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a b s t r a c t

Bimodal biometrics has been found to outperform single biometrics and are usually implemented using

the matching score level or decision level fusion, though this fusion will enable less information of

bimodal biometric traits to be exploited for personal authentication than fusion at the feature level. This

paper proposes matrix-based complex PCA (MCPCA), a feature level fusion method for bimodal

biometrics that uses a complex matrix to denote two biometric traits from one subject. The method

respectively takes the two images from two biometric traits of a subject as the real part and imaginary

part of a complex matrix. MCPCA applies a novel and mathematically tractable algorithm for extracting

features directly from complex matrices. We also show that MCPCA has a sound theoretical foundation

and the previous matrix-based PCA technique, two-dimensional PCA (2DPCA), is only one special form

of the proposed method. On the other hand, the features extracted by the developed method may have a

large number of data items (each real number in the obtained features is called one data item). In order

to obtain features with a small number of data items, we have devised a two-step feature extraction

scheme. Our experiments show that the proposed two-step feature extraction scheme can achieve a

higher classification accuracy than the 2DPCA and PCA techniques.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Bimodal approaches to biometric recognition tasks, that is,
approaches that combine two biometric traits to perform personal
authentication, have been found to produce better results than
single biometrics using a single trait alone [1–10]. For example,
combination use of voice and face [1], of face and fingerprint [3,7,11],
of ear and face [4], of 3D face and hand [5], of hand shape and
texture [6], of both right and left hands with the natural layout [8], of
different color components of ear images [12], depth and intensity
information of faces [13], facial appearance and motion [14], 2D and
3D palmprint features [15] all illustrates that combination of two
biometric traits is better than the sole use of either of them.
Combination of multimodal biometrics including bimodal ap-
proaches can be categorized into three classes, i.e. feature level
fusion [16], matching score level fusion and decision level fusion
[17–19] in terms of the phase where the fusion operation occurs. To a
great extent, biometrics can be referred to as one kind of image-
based classification problems. A number of other applications such
as image retrieval [20,21] and character recognition [22] can be also
partially considered as image-based classification problems. Many
ll rights reserved.
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algorithms such as SVM, the kernel method and the fuzzy algorithm
[20,21,23] have been applied to these problems. In both bimodal and
single-trait biometric approaches, traits are usually initially repre-
sented as high-dimensional images with dimension reduction
techniques being applied to the images prior to authentication in
order to represent them using lower-dimensional data. Principal
component analysis (PCA) technique has been widely used to reduce
image dimensionality but PCA was originally developed for one-
dimensional data [24–28]. As a result, when we apply PCA to images,
it is first necessary to transform the image matrices into their
corresponding one-dimensional vectors. This usually leads to
inaccurate estimation of the covariance matrix [27]. A further
drawback of using PCA for image-based applications is that it is
computationally expensive.

A noticeable extension of the PCA technique is two-dimensional
PCA (2DPCA), which directly extracts features from image matrices
[27,29–31]. Rather than projecting a corresponding vector, this
technique projects an image matrix onto one transforming axis to
obtain one image feature in the form of vector. The 2DPCA can
estimate the covariance matrix more accurately than PCA [27].
Another extension of the PCA technique is complex-PCA [32] which
uses a complex vector to represent information from the sample of
one subject. Such denotations can be used to produce a complex
covariance matrix, i.e. the generative matrix of the complex-PCA
based feature extraction procedure. Complex-PCA then takes the
eigenvector of the generative matrix as a transforming axis and
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projects onto it the complex vector denoting the sample of a subject,
thereby obtaining a feature (a complex number) of the complex
vector. The feature extraction results of complex-PCA represents
subjects well in a low-dimensional space but, being derived from
PCA, it shares its drawbacks such as being computationally
expensive. There are other feature extraction methods related to
PCA. Fisher discriminant analysis (FDA), for example, can be
implemented as two successive PCA processes [33]. Kernel PCA
(KPCA) is also based on the PCA methodology. In some extent, kernel
fisher discriminant analysis (KFDA) [34–36] is also related to PCA. In
each case, when applied to images, these methods except for 2DPCA
should first transform the image matrices into their corresponding
one-dimensional vectors. We also note that two new improvements
to PCA, the incremental learning algorithm of bidirectional principal
component analysis (BDPCA) [37] and the class-augmented PCA [38]
have recently been proposed, respectively. The proposed incremental
learning algorithm allows PCA to be computationally efficiently
implemented in the case where new training samples arrive at any
time. The class-augmented PCA allows the class information to be
encoded, producing features more appropriate for classification.

This paper proposes matrix-based complex PCA (MCPCA), a novel
mathematically tractable matrix-based feature extraction method
for bimodal biometrics. MCPCA first denotes bimodal biometric
traits such as the left and the right palmprint trait using a complex
matrix and then extracts features from the complex matrix. The new
method offers a unified framework for previous matrix-based PCA
techniques and is supported by a theory which promises that the
technique will be optimal among the class of methods capable of
directly extracting features from complex matrices. We tested
MCPCA on a number of biometric recognition applications and
compared it with both 2DPCA and PCA and found that it classifies
more accurately than 2DPCA and can also obtain low-dimensional
features that represent subjects well. This paper has the following
main contributions to the area of biometrics. The first is that it
proposes for the first time the matrix-based complex PCA technique
for biometric fusion, which provides readers with a novel feature
extraction technique. The second contribution is that the paper
thoroughly analyzes and presents the theoretical foundation of the
proposed method. From the viewpoint of applications, the proposed
method is significant in the following two ways: First, it enables us
to directly deal with bimodal biometrics using a simple matrix-
based method. Second, the proposed method extends the principal
component analysis methodology. Moreover, experimental results
show that the proposed method is a valid and attractive technique
for implementing bimodal biometrics. On the other hand, the
proposed method does require that the two matrices representing
the two biometric traits should be of the same dimensions. In real-
world applications this requirement may not be satisfied. However,
as shown in the experiments, it is possible to overcome the problem
by resizing one of the two matrices or cropping larger images.
Another potential disadvantage of the proposed method is that naive
MCPCA might produce more data items than other feature extraction
methods. However, as shown in Section 4, the proposed two-step
MCPCA can overcome this disadvantage.

