may
recognize the difference of between indistinguishable images. The SSIM depends on brightness,
contrast and structure, which can not accurately evaluate image perceptual quality. Thus, more
useful metrics for image denoising are extremely urgent.

6. Conclusion

In this paper, we comparatively study and systematcially summarize different deep networks
on image denoising. First, we show the basic frameworks of deep learning for image denoising.
Then, deep learning techniques for different noisy tasks, including additive white noisy images,
blind denoising, real noisy images and hybrid noisy images are presented. Next, for each category
of different noisy tasks, we analyze the motivation and theory of denoising networks. Finally, we
compare the denoising results, efficiency and visual effects of different networks on benchmark
datasets and give the crossing comparisons among different types of image denoising methods with
different types of noise. Further, some potential research points and challenges of deep learning in
image denoising are offered.

Over the past few years, Gaussian noisy image denoising techniques have obtained great suc-
cess, where the Gaussian noise is regular. However, in the real world the noise is complex and
irregular. Improving the hardware device to suppress the noise for capturing a high-quality image
is very important. Also, the obtained image may be blurry, low-resolution and corrupted. Thus,
how to effectively recover the latent clean image from the superposed noisy image is very critical.
Additionally, using deep learning techniques to learn features need the ground truth. However,
the obtained real noisy images do not have the ground truth. These challenges are very urgent to
address for scholars in the future.

Acknowledgments

This paper is partially supported by the National Natural Science Foundation of China under
Grant No. 61876051, in part by Shenzhen Municipal Science and Technology Innovation, Council
under Grant No. JSGG20190220153602271 and in part by the Natural Science Foundation of
Guang dong Province under Grant No. 2019A1515011811.

25



References

References

[1] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard,
M., et al., 2016. Tensorflow: A system for large-scale machine learning. In: 12th {USENIX} Symposium on
Operating Systems Design and Implementation ({OSDI} 16). pp. 265–283.

[2] Abbasi, A., Monadjemi, A., Fang, L., Rabbani, H., Zhang, Y., 2019. Three-dimensional optical coherence
tomography image denoising through multi-input fully-convolutional networks. Computers in biology and
medicine 108, 1–8.

[3] Abdelhamed, A., Lin, S., Brown, M. S., 2018. A high-quality denoising dataset for smartphone cameras. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 1692–1700.

[4] Abiko, R., Ikehara, M., 2019. Blind denoising of mixed gaussian-impulse noise by single cnn. In: ICASSP
2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, pp.
1717–1721.

[5] ABSoft, N., 2017. Neat image.
[6] Aharon, M., Elad, M., Bruckstein, A., 2006. K-svd: An algorithm for designing overcomplete dictionaries for

sparse representation. IEEE Transactions on signal processing 54 (11), 4311–4322.
[7] Ahn, B., Cho, N. I., 2017. Block-matching convolutional neural network for image denoising. arXiv preprint

arXiv:1704.00524.
[8] Ahn, B., Kim, Y., Park, G., Cho, N. I., 2018. Block-matching convolutional neural network (bmcnn): Improv-

ing cnn-based denoising by block-matched inputs. In: 2018 Asia-Pacific Signal and Information Processing
Association Annual Summit and Conference (APSIPA ASC). IEEE, pp. 516–525.

[9] Aljadaany, R., Pal, D. K., Savvides, M., 2019. Proximal splitting networks for image restoration. arXiv preprint
arXiv:1903.07154.

[10] Anwar, S., Barnes, N., 2019. Real image denoising with feature attention. arXiv preprint arXiv:1904.07396.
[11] Anwar, S., Huynh, C. P., Porikli, F., 2017. Chaining identity mapping modules for image denoising. arXiv

preprint arXiv:1712.02933.
[12] Bae, W., Yoo, J., Chul Ye, J., 2017. Beyond deep residual learning for image restoration: Persistent homology-

guided manifold simplification. In: Proceedings of the IEEE conference on computer vision and pattern recog-
nition workshops. pp. 145–153.

[13] Bako, S., Vogels, T., McWilliams, B., Meyer, M., Novák, J., Harvill, A., Sen, P., Derose, T., Rousselle, F.,
2017. Kernel-predicting convolutional networks for denoising monte carlo renderings. ACM Transactions on
Graphics (TOG) 36 (4), 97.

