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Highly complex neural
networks with many layers,
millions or billions of
neurons, and sophisticated
architectures

Fit billions of training samples

Deep learning

Trained with GPU clusters
with millions of processors
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Machine learning with small data: overfitting, reducing model complexity

(capacity), adding regularization
Machine learning with big data: underfitting, increasing model complexity,

optimization, computation resource

Prediction accuracy

A
Deep learning

Other machine learningtools

Size of training data
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* Face recognition and analysis
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Y. Sun, X. Wang, and X. Tang. NIPS, 2014.
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e Monkey has a face-processing network that is made of six
interconnected face-selective regions

 Neurons in some of these regions were view-specific, while
some others were tuned to identity across views

 View could be generalized to other factors, e.g. expressions?

Winrich A. Freiwald and Doris Y. Tsao, “Functional compartmentalization and viewpoint generalization
within the macaque face-processing system,” Science, 330(6005):845-851, 2010.



Deeply learned features are moderately sparse

s Z’  The binary codes on activation patterns are
, ; very effective on face recognition

e Save storage and speedup face search
dramatically

Activation patterns are more important than
activation magnitudes in face recognition

Joint Hamming distance
9 2 Bayesian (%) (%)
l 0 n/a

- Combined model 99.47
(real values)
Combined model 99.12 97.47

(binary code)



Deeply learned features are selective to
identities and attributes

 With a single neuron, DeeplD2 reaches 97% recognition
accuracy for some identity and attribute
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Deeply learned features are selective to
identities and attributes

e Excitatory and inhibitory neurons (on identities)
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Histograms of neural activations over identities with the most images in LFW
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Deeply learned features are selective to
identities and attributes

* Excitatory and inhibitory neurons (on attributes)
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Histograms of neural activations over gender related attributes (Male and Female)

uelsy  doe|g  dUYM

ueipuj

Neuron 444 1 Neuron448 I Neuron 1081 Neuron421 | Neuron490 | Neuron 282 | Neuron 241 ! Neuron 444

0

R L
I =] S R E— -
S, - S —" - -
[ — . =l - -’ -

Histograms of neural activations over race-related attributes (White, Black, Asian and India)
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Histogram of neural activations over hair-related attributes (Bald, Black Hair, Gray Hair, Blond Hair, and Brown Hair.



Deeply learned features are selective to
identities and attributes

 With a single neuron, DeeplD2 reaches 97% recognition
accuracy for some identity and attribute

1
%) >,
© Q
3 08
S0.8 g
® ngeplE_)2+ @ BWDeeplD2+
S gHigh-dim 506 gHigh-dim
So6 L5P S LBP
2 0.4
© ©
Q [&]
0.4 0.2 : | :
GB CP TB DR GS Male White Black Asian Indian
Identity classification accuracy on LFW with Attribute classification accuracy on LFW with

one single DeeplD2+ or LBP feature. GB, CP, one single DeeplD2+ or LBP feature.
TB, DR, and GS are five celebrities with the
most images in LFW.
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Weights are sparse

v Always respond to a person
X Always no response to a person
?

Uncertain
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Deeply learned features are selective to
identities and attributes

* Visualize the semantic meaning of each neuron

High Resp. <@==fp Low Resp. HighResp. <= TLow Resp.

Gender Hair Color

Face Shape Eye Shape




Attribute 1 Attribute K

Yi Sun, Xiaogang Wang, and Xiaoou Tang, “Sparsifying Neural Network Connections for Face
Recognition,” arXiv:1512.01891, 2015




Attribute 1 Attribute K Explore correlations between
neurons in different layers
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Attribute 1 Attribute K Explore correlations between
neurons in different layers




Alternatively learning weights and net structures

1. Train a dense network from scratch

2. Sparsify the top layer, and re-train the net

3. Sparsify the second top layer, and re-train the net
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Conel, JL. The postnatal development of the human cerebral cortex.

Cambridge, Mass: Harvard University Press, 1959. = A

14 YEARS
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Original deep neural network

Sparsified deep neural network and only keep 1/8 amount of
parameters after joint optimization of weights and structures

Train the sparsified network from scratch

99.3%
98.95%

98.33%

The sparsified network has enough learning capacity, but the original denser
network helps it reach a better intialization
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 Object tracking
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* Tracking by detection is the state-of-the-art

e How to get detectors for general objects with
annotations only in the first frame?

26



ImageNet Challenge
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We observe that for a deep CNN pre-trained on ImageNet, its
neurons have strong selectiveness on object categories

Such CNN provides a large pool of detectors. Its neurons or
its subsets of neurons serve as detectors

The annotation on the first frame can select neurons

22
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 Explore the features pre-trained on massive data and
classification task on ImageNet

* A top convolution layer is more robust and encodes
more semantic features and serves as a category
detector

* A lower convolution layer carries more discriminative
information and can better separate the target from
distractors with similar appearance

 Both layers are jointly used with a switch mechanism
during tracking

e A tracking target, only a subset of neurons are relevant

L. Wang, W. Ouyang, X. Wang, and H. Lu, “Visual Tracking with Fully Convolutional Networks,
ICCV 2015.

”



Observation 1: Although the receptive field of CNN feature maps
is large, activaied feature maps are sparse and localized.
Activated regions are highly correlated to the regions of
semantic objects
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Activation value histograms of feature maps in top (left) and lower (right) layers



Observation 2: Many CNN feature maps are noisy or unrelated
for the task of discriminating a particuiar target from its
background

(c)
(a) Ground truth foreground mask, average feature maps of convolution
layers; average selected feature maps of convolution layers
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e Select feature maps by reconstructing foreground
masks and their significance calculated with BP

The sparse coefficients are computed using the images in the first column and
directly applied to the other columns without change .