The remainder of the paper is organized as follows. In Section 2
we present the matrix-based complex PCA technique. In Section 3
we describe its theoretical properties. In Section 4 we describe a
two-step feature extraction scheme for MCPCA. In Section 5, we
describe some experiments. Section 6 offers our conclusion.
2. MCPCA: a matrix-based complex PCA technique

In this section, we propose and formulate our novel feature
extraction method, matrix-based complex PCA (MCPCA), so called
since it appears to be formally analogous to PCA and is based on
complex matrices. Suppose there are two matrices representing two
different biometric traits of one subject. Further, assume that the
two matrices are of the same dimensions. If the two matrices
associated with the k-th subject are Ak and Bk, we can define a
complex matrix Ck as Ck ¼ Akþ iBk. Hence, Ck can denote the k-th
subject. The complex matrix allows us to integrate two representa-
tions of one subject into a simple denotation. This approach is
especially suitable for real-world applications such as palmprint-
based personal identification where the use of complex matrices
allows subjects to be more reliably identified by using the
information from two palmprints (one from each palm) rather than
from just one palm as in most palmprint authentication approaches.

The basic idea of MCPCA is that feature extraction of a complex
matrix is performed by projecting the complex matrix rather than
the corresponding vector onto complex vectors (i.e. transforming
axes). As a result, for a complex matrix, one transforming axis
produces one feature in the form of a vector. If multiple
transforming axes are used, we will obtain as many features, in
the form of vectors, as there are transforming axes. As presented
later, transforming axes are eigenvectors of the generative matrix
of MCPCA.

In feature extraction, a feature is the result produced by
projecting the sample onto the transforming axis. If C is a complex
matrix denoting one bimodal biometric sample of a subject and X

is a transforming axis in the form of a complex vector, then the
feature extraction result of C with regard to X will be Y ¼ CX.
Because C and X are respectively a complex matrix and complex
vector, Y is also a complex vector. Suppose that the complex
matrix C has the dimension of m�n and the complex vector X has
the dimension of n�1, then Y has the dimension of m�1. The
matrix presented in formula (1) can be used as the generative
matrix of MCPCA.

G¼ EðCHCÞ: ð1Þ

We regard the eigenvectors of this matrix as transforming axes. In
this paper, the superscript H denotes the conjugate transpose of a
complex matrix. This means CH ¼ C

T
. In practice, G can be

evaluated by G¼
PN

k ¼ 1 CH
k Ck=N, where N is the number of

complex matrices. The total number of available eigenvectors is
the same as the number of columns of the complex matrix.
Suppose that the dimension of every complex matrix is m�n,
then there are a total of n available transforming axes. We can
select tðtrnÞ transforming axes from the n transforming axes.
Since each transforming axis can produce a feature in the form of
a vector for a complex matrix by projecting the complex matrix
onto the transforming axis, we can obtain t features in the form of
vector, which can form a novel lower dimensional m� t matrix.
We can also say that the t transforming axes transform the m�n

complex matrix into an m� t complex matrix. An issue closely
related to this is the matter of deciding which eigenvectors should
be used as the transforming axes. Indeed, we should select the
eigenvectors corresponding to the largest eigen-values as trans-
forming axes to extract features of samples, as is done in the
implementation of PCA.

MCPCA can be regarded as a unified framework of matrix-based
PCA techniques and within this framework we can present 2DPCA
as a special form of MCPCA. This is because if the imaginary parts of
complex matrices representing sample data are null, MCPCA will be
degraded and identical to 2DPCA as proposed in [27].

As we know, GLRAM [39], 2DLDA [40,41] and BDPCA [42] also
have been used to directly extract features from matrices. 2DLDA
is an extension of linear discriminant analysis (LDA) developed for
one-dimensional vector data. GLRAM can be viewed as a more
general technique on matrix decomposition. BDPCA is similar to
MCPCA as follows: both of them are based on the principal
component analysis methodology and use two procedures to
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extract features from matrix data [42]. On the other hand, BDPCA
and MCPCA are proposed for real matrix samples and complex
matrix samples, respectively. MCPCA is different from 2DLDA in
the following two aspects: first, MCPCA is indeed an unsupervised
method in which the information of class label of samples is not
exploited in the training phase whereas 2DLDA is a supervised
method. Similar to LDA, when exploiting the statistical informa-
tion of training samples to produce the projecting axis, 2DLDA
also take into account the class label of training samples. Second,
MCPCA is suitable for complex-matrix data whereas 2DLDA is
developed for real matrices. MCPCA is different from GLRAM in
the following two aspects: first, GLRAM has no closed-form
solution and it usually needs a high computational cost whereas
MCPCA has the closed-form solution and can be implemented
easily. Second, besides MCPCA and GLRAM are proposed for
complex-matrices and real matrices, respectively; they have
different motivations. While MCPCA projects a complex matrix
onto a complex vector to produce the resultant vector, it requires
that the resultant vector can reconstruct the complex matrix with
the minimum error. However, GLRAM attempts to use the product
of three matrices L;Mi;R to approximate a real matrix Ai and
requires that there be the minimum approximate error and both L

and R be matrices with orthogonal columns.
3. Theoretical foundation of MCPCA

In this section, we consider the theoretical properties of
MCPCA and show that MCPCA is optimal among the class of
techniques that are able to directly extract features from complex
matrices.