[14] Bedini, L., Tonazzini, A., 1990. Neural network use in maximum entropy image restoration. Image and Vision
Computing 8 (2), 108–114.

[15] Bedini, L., Tonazzini, A., 1992. Image restoration preserving discontinuities: the bayesian approach and neural
networks. Image and Vision Computing 10 (2), 108–118.

[16] Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H., 2007. Greedy layer-wise training of deep networks. In:
Advances in neural information processing systems. pp. 153–160.

[17] Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G., Turian, J., Warde-Farley, D.,
Bengio, Y., 2010. Theano: a cpu and gpu math expression compiler. In: Proceedings of the Python for scientific
computing conference (SciPy). Vol. 4. Austin, TX.

[18] Bigdeli, S. A., Zwicker, M., 2017. Image restoration using autoencoding priors. arXiv preprint
arXiv:1703.09964.

[19] Bigdeli, S. A., Zwicker, M., Favaro, P., Jin, M., 2017. Deep mean-shift priors for image restoration. In: Ad-
vances in Neural Information Processing Systems. pp. 763–772.

[20] Bottou, L., 2010. Large-scale machine learning with stochastic gradient descent. In: Proceedings of COMP-
STAT’2010. Springer, pp. 177–186.

[21] Brooks, T., Mildenhall, B., Xue, T., Chen, J., Sharlet, D., Barron, J. T., 2019. Unprocessing images for learned
raw denoising. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp.
11036–11045.

26



[22] Burger, H. C., Schuler, C. J., Harmeling, S., 2012. Image denoising: Can plain neural networks compete with
bm3d? In: 2012 IEEE conference on computer vision and pattern recognition. IEEE, pp. 2392–2399.

[23] Cao, Q., Shen, L., Xie, W., Parkhi, O. M., Zisserman, A., 2018. Vggface2: A dataset for recognising faces
across pose and age. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition
(FG 2018). IEEE, pp. 67–74.

[24] Cha, S., Park, T., Moon, T., 2019. Gan2gan: Generative noise learning for blind image denoising with single
noisy images. arXiv preprint arXiv:1905.10488.

[25] Chang, Y., Yan, L., Fang, H., Zhong, S., Liao, W., 2018. Hsi-denet: Hyperspectral image restoration via
convolutional neural network. IEEE Transactions on Geoscience and Remote Sensing 57 (2), 667–682.

[26] Chen, C., Xiong, Z., Tian, X., Wu, F., 2018. Deep boosting for image denoising. In: Proceedings of the
European Conference on Computer Vision (ECCV). pp. 3–18.

[27] Chen, C., Xu, Z., 2018. Aerial-image denoising based on convolutional neural network with multi-scale resid-
ual learning approach. Information 9 (7), 169.

[28] Chen, J., Chen, J., Chao, H., Yang, M., 2018. Image blind denoising with generative adversarial network based
noise modeling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp.
3155–3164.

[29] Chen, J., Hou, J., Chau, L.-P., 2018. Light field denoising via anisotropic parallax analysis in a cnn framework.
IEEE Signal Processing Letters 25 (9), 1403–1407.

[30] Chen, X., Zhan, S., Ji, D., Xu, L., Wu, C., Li, X., 2018. Image denoising via deep network based on edge
enhancement. Journal of Ambient Intelligence and Humanized Computing, 1–11.

[31] Chen, Y., Pock, T., 2016. Trainable nonlinear reaction diffusion: A flexible framework for fast and effective
image restoration. IEEE transactions on pattern analysis and machine intelligence 39 (6), 1256–1272.

[32] Chen, Y., Yu, M., Jiang, G., Peng, Z., Chen, F., 2019. End-to-end single image enhancement based on a dual
network cascade model. Journal of Visual Communication and Image Representation 61, 284–295.

[33] Chetlur, S., Woolley, C., Vandermersch, P., Cohen, J., Tran, J., Catanzaro, B., Shelhamer, E., 2014. cudnn:
Efficient primitives for deep learning. arXiv preprint arXiv:1410.0759.

[34] Chiang, Y.-W., Sullivan, B., 1989. Multi-frame image restoration using a neural network. In: Proceedings of
the 32nd Midwest Symposium on Circuits and Systems,. IEEE, pp. 744–747.