Feature Map Selection




Observation 3: Higher layers capture semantic concepts on
object categories, whereas Iower Ilayers encode more
discriminative features to capture intra class variations

(a) (b) (c)

(a) Ground truth target heat map; (b) Predicted heat maps using feature maps of
top convolution layers of VGG; (c) Predicted heat maps using feature maps of lower
convolution layers of VGG



Fully convolutional network based tracker (FCN)

e GNet: capture the category information of the target and is
built on the top layers of VGG

e SNet: discriminate the target from background with similar
appearance and is built on the lower layers of VGG

S SNet

Feature Map
Selection

VGG Net b

Distracter
Detection

(b) Conv4-3 AR Convs-3 T

Feature Map
Selection

(b) VGG network; (c) SNet; (d) Gnet; (e) Tracking results 35



Both GNet and SNet are initialized in the first frame to perform
foreground heat map regression for the target: GNet is fixed and

SNet is updated every 200 frames

SNet is used if the background distractor is larger than a threshold;
otherwise GNet is used

For a new frame, a region of interest (ROI) centered at the last
target location containing both target and background context is
cropped and propagated through the fully convolutional network

SNet

Distracter
Detection Iy
GNet ; = Ael T

Feature Map
Selection

Feature Map
Selection (d) :

(b) VGG network; (c) SNet; (d) Gnet; (e) Tracking results




SNet and GNet




Precision

Precision plots and success plots of
OPE for the top 10 trackers
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Precision plots of OPE
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* Human pose estimation
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Pose estimation result generated by our deep learning algorithm



Using CNN to localize individual joints separately is not reliable
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Model structures on score maps or predicted labels
(with much information loss)

Front-end
CNN

Message passing on score maps



Model interaction between neurons in the same layer?
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e Rich information is preserved at feature map level

 Reason the correlations among body joints at the
feature level

Input image ConvNet Structured feature
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sdew 21005

X. Chu, W. Ouyang, W. Yang, and X. Wang, “Structured Feature Learning for Pose Estimation,”
CVPR 2016.



 Understand the semantic meanings of feature maps
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High responding images for channel 1 for neck

High responding images for channel 3 for lower arm
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e Pass information through convolution between
feature maps and geometrical transform kernels

Updated
feature maps
for elbow
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(b) Kernel

(a) Feature (c) Transformed E .
maps featuremaps Feature maps for Shifted feature maps

lower arm




Feature map update --- Torso

Input Before update

= i =
1

After update Before update After update
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After update

Before update

Input

After update

Before update

Input
I'--_----------

r-------------

Feature map update --- Shoulder
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e Fully connected graph is not a good solution

— Large transform kernels are required to model joints in
distance

— Relationship between some joints are unstable
* Propagate information through intermediate
joints on a desighed graph

e On a bi-directional tree, feature channels at a
joint well receives information from other joints



CNN

Input image
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Fully connected graph is not a suitable structure for our method

Fully connected graph: feature maps for shoulder which collect information directly form all
the other joints.

Tree graph: feature maps for shoulder which collect information directly from upper arm and
indirectly from elbow, lower arm and wrist.
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Experm ent Head | Torso| U.ams| L.ams| M ean
MODEC [25] - - 844 | 521 | 68.3
Tompson etal [31] | - - | 937 | 809 | 873
Chen Yuille [7] - - 97.0 | 868 | 91.9
0 urs 986 | 939 | 979 | 924 | 95.2
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NCOUILO\LOIN Ualdotl)
Experiment Torso Head U.arms L.arms Ullegs L.legs Mean
Andriluka et al. [7] 80.9 74.9 46.5 26.4 67.1 60.7 35.7
Yang&Ramanan [37] 82.9 79.3 56.0 30.8 70.3 67.0 62.8
Pishchulin et al. [27] 87.5 8.1 54.2 339 15.7 68.0 62.9
Eichner&Ferrari et al. [10] 86.2 80.1 56.5 374 743 69.3 64.3
Ouyang et al. [1¥] 85.8 83.1 63.3 46.6 76.5 7.2 63.6
Pishchulin ef al. [23] 88.7 85.1 61.8 45.0 78.9 13.2 69.2
Chen& Yuille [7] 92.7 87.8 69.2 554 82.9 71.0 75.0
Ours 95.4 89.4 76.0 64.3 87.6 83.5 80.8
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e The success of deep learning is not to be simply understood
as using a large number of parameters to fit data. The neural
responses have semantic interpretation, i.e. selectiveness on
classes and object instances

e Such semantic interpretation has a wide range of applications,
including sparsifying networks, object tracking, and human

pose estimation
e Understanding neural semantics help to develop new net
architectures and training strategies
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