Property 1. G is a Hermitian matrix.

Proof. According to (1), it is clear that ðGÞH ¼ G. Hence, G is a
Hermitian matrix. Furthermore, the following Property 2 also
holds. &

Property 2. All the eigen-values of G defined by (1) are real

numbers.

As we know, the covariance matrix of PCA has only non-negative
real eigen-values and the eigenvectors of the covariance matrix
of PCA are used as transforming axes for feature extraction. It is
possible to use the eigen-values to evaluate the effectiveness on
feature extraction of the corresponding eigenvectors. Indeed, it is
not hard to prove that, for PCA, when selecting the eigenvectors
of the covariance matrix as transforming axes, the corresponding
eigen-values should be as large as possible. The following
theorem presents the details of a similar principle for MCPCA.

Theorem 1. For MCPCA-based feature extraction, the eigenvector of

G corresponding to the largest eigen-value is the top-priority

transforming axis. If we need t transforming axes to transform the

samples into a new space, the best candidates are the t eigenvectors

of G associated with the first t largest eigen-values, as they have the

lowest reconstruction error.

Proof. Suppose that the complex matrix C can be accurately
expressed by C ¼

Ps
i ¼ 1 YiX

H
i with the orthogonal constraint of

XH
i Xj ¼ 0ðia jÞ, XH

i Xj ¼ 1ði¼ jÞ, where Yi and Xi are both complex

vectors. Right multiplying C ¼
Ps

i ¼ 1 YiX
H
i by Xi allows us to obtain

CXi ¼
Ps

i ¼ 1 YiX
H
i Xi. Because of the orthogonal constraint condi-

tion on Xi, we further have Yi ¼ CXi. Let Ĉ ¼
Pt

i ¼ 1 YiX
H
i , trs. Here

s is defined as follows: if the size of the matrix is m�n, s will be
numerically equivalent to n. This also means that MCPCA can
produce at most n transforming axes and n ‘‘features’’.
Ĉ can be constructed after Xi, Yi are obtained, so Ĉ is called a

reconstruction matrix of C. We can formulate the mean-square

error between C and Ĉ as follows: EðJC � ĈJ2
F Þ ¼ E½trððC � Ĉ Þ

ðC � Ĉ ÞHÞ�, where J � J2
F denotes the square of the Frobenius norm

of a matrix. EðJC � ĈJ2
F Þ is also called the squared reconstruction

error. Due to the orthogonal constraint of Xi and the formula

Yi ¼ CXi, we have EðJC � ĈJ2
F Þ ¼

Ps
i ¼ tþ1 XH

i GXi, G¼ EðCHCÞ. Ob-

viously, the optimal Xi should minimize EðJC � ĈJ2
F Þ and satisfy

the above orthogonal constraint of Xi. We solve this minimization

problem using the Lagrange multiplier method. Defining the

Lagrangian function L¼
Ps

i ¼ tþ1 XH
i GXi � liðX

H
i Xi � 1Þ and requir-

ing the derivative of L with regard to Xi to be zero yield GXi ¼ liXi.

This implies that if we require EðJC � ĈJ2
F Þ to reach its extremes,

the corresponding Xi must be the eigenvectors of G. Note that

since GXi ¼ liXi implies XH
i GXi ¼ liX

H
i Xi ¼ li, we have

EðJC � ĈJ2
F Þ ¼

Ps
i ¼ tþ1 li. Assume that the eigen-values of G are

l1Zl2Z � � �ZlnZ0 and the corresponding eigenvectors are

X1;X2; . . . ;Xn. If X1;X2; . . . ;Xt are selected as t transforming axes,

then the reconstruction error will be
Pn

i ¼ tþ1 li, which is exactly

the minimum construction error for feature extraction using t

transforming axes. Thus, Theorem 1 is certain.

Theorem 1 can also be intuitively illustrated. Taking the

eigenvectors corresponding to the largest eigen-values as trans-

forming axes also implies that the obtained features capture the

data components that most vary. In other words, we might say

either that the corresponding features of different original

samples will exhibit large statistical differences or that these

transforming axes can capture the most representative informa-

tion from different original samples. As a result, the features

obtained using these transforming axes are able to reconstruct the

original samples with only a small error. We might also note that

the feature components that the principal component analysis

methodology produces are statistically not correlated. Thus, PCA

is also regarded as a decorrelation technique.

Since the generative matrix of MCPCA is generated from the

complex matrix consisting of two real matrices, the generative

matrix and feature extraction result appear to be statistically

associated not only with the information from the two real

matrices themselves but also with their cross-bred information.