[35] Cho, S. I., Kang, S.-J., 2018. Gradient prior-aided cnn denoiser with separable convolution-based optimization
of feature dimension. IEEE Transactions on Multimedia 21 (2), 484–493.

[36] Chollet, F., et al., 2015. Keras.
[37] Couturier, R., Perrot, G., Salomon, M., 2018. Image denoising using a deep encoder-decoder network with

skip connections. In: International Conference on Neural Information Processing. Springer, pp. 554–565.
[38] Cruz, C., Foi, A., Katkovnik, V., Egiazarian, K., 2018. Nonlocality-reinforced convolutional neural networks

for image denoising. IEEE Signal Processing Letters 25 (8), 1216–1220.
[39] Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K., 2007. Image denoising by sparse 3-d transform-domain

collaborative filtering. IEEE Transactions on image processing 16 (8), 2080–2095.
[40] de Figueiredo, M. T., Leitao, J. M., 1992. Image restoration using neural networks. In: [Proceedings] ICASSP-

92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing. Vol. 2. IEEE, pp. 409–
412.

[41] de Ridder, D., Duin, R. P., Verbeek, P. W., Van Vliet, L., 1999. The applicability of neural networks to non-
linear image processing. Pattern Analysis & Applications 2 (2), 111–128.

[42] Dong, W., Zhang, L., Shi, G., Li, X., 2012. Nonlocally centralized sparse representation for image restoration.
IEEE transactions on Image Processing 22 (4), 1620–1630.

[43] Du, B., Wei, Q., Liu, R., 2019. An improved quantum-behaved particle swarm optimization for endmember
extraction. IEEE Transactions on Geoscience and Remote Sensing.

[44] Du, H., Dong, L., Liu, M., Zhao, Y., Jia, W., Liu, X., Hui, M., Kong, L., Hao, Q., 2018. Image restoration
based on deep convolutional network in wavefront coding imaging system. In: 2018 Digital Image Computing:
Techniques and Applications (DICTA). IEEE, pp. 1–8.

[45] Duan, C., Cui, L., Chen, X., Wei, F., Zhu, C., Zhao, T., 2018. Attention-fused deep matching network for
natural language inference. In: IJCAI. pp. 4033–4040.

27



[46] Elad, M., Aharon, M., 2006. Image denoising via sparse and redundant representations over learned dictionar-
ies. IEEE Transactions on Image processing 15 (12), 3736–3745.

[47] Fan, E., 2000. Extended tanh-function method and its applications to nonlinear equations. Physics Letters A
277 (4-5), 212–218.

[48] Farooque, M. A., Rohankar, J. S., 2013. Survey on various noises and techniques for denoising the color image.
International Journal of Application or Innovation in Engineering & Management (IJAIEM) 2 (11), 217–221.

[49] Fei, L., Lu, G., Jia, W., Teng, S., Zhang, D., 2018. Feature extraction methods for palmprint recognition: A
survey and evaluation. IEEE Transactions on Systems, Man, and Cybernetics: Systems 49 (2), 346–363.

[50] Franzen, R., 1999. Kodak lossless true color image suite. source: http://r0k. us/graphics/kodak 4.
[51] Fu, B., Zhao, X., Li, Y., Wang, X., Ren, Y., 2019. A convolutional neural networks denoising approach for salt

and pepper noise. Multimedia Tools and Applications 78 (21), 30707–30721.
[52] Fukushima, K., 1980. Neocognitron: A self-organizing neural network model for a mechanism of pattern

recognition unaffected by shift in position. Biological cybernetics 36 (4), 193–202.
[53] Fukushima, K., Miyake, S., 1982. Neocognitron: A self-organizing neural network model for a mechanism of

visual pattern recognition. In: Competition and cooperation in neural nets. Springer, pp. 267–285.
[54] Gardner, E., Wallace, D., Stroud, N., 1989. Training with noise and the storage of correlated patterns in a neural

network model. Journal of Physics A: Mathematical and General 22 (12), 2019.
[55] Gashi, D., Pereira, M., Vterkovska, V., 2017. Multi-scale context aggregation by dilated convolutions machine

learning-project.
[56] Gholizadeh-Ansari, M., Alirezaie, J., Babyn, P., 2018. Low-dose ct denoising with dilated residual network.

In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC). IEEE, pp. 5117–5120.

