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a b s t r a c t 

Compared with its 2D counterpart, a 3D palmprint image contains not only the 3D structure-based but 

also the 2D texture-based features of the palmprint. In this paper, we propose a precision direction code 

and compact surface type (PDCST) method for 3D palmprint representation and identification. Specifically, 

we propose the precision direction code (PDC) to depict the 2D texture-based features by exploiting not 

only the visible but also the potential direction features of the palmprint. Moreover, we use a simple 

yet efficient compact surface type (CST) to represent the 3D structure-based features of the palmprint. 

We combine the PDC and CST forming the PDCST descriptor to represent the multiple level and multi- 

ple dimensional features of 3D palmprint images. The two-phase sparse representation scheme is used 

to perform PDCST-based feature identification. Extensive inter-comparative and intra-comparative exper- 

imental results on three widely used palmprint databases clearly demonstrate the effectiveness of the 

proposed method. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

In modern society, the ability to reliably identify individuals is

ne of the most critical requirements in many personal recogni-

ion applications, including civilian, commercial and forensics ap-

lications [1–4] . The conventional technologies of identifying in-

ividuals are usually based on external token-based or knowledge-

ased means, such as the smart card, password and PIN codes. It is

nown that both the token-based and the knowledge-based means

an be lost, forgotten or even stolen. Biometrics, which refers to

utomatically recognizing individuals based on one’s unique phys-

ological and behavioral traits, can provide us an effective and ef-

cient way for personal authentication. Up to now, biometrics has

een receiving increasing research attention. Various kinds of bio-

etrics traits have been successfully developed, such as face, fin-

erprint, iris, gait and speech, for recognizing individuals [1–6] . 

As a relatively new biometric trait, palmprint based recognition

as also received considerable research attention due to its merits

f high discriminability and ease of collection [7–9] . For example,

almprint contains not only the rich intrinsic principal line fea-

ures but also minutiae points (e.g. ridge endings and ridge bifur-
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ations). These features are deemed to be permanent and unique

o an individual [10,11] . In addition, palmprint image acquisition is

asily accepted by users because of its easy self-positioning. There-

ore, palmprint is a promising biometric trait with the potential

f providing a high accuracy and user-friendliness for personal au-

hentication [12] . 

To date, a variety of effort s have been diverted into palm-

rint recognition [7–16] . Various palmprint recognition technolo-

ies have been developed, including low-resolution palmprint

ecognition and high-resolution palmprint recognition. In general,

he low-resolution palmprint recognition has the ability of achiev-

ng a high accuracy in real-time, which is suitable for civilian and

ommercial usages [17] . Comparatively, high-resolution palmprint

ecognition is mainly used for forensic and law enforcement appli-

ations with high-security requirements [18] . 

For low-resolution palmprint recognition, Zhang et al. [17] pro-

osed a representative palmprint verification system by using the

irection features of palmprint. Since then, various methods were

roposed for palmprint recognition. The original palmprint recog-

ition methods generally focus on the intrinsic features of palm-

rintm, such as the line based features of palmprint [11,19] . Fur-

her, the direction-based coding methods became very active in

ecent years and achieved very promising recognition performance

20–26] . In addition, the common image-based machine-learning

https://doi.org/10.1016/j.patcog.2018.10.018
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methods can also be applied for palmprint recognition. Up to now,

the subspace learning, sparse representation and deep-learning

methods have been successfully used for palmprint recognition

[9,27–29] . Zhang et al. [15] comparatively studied and summarized

the representative methods of palmprint recognition. 

Different from low-resolution palmprint images, high-resolution

palmprint images generally depict the ridge-based features, includ-

ing the ridge pattern and minutiae points, which are highly sim-

ilar as the fingerprint. The representative high-resolution palm-

print recognition methods can be found in [10,18,30] . Previous

works showed us that the ridge orientation, ridge density, minu-

tiae points and the principal lines of the palmprint are the most

significant and frequently used features in high-resolution palm-

print recognition. In general, the high-resolution palmprint images

share similar features as well as feature extraction methods as fin-

gerprint [10,18] . 