This can be formally demonstrated as follows: Let A, B be two real

matrices of the same dimensions. If C is a complex matrix and

defined as C ¼ Aþ iB, then we have CHC ¼ ðAþ iBÞHðAþ iBÞ ¼

ðAT � iBT ÞðAþ iBÞ ¼ AT AþBT Bþ iðAT B� BT AÞ. AT B and BT A represent

the cross-bred information of A, B. Usually AT B� BT A is not equal

to zero, so we say that CHC contains the cross-bred information of

A, B. Since we use A, B to denote two biometric traits and the

generative matrix of MCPCA is G¼ EðCHCÞ, transforming axes

generated from MCPCA i.e. eigenvectors of G will be statistically

directly related not only to the two biometric traits themselves

but also to the cross-bred information generated from them. As a

result, the feature extraction result will be statistically associated

with the cross-bred information mentioned above since it is

obtained by projecting the complex matrix denoting the sample of

a subject onto the transforming axis of MCPCA. &

4. Two-step MCPCA to produce features with few data items

One of the goals of feature extraction is the reduction of the
dimensionality of original samples. However, one difficulty with
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MCPCA as presented to this point is that the features it obtains may
contain more data items than those obtained using traditional PCA
and as a result classification using MCPCA will be less efficient than
PCA classification. The reason for this is as follows. Referring to
each real number in the obtained features as one data item, we
note that one real number consists of one data item whereas one
complex number consists of two data items. Each feature obtained
using MCPCA will be one complex vector consisting of a number of
complex numbers, whereas every feature obtained using PCA is just
a real number. So, if MCPCA and PCA extract an equal number of
features from one sample, MCPCA features will contain many more
data items than PCA features and classification of MCPCA-features
will be correspondingly less efficient.

To improve the efficiency of classification of MCPCA-features
we apply an additional feature extraction process. As noted in
Section 3, when we extract a feature for a complex matrix using a
transforming axis, the feature extraction result will be a complex
vector. If tðtrnÞ transforming axes are used for feature extraction,
we will obtain t complex vectors. These t complex vectors can
form an m� t complex matrix. As a result, we say that MCPCA
transforms a bimodal biometric sample represented by an m�n

complex matrix into an m� t complex matrix. We call these m� t

complex matrices feature matrices and call the corresponding
feature extraction the first feature extraction process. We can also
carry out another feature extraction process (the second feature
extraction process) to further transform the obtained m� t feature
matrices into a lower-dimensional q� tðqrmÞ complex matrix.
This is presented as follows. We denote Bi as the feature matrix of
the i-th training sample. A complex matrix P is defined as
P¼

PN
i ¼ 1 BiB

H
i =N. Obviously, Bi is an m by t complex matrix and P

is an m by m complex matrix. We regard P as the generative
matrix and solve for its eigenvectors and eigen-values. Selecting a
number of eigenvectors of P as transforming axes, we can carry
out feature extraction for all the Bi. When selecting transforming
axes, the corresponding eigen-values should be as large as
possible. After the second feature extraction process is imple-
mented, the m� t feature matrix Bi is further transformed into a
q� tðqrm; trnÞmatrix, where q is the number of the transform-
ing axes used in the second feature extraction process. Hereafter
we refer to feature extraction using both the first and second
feature extraction processes as two-step MCPCA and refer to the
first feature extraction process as naive MCPCA.

When we use the features obtained using two-step MCPCA to
classify samples, we can classify more efficiently because these
features have fewer data items than those obtained using naı̈ve
MCPCA. The computational complexities of the classification pro-
cesses associated with naive MCPCA and two-step MCPCA can be
expressed as OðmtÞ and OðqtÞ respectively, where qrm. Moreover, as
presented in Section 5, when producing the best performance two-
step MCPCA obtains the features that include fewer data items than
the features obtained using 2DPCA. This also means that two-step
MCPCA can classify more efficiently than 2DPCA.

PCA, 2DPCA and MCPCA all should solve the eigenvectors of
the corresponding generative matrices. Indeed, when implementing
the above methods, the main computational burden is caused by the
solving of the eigenvectors. For different methods, we analyze
the computational complexity of solving the eigenvectors as follows.
We assume that each image is an m�n matrix, then for PCA using
bimodal biometric traits, the generative matrix is 2mn�2mn, and
the computational complexity of solving the eigenvectors is Oðm3n3Þ.
As for complex-PCA, since the generative matrix is an mn�mn

complex matrix, the computational complexity of solving the
eigenvectors is Oðm3n3Þ. Thus, it is clear that MCPCA is computa-
tionally more efficient than complex-PCA. For a general 2DPCA
method using a single modal biometric image, since the generative
matrix has the dimension of n�n, the computational complexity of
solving the eigenvectors is Oðn3Þ. For example, this is the computa-
tional complexity of left 2DPCA and right 2DPCA (Section 5.1) when
solving the corresponding eigenvectors. Since score 2DPCA first
implements the 2DPCA method for each of the two biometric traits, it
also has the computational complexity Oðn3Þ when solving the
eigenvectors of the generative matrix. For combination 2DPCA,
because two m�n biometric images are combined to form an
m�2n matrix and the generative matrix is a 2n�2n matrix, the
computational complexity of solving the eigenvectors is also Oðn3Þ.
As for MCPCA, when solving the eigenvectors of the corresponding
generative matrices, the first and the second feature extraction
processes have the respective computational complexities of Oðn3Þ

and Oðm3Þ. Thus, PCA using bimodal biometric traits and complex-
PCA have the highest computational complexity. If there is only a
small difference between m and n, the computational complexity of
MCPCA will be similar to that of combination 2DPCA, score 2DPCA,
and a general 2DPCA method using a single modal biometric image.
We can conclude that when solving the eigenvectors of the
generative matrix, MCPCA is much more efficient than PCA using
bimodal biometric traits and its computational complexity is similar
to that of combination 2DPCA, score 2DPCA and 2DPCA using a single
biometric trait.