[57] Godard, C., Matzen, K., Uyttendaele, M., 2018. Deep burst denoising. In: Proceedings of the European Con-
ference on Computer Vision (ECCV). pp. 538–554.

[58] Gondara, L., Wang, K., 2017. Recovering loss to followup information using denoising autoencoders. In: 2017
IEEE International Conference on Big Data (Big Data). IEEE, pp. 1936–1945.

[59] Gong, D., Zhang, Z., Shi, Q., Hengel, A. v. d., Shen, C., Zhang, Y., 2018. Learning an optimizer for image
deconvolution. arXiv preprint arXiv:1804.03368.

[60] Green, M., Marom, E. M., Konen, E., Kiryati, N., Mayer, A., 2018. Learning real noise for ultra-low dose lung
ct denoising. In: International Workshop on Patch-based Techniques in Medical Imaging. Springer, pp. 3–11.

[61] Greenhill, D., Davies, E., 1994. Relative effectiveness of neural networks for image noise suppression. In:
Machine Intelligence and Pattern Recognition. Vol. 16. Elsevier, pp. 367–378.

[62] Gu, S., Zhang, L., Zuo, W., Feng, X., 2014. Weighted nuclear norm minimization with application to image
denoising. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 2862–2869.

[63] Guan, J., Lai, R., Xiong, A., 2019. Wavelet deep neural network for stripe noise removal. IEEE Access 7,
44544–44554.

[64] Guo, S., Yan, Z., Zhang, K., Zuo, W., Zhang, L., 2019. Toward convolutional blind denoising of real pho-
tographs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 1712–
1722.

[65] Guo, Z., Sun, Y., Jian, M., Zhang, X., 2018. Deep residual network with sparse feedback for image restoration.
Applied Sciences 8 (12), 2417.

[66] Han, Y., Ye, J. C., 2018. Framing u-net via deep convolutional framelets: Application to sparse-view ct. IEEE
transactions on medical imaging 37 (6), 1418–1429.

[67] He, J., Dong, C., Qiao, Y., 2019. Multi-dimension modulation for image restoration with dynamic controllable
residual learning. arXiv preprint arXiv:1912.05293.

[68] He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. In: Proceedings of the
IEEE conference on computer vision and pattern recognition. pp. 770–778.

[69] Heckel, R., Huang, W., Hand, P., Voroninski, V., 2018. Rate-optimal denoising with deep neural networks.
arXiv preprint arXiv:1805.08855.

[70] Heinrich, M. P., Stille, M., Buzug, T. M., 2018. Residual u-net convolutional neural network architecture for
low-dose ct denoising. Current Directions in Biomedical Engineering 4 (1), 297–300.

28



[71] Hinton, G., Osindero, S., ???? The, y. 2006. a fast learning algorithm for deep belief nets. Neural Computation
18 (7).

[72] Hinton, G. E., Salakhutdinov, R. R., 2006. Reducing the dimensionality of data with neural networks. science
313 (5786), 504–507.

[73] Hirose, Y., Yamashita, K., Hijiya, S., 1991. Back-propagation algorithm which varies the number of hidden
units. Neural Networks 4 (1), 61–66.

[74] Hongqiang, M., Shiping, M., Yuelei, X., Mingming, Z., 2018. An adaptive image denoising method based on
deep rectified denoising auto-encoder. In: Journal of Physics: Conference Series. Vol. 1060. IOP Publishing,
p. 012048.

[75] Hore, A., Ziou, D., 2010. Image quality metrics: Psnr vs. ssim. In: 2010 20th International Conference on
Pattern Recognition. IEEE, pp. 2366–2369.

[76] Hsu, C.-C., Lin, C.-W., 2017. Cnn-based joint clustering and representation learning with feature drift com-
pensation for large-scale image data. IEEE Transactions on Multimedia 20 (2), 421–429.

[77] Ioffe, S., 2017. Batch renormalization: Towards reducing minibatch dependence in batch-normalized models.
In: Advances in neural information processing systems. pp. 1945–1953.

[78] Ioffe, S., Szegedy, C., 2015. Batch normalization: Accelerating deep network training by reducing internal
covariate shift. arXiv preprint arXiv:1502.03167.

