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Abstract

It is 4rst revealed that the Fisher criterion ratio of each FSLDA discriminant vector must not be less than that of corresponding
ULDA discriminant vector. So, the phenomenon in Yang et al. (Pattern Recognition 35 (2002) 2665) is not strange but certain,
and must be available in all experiments! In addition, it is also 4rst illustrated that in fact ULDA discriminant vectors are the
St− orthogonal eigenvectors of a generalized eigenequation. As a result, the algorithms to obtain St− orthogonal eigenvectors
of the generalized eigenequation are equivalent to the ULDA algorithm. Consequently, it is possible to work out ULDA
discriminant vectors more e<ciently.
? 2003 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

It is known that linear discriminant analysis (LDA) is an
important approach for linear feature extraction. There are
two very e>ective LDA methods. One is Foley–Sammon
linear discriminant analysis (FSLDA) [1], proposed
by Foley and Sammon, and the other is uncorrelated
linear discriminant analysis (ULDA), recently proposed
by Jin [2]. FSLDA and ULDA have been widely used.
Compared to FSLDA, ULDA also tries to 4nd discriminant
vectors ’1; : : : ; ’m, which maximize Fisher criterion

J (’) =
’TSb’
’TSw’

; (1)

where, Sb and Sw are the between-class scatter matrix and the
within-class scatter matrix, respectively. Suppose 
1; : : : ; 
m
are FSLDA discriminant vectors and �1; : : : ; �m are ULDA
discriminant vectors. FSLDA discriminant vectors are suc-
cessively obtained. So do ULDA discriminant vectors. That
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is to say, we should start to work out the kth FSLDA (or
ULDA) discriminant vector after the previous k−1 FSLDA
(or ULDA) discriminant vectors have been worked out. In
addition, we must note that orthogonal constraints


Ti 
j = 0 ∀i �= j (2)

must be satis4ed among FSLDA discriminant vectors while
ULDA discriminant vectors must be subject to St− orthog-
onal constraints

�Ti St�j = 0 ∀i �= j: (3)

In fact, this is the key di>erence between FSLDA and
ULDA. St is the total scatter matrix.

According to one experiment about CENPARMI
handwritten numeral database, Jian Yang found two
interesting things. The 4rst is that the Fisher crite-
rion ratios of FSLDA discriminant vectors are much
larger than those of ULDA discriminant vectors. But,
the second is that the classifying results of FSLDA
is not better than those of ULDA [3]. The discov-
ery is attractive and seemingly contradictory. But,
what are other experiments? It is doubtful whether the
discovery is sure. Under what conditions are the Fisher
criterion ratios of FSLDA discriminant vectors larger than
those of ULDA discriminant vectors?
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2. Theory and analysis

The following discussion will be based on the equation:

Sb
 = �Sw
: (4)

For simplicity, suppose that Sw is positive de4nite and
Sb; Sw ∈Rn×n. As to eigenequation (4), there must be n St−
orthogonal eigenvectors, X1; X2; : : : ; Xn, corresponding to
eigenvalues �1¿ �2¿ · · ·¿ �n¿ 0. Moreover, the fol-
lowing formulas are satis4ed:

X T
i SbXj =

{
0 i �= j;
�i i = j;

(5)

X T
i SwXj =

{
0 i �= j;
1 i = j:

(6)

Obviously, X1; X2; : : : ; Xn are subject to St− orthogonal
constraints (3), and it is the reason why X1; X2; : : : ; Xn
are called St− orthogonal eigenvectors. It is certain that
the set consisting of X1; X2; : : : ; Xn is a basis of Rn, be-
cause X1; X2; : : : ; Xn are linearly independent [4,5]. If
L(Xk ; Xk+1; : : : ; Xn) is called the St− orthogonal comple-
ment of Sk−1 = L(X1; X2; : : : ; Xk−1) and denoted by S⊥k−1,
the following theorems will be inferred.

Theorem 1. If Sk−1 is a k − 1-dimensional subspace of Rn

and denotes Sk−1 = L(X1; X2; : : : ; Xk−1), it will be sure that
J (cXk) = max
∈S⊥k−1

J (
) = �k , c = constant and c �= 0.

Proof.

Sk−1 = L(X1; X2; : : : ; Xk−1); (7)

S⊥k−1 = L(Xk ; Xk+1; : : : ; Xn): (8)

Suppose 
=lkXk+lk+1Xk+1+· · ·+lnXn ∀
∈ S⊥k−1. Then,
we have

J (
) =
l2k�k + l

2
k+1�k+1 + · · ·+ l2n�n

l2k + l
2
k+1 + · · ·+ l2n : (9)

Obviously, if 
0 = lkXk and lk �= 0, then J (
0) =
max
∈S⊥k−1

J (
) = �k , i.e.

J (cXk) = max

∈S⊥k−1

J (
) = �k ; c = consant

and c �= 0: (10)

Theorem 2. If S is an arbitrary subspace of Rn,
dim S = n − k + 1 and 16 k6 n, it will be certain that
max
∈S J (
)¿ �k .