In summary, the second feature extraction process has the
following rationales: First, it allows us to use less data to represent
the original bimodal biometric traits and consequently the
classification procedure will take a shorter time. Second, experi-
mental results (presented later) show that generally the second
feature extraction process may produce a higher accuracy. In
addition, it should be pointed out that similar to the two feature
extraction processes of BDPCA, the use of two-step MCPCA allows
us to capture the major variations of original data (matrices) in
the horizontal and vertical direction, respectively.

The two feature extraction processes have the following
similarities: The first and the second feature extraction processes
of MCPCA obtain the data components that most vary in,
respectively, the horizontal and vertical directions. Capturing data
components that most vary is the essence of the principal
component analysis methodology. In addition, correlation not
only exists in the vertical direction but also exists in the horizontal
direction of the bimodal biometric sample. The first extraction
process can thus eliminate correlation in the horizontal direction
and the second feature extraction process can eliminate correla-
tion in the vertical direction.

There are however, a number of differences between the first
and second feature extraction processes. First, the sample for the
first feature extraction process is an m�n complex matrix,
whereas for the second feature extraction process it is an m� t

complex matrix. Second, the second feature extraction process
allows the result of the first feature extraction process to be
further transformed into fewer data items. The main steps of two-
step MCPCA are summarized in the flowchart in Fig. 1.

It should be pointed out that classification accuracy can also be
affected if the second feature extraction process excessively
reduces the number of dimensions, rendering the features no
longer able to effectively represent the original bimodal biometric
sample. This is similar difficulty to that faced by the traditional
principal component analysis technique. While a suitable number
of principal components that capture the major variations of the
data can effectively represent the original data, too few principal
components will leave major variations unrepresented.
5. Experiments and results

We tested MCPCA on a palmprint-based personal identification
application (Section 5.1), with bimodal biometrics using
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the generative matrix of all the complex matrices. 

Step 3. Solve the t  eigenvectors of the generative matrix corresponding to the first t

largest eigenvalues. 

Step 4. Perform feature extraction for each bimodal biometric sample by projecting it onto 

the obtained t  eigenvectors. This process is the first feature extraction process of 

MCPCA. The features of each bimodal biometric sample form an tm ×  complex 

matrix. 

Step 5. Perform the second feature extraction process for each bimodal biometric sample. 

This allows an original bimodal biometric sample represented by an nm ×  complex 

matrix to be finally transformed into a tq ×  complex matrix. 

Step 6. Carry out the classification procedure for test samples. 

Step 1. Pair one kind of nm × biometric image with another kind of nm × biometric image 

to create a bimodal biometric sample. Suppose each image is nm × .

Step 2. Denote the bimodal biometric samples using nm × complex matrices and calculate 

Fig. 1. The main steps of two-step MCPCA.
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palmprint and face images (Section 5.2), and with bimodal
biometrics using ear and face images (Section 5.3). In each
experiment, training samples (in the form of real or complex
matrices) were centralized in advance. That is, the mean of all the
samples denoted by real or complex matrices were subtracted
from each of the samples and the samples were then newly
denoted using the subtraction results. We should point out that
since MCPCA is derived from the principal component analysis
methodology, the focus of experimental comparison is mainly on
the comparison between the proposed feature level fusion
method i.e. MCPCA and other fusion schemes including the
matching score level fusion scheme and other feature level fusion
schemes on the basis of a principal component analysis technique.
This confines us to making comparisons between the same kind of
techniques integrated with different fusion schemes, producing a
more persuasive comparison.

We implement PCA for bimodal biometric traits as follows: we
first transform each image matrix into a one-dimensional vector.
Suppose that each matrix is m�n. The corresponding one-
dimensional vector then has mn elements. We combine the two
vectors associated with each set of paired images (bimodal
biometric traits) to form a 2mn-dimensional vector. Finally we
calculate the generative matrix of these 2mn-dimensional vectors
denoting bimodal biometric traits and implement PCA. The
generative matrix is a 2mn�2mn matrix, which could be very
large. For example, if each image is denoted by a 128�128 matrix,
the generative matrix of PCA will be a 32 768 by 32 768 matrix. In
this section, we also compare MCPCA and complex vector PCA in
[32] which exploits both left and right palmprint images as a
complex one-dimensional vector.
5.1. Experiment on palmprint-based personal identification

We compared the performance of MCPCA with that of 2DPCA
in four ways: using only left palmprint images (left 2DPCA); using
only right palmprint images (right 2DPCA); using both left and
right palmprint images as a combined real matrix (combination
2DPCA); and using the fusion information at the matching score
level (score combination). Combination 2DPCA involves the direct
combination of two m�n image matrices denoting bimodal
biometric traits of one subject to form a new real m�2n matrix
and then implements 2DPCA using these m�2n matrices. Score
combination works as follows: 2DPCA is first applied to extract
features from left and right palmprint images, respectively. Then
the matching scores of the left and right palmprint features are
calculated and combined by the simple sum rule to produce the
final matching score to be used in personal identification. We note
that the score fusion solution in [43] has some advantages.
However, as pointed out by the authors of this reference, the
proposed solution is only a principled and general approach that
is optimal when the genuine and impostor matching score
distributions are either known or can be estimated with high
accuracy. As for our experiments, it seems that the limited sample
number and the high-dimensional features are not advantageous
for the accurate estimate of the matching score distribution at all,
so we do not adopt the score fusion solution in the mentioned
reference. These experiments used the nearest neighbor classifier
to classify the feature extraction results generated from all the
methods except for score combination. Score combination
classifies a test sample as follows: It first identifies the training
sample that has the largest final matching score with respect to
this test sample and considers that the test sample is from the
same class (identity) as the identified training sample.