[79] Isogawa, K., Ida, T., Shiodera, T., Takeguchi, T., 2017. Deep shrinkage convolutional neural network for
adaptive noise reduction. IEEE Signal Processing Letters 25 (2), 224–228.

[80] Jaroensri, R., Biscarrat, C., Aittala, M., Durand, F., 2019. Generating training data for denoising real rgb images
via camera pipeline simulation. arXiv preprint arXiv:1904.08825.

[81] Jarrett, K., Kavukcuoglu, K., Ranzato, M., LeCun, Y., 2009. What is the best multi-stage architecture for object
recognition? In: 2009 IEEE 12th international conference on computer vision. IEEE, pp. 2146–2153.

[82] Jeon, W., Jeong, W., Son, K., Yang, H., 2018. Speckle noise reduction for digital holographic images using
multi-scale convolutional neural networks. Optics letters 43 (17), 4240–4243.

[83] Jia, X., Chai, H., Guo, Y., Huang, Y., Zhao, B., 2018. Multiscale parallel feature extraction convolution neural
network for image denoising. Journal of Electronic Imaging 27 (6), 063031.

[84] Jia, X., Liu, S., Feng, X., Zhang, L., 2019. Focnet: A fractional optimal control network for image denoising.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 6054–6063.

[85] Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T., 2014.
Caffe: Convolutional architecture for fast feature embedding. In: Proceedings of the 22nd ACM international
conference on Multimedia. ACM, pp. 675–678.

[86] Jian, W., Zhao, H., Bai, Z., Fan, X., 2018. Low-light remote sensing images enhancement algorithm based on
fully convolutional neural network. In: China High Resolution Earth Observation Conference. Springer, pp.
56–65.

[87] Jiang, D., Dou, W., Vosters, L., Xu, X., Sun, Y., Tan, T., 2018. Denoising of 3d magnetic resonance images
with multi-channel residual learning of convolutional neural network. Japanese journal of radiology 36 (9),
566–574.

[88] Jiang, L., Jing, Y., Hu, S., Ge, B., Xiao, W., 2018. Deep refinement network for natural low-light image
enhancement in symmetric pathways. Symmetry 10 (10), 491.

[89] Jiao, J., Tu, W.-C., He, S., Lau, R. W., 2017. Formresnet: Formatted residual learning for image restoration. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. pp. 38–46.

[90] Jifara, W., Jiang, F., Rho, S., Cheng, M., Liu, S., 2019. Medical image denoising using convolutional neural
network: a residual learning approach. The Journal of Supercomputing 75 (2), 704–718.

[91] Jin, K. H., McCann, M. T., Froustey, E., Unser, M., 2017. Deep convolutional neural network for inverse
problems in imaging. IEEE Transactions on Image Processing 26 (9), 4509–4522.

[92] Kadimesetty, V. S., Gutta, S., Ganapathy, S., Yalavarthy, P. K., 2018. Convolutional neural network-based
robust denoising of low-dose computed tomography perfusion maps. IEEE Transactions on Radiation and
Plasma Medical Sciences 3 (2), 137–152.

[93] Karlik, B., Olgac, A. V., 2011. Performance analysis of various activation functions in generalized mlp archi-
tectures of neural networks. International Journal of Artificial Intelligence and Expert Systems 1 (4), 111–122.

29



[94] Khan, S., Khan, K. S., Shin, S. Y., 2019. Symbol denoising in high order m-qam using residual learning of
deep cnn. In: 2019 16th IEEE Annual Consumer Communications & Networking Conference (CCNC). IEEE,
pp. 1–6.

[95] Khaw, H. Y., Soon, F. C., Chuah, J. H., Chow, C.-O., 2017. Image noise types recognition using convolutional
neural network with principal components analysis. IET Image Processing 11 (12), 1238–1245.

[96] Khoroushadi, M., Sadegh, M., 2018. Enhancement in low-dose computed tomography through image denoising
techniques: Wavelets and deep learning. Ph.D. thesis, ProQuest Dissertations Publishing.

[97] Kokkinos, F., Lefkimmiatis, S., 2019. Iterative joint image demosaicking and denoising using a residual de-
noising network. IEEE Transactions on Image Processing.

[98] Krizhevsky, A., Sutskever, I., Hinton, G. E., 2012. Imagenet classification with deep convolutional neural
networks. In: Advances in neural information processing systems. pp. 1097–1105.
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