Proof. Suppose Sk = L(X1; X2; : : : ; Xk).

Because of dim S = n − k + 1 and dim Sk = k, we have
dim S + dim Sk ¿n.

Obviously, S ∩ Sk is not null, even though S is arbitrary.
Suppose 
0 = l1X1 + l2X2 + · · ·+ lkXk ∀0 �= 
0 ∈ S ∩ Sk ,

so,

J (
0) =
l21�1 + l

2
2�2 + · · ·+ l2k�k

l21 + l
2
2 + · · ·+ l2k

¿ �k : (11)

It is sure that max
∈S J (
)¿ J (
0). As a result,

max

∈S

J (
)¿ �k ∀dim S = n− k + 1: (12)

It is notable that in practice X1 is simultaneously taken
as the 4rst vector of FSLDA discriminant vectors and
ULDA discriminant vectors. But, according to the algo-
rithms, FSLDA obtains the second vector in the orthogonal
complement of the 4rst vector, whereas ULDA obtains the
second vector in the St− orthogonal complement of the
4rst vector. Successively, FSLDA obtains the kth vector in
the orthogonal complement of the previous k − 1 FSLDA
discriminant vectors, whereas ULDA obtains the kth vector
in the St− orthogonal complement of the previous k − 1
ULDA discriminant vectors [1,2].

Actually, the St− orthogonal complement of the pre-
vious k − 1 ULDA discriminant vectors is an n − k +
1-dimensional subspace. In other words, in fact the kth
vector of ULDA discriminant vectors is obtained in the
n− k+1-dimensional subspace and the vector, correspond-
ing to the maximal Fisher criterion ratio among vectors in
the n− k+1-dimensional subspace, will be taken as the kth
ULDA discriminant vector. Based on inductive method, the
following statement can be illustrated.

Corollary 1. If there is �1¿ �2¿ · · ·¿ �d ¿ 0, c1X1;
c2X2; : : : ; cdXd will be ULDA discriminant vectors, where,
c1; c2; : : : ; cd are constants and each is not zero.

Proof. Firstly, for simplicity, the case that �i �= �j;∀i �= j,
i = 1; 2; : : : ; d, j = 1; 2; : : : ; d is discussed. Since the sec-
ond discriminant vector of ULDA must come from the
St− orthogonal complement of X1 and the vector c2X2

satis4es the condition J (c2X2) = max
∈L(X2 ;X3 ;:::;Xn) J (
),
according to the algorithm of ULDA, c2X2 should be
the second vector of ULDA discriminant vectors. More-
over, if c1X1; c2X2; : : : ; ck−1Xk−1 (k − 1¡d) have been
taken as the previous k − 1 ULDA discriminant vec-
tors, the algorithm of ULDA will work out the kth dis-
criminant vector in L(Xk ; Xk+1; : : : ; Xn). It is known that
J (ckXk) = max
∈L(Xk ;Xk+1 ;:::;Xn) J (
). So 
k = ckXk should
be the kth discriminant vector of ULDA discriminant vec-
tors. According to inductive method, it is convinced that
if there is �1¿ �2¿ : : :¿ �d ¿ 0, c1X1; c2X2; : : : ; cdXd
will be ULDA discriminant vectors, under the condition
�i �= �j ∀i �= j.
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Secondly, we discuss the problem on �i = �j for some
i �= j. If there is �k+1 = �k , i.e. J (ckXk) = J (ck+1Xk+1),
k + 16d and the algorithm is searching the kth vector
of ULDA discriminant vectors, ckXk and ck+1Xk+1 will be
equivalent to be taken as the kth vector of ULDA discrimi-
nant vectors, because of the same discriminatory capability
and the same St− orthogonal attribute. Now Corollary 1 has
been inferred. Specially, c1X1; c2X2; : : : ; cdXd are also called
St− orthogonal eigenvectors of eigenequation (4).

As a result, naturally, the algorithms to obtain X1; X2; : : : ;
Xd (d6 n) are alternative algorithms of ULDA. Moreover,
X1; X2; : : : ; Xd can be directly worked out from eigenequation
(4) and the corresponding algorithm is much more e<cient
than the original algorithm of ULDA, which was proposed
by Zhong Jin. Therefore, the above analysis and illustration
are very signi4cant and they make us obtain ULDA discrim-
inant vectors easier.

It is obviously that FSLDA also obtains the kth discrimi-
nant vector in an n−k+1-dimensional subspace. According
to Theorem 2, the kth vector of FSLDA discriminant vec-
tors is subject to J (
k)¿ �k . Because ULDA discriminant
vectors are the St− orthogonal eigenvectors of eigenequa-
tion (4), it is sure that J (�k)=�k , where, �k is the kth vector
of ULDA discriminant vectors. As a result, J (
k)¿ J (�k)
is inferred. Up to now, it is undoubting that the Fisher

criterion ratio of each FSLDA discriminant vector is not less
than that of corresponding ULDA discriminant vector! In
any case, it is certain. In other words, the phenomenon in
Ref. [3] is not haphazard but certi4able andmust be available
in all experiments!
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