The palmprint database is from the Hong Kong Polytechnic
University and contains palmprint images from 189 subjects. Each
subject provided 10 left palm images and 10 right palm images [44].
Palmprint subimages of 128�128 were extracted from the original
images [45]. For high computational efficiency, we used palmprint
images of all the subjects. Fig. 2 shows three original palmprint
images and the reconstructed images obtained using naı̈ve MCPCA.

The training samples for left 2DPCA are two arbitrarily selected
left palmprint images. The eight remaining left palmprint images
from each of the subjects are taken as test samples of left 2DPCA.
Right 2DPCA is treated in the same way except that it uses the
images of the right palm. To implement MCPCA, combination
2DPCA, and score combination, we pair the left palmprint images
with right palmprint images of each subject in sequence, the first
left palmprint image of every subject with the first right
palmprint image of the same subject and so on. We refer to a
left palmprint image and the paired right palmprint image as one
bimodal sample. Two bimodal samples are arbitrarily selected as
training samples for MCPCA, combination 2DPCA, and score
combination. The remaining bimodal samples are used as test
samples of these methods. Experiments are conducted on all the
training sets and the corresponding testing sets.
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Fig. 2. Three palmprint images and the reconstructed images obtained using naı̈ve MCPCA. The images in column (a) are the three original palmprint images. The first two

are images from the left and right palmprints of the same person and the third image is from another individual. The images in columns (b), (c), and (d) are reconstructed

images based on respectively the first 20, 40, and 60 transforming axes generated from naı̈ve MCPCA.

Fig. 3. Variation of the mean of the classification right rate of each of different

feature extraction methods in relation to the number of the eigenvectors used in

feature extraction. While the vertical coordinate axis shows the mean of the

classification right rate, the horizontal coordinate axis shows the number of the

eigenvectors used in feature extraction.

Table 1
The minimum values of the classification error rates on the palmprint-based

personal identifications using different feature extraction methods and the

dimension of the corresponding features extracted from one sample.

Methods Minimum

classification

error rate (Best

performance) (%)

Dimension of the corresponding

features of one sample

Two-step MCPCA 4.0 1 by 16 complex matrix (a

complex vector having 16 entries)

Naive MCPCA 4.1 128 by 15 complex matrix

Left 2DPCA 15.5 128 by 75 real matrix

Right 2DPCA 17.6 128 by 79 real matrix

Combination

2DPCA

5.9 128 by 21 real matrix

Score combination 5.4 One 128 by 11 matrix and another

128 by 19 matrix

Complex vector

PCA

4.8 Complex vector with 60 data

items

PCA 5.0 Vector with 31 data items

Since score combination simultaneously exploits the left and right palmprint

image for authentication and the features of each image are obtained using 2DPCA,

the features associated with score combination consist of two feature matrices.

The features associated with any other matrix-based feature extraction method

consist of one feature matrix.
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Fig. 3 shows the variation of the mean of the classification right
rate of each of the feature extraction methods in relation to the
number of the eigenvectors used in feature extraction. Naı̈ve
MCPCA clearly outperforms combination 2DPCA, score combina-
tion and complex vector PCA notwithstanding combination
2DPCA, score combination and complex vector PCA also use
information from both the left and right palmprints.

Table 1 shows the minimum classification error rate for each
feature extraction method. Two-step MCPCA has a minimum error
rate of 4.0%, smaller than any method. Table 1 also shows that the
best classification result for two-step MCPCA corresponds to
lower-dimensional features than left 2DPCA, right 2DPCA,
combination 2DPCA, and score combination. The 5.0% minimum
error rate of PCA occurs when the feature of one sample is in the
form of a vector with 31 data items. It appears that when
representing the original samples PCA can use fewer feature
components than the other methods shown in the table. On the
other hand, the transforming axes of PCA-based feature extraction
should be achieved by solving a very high-dimensional eigen-
value problem. In this experiment, the generative matrix of PCA is
a 32 768�32 768 matrix. Obviously this problem will involve a
heavy computation and memory burden. In contrast, the
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Fig. 5. Variation of the mean of the classification right rate of each of different

feature extraction methods with the number of the eigenvectors used in feature

extraction. While the vertical coordinate axis shows the mean of the classification

right rate, the horizontal coordinate axis represents the number of the

eigenvectors used in feature extraction.

Table 2
The minimum values of the classification error rates obtained using different

methods and the dimension of the corresponding features extracted from one

sample.

Methods Minimum classification

error rate (Best

performance) (%)

Dimension of the

corresponding features

of one sample

Two-step MCPCA 7.5 A 8 by 12 complex matrix

Naive MCPCA 8.1 A 50 by 8 complex matrix

AR 2DPCA 40.3 A 50 by 7 real matrix

Left palmprint 2DPCA 10.4 A 50 by 9 real matrix

Combination 2DPCA 8.3 A 50 by 11real matrix

PCA 8.9 A vector with 30 data items
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generative matrix of naı̈ve MCPCA is just a 128 by 128 complex
matrix and the generative matrix of the second feature extraction
process in two-step MPCA is of a lower dimension. Thus, MCPCA is
able to compute transforming axes more efficiently than PCA.

5.2. Experiment on bimodal biometrics using face and palmprint

images

In the absence of an already existing database of bimodal face
and palmprint biometrics, we simulated bimodal face and
palmprint biometrics by using the AR face database and the left
palmprint images described in Section 5.1. The AR face database
includes more than 100 subjects and more than 4000 face
images showing faces with different facial expressions, in
varying lighting conditions and occluded in several ways. We
selected the first ten non-occluded images of the first 120
individuals. The face portion of each image was cropped and
normalized to form a new image of 50� 40 pixels [27]. Each left
palmprint image was then cropped to obtain a new palmprint
image of the same size as the face images. Fig. 4 shows three
cropped face images and the corresponding reconstructed
images obtained using naı̈ve MCPCA.

We created a virtual subject with bimodal biometric traits by
pairing the face images selected from the AR database with left
palmprint images in the palmprint database in sequence, the first
face image with the first left palmprint image and so on. Each
virtual subject thus possesses ten paired bimodal biometric traits,
i.e. a face image and a left palmprint image. Creating virtual
subjects in this way would appear to be a reasonable way to
simulate a bimodal biometrics database. The all available 120
virtual subjects were used to test different methods using bimodal
biometric traits.

MCPCA, combination 2DPCA, and score 2DPCA identify 120
virtual subjects using their respective procedures presented in
Section 5.1 and the information of both the face images and left
palmprint images, whereas ‘‘AR 2DPCA’’ uses only face images and
‘‘left palmprint 2DPCA’’ uses only left palmprint images to identify
120 real subjects. In the implementations of MCPCA, PCA, score
2DPCA, weighted score 2DPCA, and combination 2DPCA, the first
two paired bimodal traits of each virtual subject are taken as
training samples and the others are used as test samples. When
Fig. 4. Three original face images from three bimodal traits and the reconstructed

face images obtained using naı̈ve MCPCA. The first column shows the three

original face images, and the second to the sixth columns show the reconstructed

face images which are constructed respectively using 2, 4, 6, 8, 10 eigenvectors of

the generative matrix of naı̈ve MCPCA.
‘‘AR 2DPCA’’ is carried out, the first two face images of the
corresponding 120 real subjects are used as training samples and
the others are regarded as test samples. The implementation of
‘‘left palmprint 2DPCA’’ takes the first two left palmprint images
of the corresponding 120 real subjects as training samples and the
remainder as test samples. ‘‘Weighted score 2DPCA’’ is referred to
as the score fusion method using the weighted sum rule rather
than the simple sum rule in Score 2DPCA. Weighted score 2DPCA
exploited the authentication accuracy of the biometric trait to set
the weight. Actually, in this section the weight was set to the ratio
of the accuracy obtained using ‘‘left palmprint 2DPCA’’ or ‘‘AR
2DPCA’’ to the sum of the two accuracies of ‘‘left palmprint
2DPCA’’ or ‘‘AR 2DPCA’’.

Fig. 5 shows the variation of the mean of the classification right
rate of each of different feature extraction methods against the
number of the eigenvectors used in feature extraction. Table 2
shows the minimum classification errors of different methods.
MCPCA achieves a lower error rate than combination 2DPCA, score
2DPCA, weighted score 2DPCA, left palmprint 2DPCA and AR
2DPCA.

Table 2 shows that two-step MCPCA is able to obtain lower-
dimensional features for original samples than naive MCPCA.
Table 2 also tells us that the minimum error obtained using
two-step MCPCA is lower than that obtained using the other
methods.
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Fig. 6. The cropped ear images of two subjects and the used face images of two persons from ORL. Ear images and face images are shown in the first and second rows,

respectively.

Table 3
The minimum values of the classification error rates of different methods and the

dimension of the corresponding features of one sample.

Methods Minimum classification

error rate (Best

performance) (%)

Dimension of the

corresponding features

of one sample

Two-step MCPCA 0 A 6 by 6 complex matrix

Naive MCPCA 4.4 A 53 by 6 complex matrix

Ear 2DPCA 5.9 A 53 by 4 real matrix

ORL 2DPCA 10.3 A 53 by 2 real matrix

Combination 2DPCA 4.4 A 53 by 14 real matrix

PCA 2.9 A vector with 16 data items

Fig. 7. Variation of the mean of the classification right rates of different feature

extraction methods against the number of the eigenvectors used in feature

extraction. The x-ordinate shows the number of the eigenvectors used for

feature extraction. The y-ordinate shows the classification accuracies of different

feature extraction methods.
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5.3. Bimodal biometric experiment based on ear and face images

We simulated a bimodal biometric database using an ear
image database and the ORL face database. The ear database is
made up of six ear images collected from each of 17 subjects for a
total of 102 images [46]. This database was downloaded from the
internet [47]. The downloaded images are of different sizes and so
were all cropped to 53�32 pixels. The cropped ear images of two
subjects are shown in the first row of Fig. 6.

The ORL database [48] includes 400 face images from 40
subjects. The images include variations in facial expression
(smiling/not smiling, open/closed eyes) and facial detail. The
subjects are in an upright, frontal position with tolerance for some
tilting and rotation of up to 201. Each of the face images contains
112�92 pixels. Only the first six face images of the first 17
subjects of the ORL database are involved in this experiment. We
resized these face images to obtain new ones of the same size as
the cropped ear images as follows: first, every image was cut to
106�92 pixels by preserving the central pixels in the original
image and discarding the remaining 6�92 pixels located on the
boundary of the original image. These images of 106�92 pixels
were then reduced to 53�32 pixels by using the following
procedure: The first and last columns of each image were
recorded as the first column and the last columns (i.e. the 1st
and 32th columns) of a new face image. We then resized the
remaining image region (106�90 pixels) to 53�30 pixels and
obtained final new face images of 53�32 pixels to be used in
personal identification.

We also created virtual subjects to simulate bimodal biometrics
using the ear and face images. We paired the cropped ear images
to the final face images in sequence, the first ear image with the
first face image, and so on. Each of 17 virtual subjects thus
possesses 6 bimodal biometric traits, each consisting of one ear
image paired with one face image. In this experiment, ‘‘ear 2DPCA’’
means the 2DPCA method using only ear images, while ‘‘ORL
2DPCA’’ means the 2DPCA method using only ORL face images.
Combination 2DPCA involves the direct combination, as presented
in Section 5.1, of ear and face images. Score 2DPCA identifies
personal identities using the sum of the matching scores of ‘‘ear
2DPCA’’ and ‘‘ORL 2DPCA’’. In this section ‘‘weighted score 2DPCA’’
is also referred to as the score fusion method using the weighted
sum rule and also exploited the authentication accuracy of the
biometric trait to set the weight. Actually, in this section the
weight was set to the ratio of the accuracy obtained using ‘‘ear
2DPCA’’ or ‘‘ORL 2DPCA’’ to the sum of the two accuracies of ‘‘ear
2DPCA’’ and ‘‘ORL 2DPCA’’. In implementing naı̈ve MCPCA, two-
step MCPCA, combination 2DPCA, score combination and weighted
score 2DPCA, we arbitrarily selected two paired bimodal traits
from each virtual subject as training samples and treated the
others as test samples. As a result, there were 15 possible training
sample sets and the corresponding 15 test sample sets. Experi-
ments on all the 15 cases were conducted for all the methods.
Fig. 7 shows the mean of the classification right rates of all the
methods. It is clear that naive MCPCA has the highest
classification accuracy. From Fig. 7, we also know that weighted
score 2DPCA can produce a higher accuracy than both ‘‘ear
2DPCA’’ and ‘‘ORL 2DPCA’’, whereas ‘‘score 2DPCA’’ obtains a
lower accuracy than ‘‘ear 2DPCA’’. Table 3 shows the minimum
values of the classification error rates of two-step MCPCA and
other methods. Two-step MCPCA has a lowest classification error
rate of 0%. Combination 2DPCA and PCA using the ear and face
image have the respective lowest classification error rate of 4.4%
and 2.9%. When obtaining its lowest classification error rate,
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MCPCA uses the features that consist of just a few data items,
which means that it makes only a small demand on memory. This
also means that the classification of features obtained using two-
step MCPCA will be very computationally efficient.

6. Conclusion and discussion

We have proposed MCPCA, a novel method that uses a complex
matrix to denote bimodal biometrics traits. MCPCA is able to
directly extract features from complex matrices and has been
evaluated by theoretical analysis and experiments. MCPCA can
also be seen as providing a unified framework for previously
developed matrix-based PCA techniques. It is also mathematically
tractable. MCPCA can not only identify more accurately than
2DPCA and PCA, it is particularly suited to extracting the features
of image-based bimodal biometric data. The proposed two-step
MCPCA usually obtains features that have fewer data items than
naı̈ve MCPCA and still well represents the original complex
matrices. Moreover, two-step MCPCA can also lead to excellent
classification performance. The fact that MCPCA (naı̈ve MCPCA or
two-step MCPCA), combination 2DPCA and score combination all
perform feature extraction for personal identification using the
same bimodal biometric traits but MCPCA can lead to better
classification result is attracting. Indeed, when MCPCA is used to
integrate two classes of biometric traits to form a complex space,
the two parts (the real part and imaginary part) in the complex
matrix can be cross-bred to produce new information through
feature extraction. As a result, the authentication process exploits
not only the bimodal biometric traits themselves but also the
cross-bred information for personal authentication.

Since the proposed method should use two matrices with the
same dimension to construct the complex matrix, it cannot be
directly applied in real-world applications where the images of
two biometric traits have different dimensions. However, we can
address this problem as follows: In the phase of sample
acquisition of the bimodal biometric traits, we may not control
the dimension of the sample of each biometric trait. However,
given bimodal biometric traits with different dimensions, we can
bring the samples of the bimodal traits all to the same dimension
by resizing one biometric trait sample or by cropping the trait
sample with a larger dimension. For example, one resizing scheme
has been proposed for the ear and face fusion experiment as
shown in Section 5.3. Another example is shown in Section 5.2,
where we crop the palmprint image and obtain a new palmprint
image with the same size as the face image. This allows the
proposed method to be applied since the cropping or resizing
process has made the bimodal biometric traits have the same
dimensions. In a specific real-world application, the cropping or
resizing scheme might be different from the scheme used in
Sections 5.2 and 5.3.
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