Existing palmprint recognition mainly focuses on 2D palmprint

images including the low-resolution and high-resolution palmprint

images. With the rapid development of 3D biometrics, 3D palm-

print recognition is becoming a trend due to its several merits over

the 2D counterpart [31] . For example, 3D palmprint images contain

discriminative surface depth information and are hard to be coun-

terfeited. Therefore, 3D palmprint recognition has the ability to

provide robust personal authentication. The first work of 3D palm-

print recognition was begun with the successful implementation

of a 3D palmprint data acquisition device, with which the first 3D

palmprint database was established. Since then, various methods

have been proposed for 3D palmprint feature extraction and recog-

nition. For example, Zhang et al. [32] proposed a 3D palmprint

recognition method by encoding the surface curvature and surface

type features into binary feature codes. Li et al. [33] extracted and

fused both the line and dominant direction features from the mean

curvature images for 3D palmprint recognition. Similarly, Liu et al.

[34] extracted the orthogonal line ordinal features from curvature-

based images of 3D palmprint. In addition, the authors of [35] used

the shape index image to represent the geometry feature of a 3D

palmprint. Zhang et al. [36] formed a vector-based 3D palmprint

descriptor by concatenating the block-wise surface type histograms

and used the collaborative representation for feature identification.

Bai et al. [37] developed a 3D palmprint recognition system by

combining the block-wise surface type histogram descriptor and

the principal component analysis (PCA). Cui et al. [38] proposed

a 2D and 3D feature fusion method for 3D palmprint recognition

by using two-phase test sample representation and PCA. 

It is recognized that 3D palmprint images contain both the 2D

texture-based and 3D surface structure-based features. How to ex-

ploit both the 2D and 3D features of 3D palmprint images will

boost the accuracy of 3D palmprint recognition. In this paper, we

exploit the visible and potential precision direction features for the

2D feature representation and use the compact surface type code

to better represent the 3D surface features of a palmprint. Both the

2D-based precision direction and 3D-based compact surface type

are combined to represent the multiple dimensional features of the

palmprint for 3D palmprint identification. The contributions of this

work can be summarized as follows: 

• We exploit two precision direction features, including the vis-

ible and latent direction features of the palmprint, for the 2D

feature representation of the 3D palmprint. 

• We use a compact surface type code to represent the 3D

surface structure features of the palmprint, which uses fewer

codes to provide more efficient surface-based feature represen-

tation. The combination of precision direction and compact sur-

face type can better represent the multiple level and multiple

dimensional features of 3D palmprint images. 
• We use a two-phase collaborative representation scheme to

conduct the PDCST-based 3D palmprint identification. We con-

duct inter-comparisons between the proposed PDCST method

and state-of-the-art 3D palmprint recognition methods and

intra-comparisons among the different partials of the PDCST to

demonstrate the effectiveness of the proposed method. 

The rest of this paper is organized as follows. Section 2 pre-

ares the related works for the proposed method of this pa-

er. Section 3 proposes a multiple dimensional feature representa-

ion for 3D palmprint identification. Section 4 conducts the inter-

omparative and intra-comparative experiments. Section 5 offers

he conclusion of this paper. 

. Related works 

In this section, we review the representative 2D direction fea-

ure extraction and representation of the palmprint, and prepare

he curvature and surface type calculation methods of 3D palm-

rint images. 

.1. Direction features of palmprint 

A palmprint contains rich discriminative line direction fea-

ures, which can be exploited for palmprint recognition. The di-

ection feature extraction of palmprint is based on one or multiple

rientation-based templates. Specifically, a bank of templates with

re-selected orientations are defined, which are convolved with a

almprint and the convolved results are encoded into orientation

eature codes. The orientation feature extraction of a palmprint can

e represented as the following general formula: 

rientat ion _ f eat ure _ code (x, y ) = g (r) = g ( T (θ ) ∗I(x, y ) ) , (1)

here T ( θ ) represents the template with orientation of θ , and I is

n input palmprint image. “∗” is the convolution operation. r de-

otes the convolved result between the template and palmprint. g

s a mapping function converting the calculation result r into fea-

ure codes. 

The competitive code method [21] is one of the most represen-

ative direction-based coding methods, which uses the real part of

he Gabor filter as the direction-based template. That has the fol-

owing form: 

 ( x, y, θ, μ, σ, β) = 

1 

2 πσβ
exp 

[
−π

(
x ′ 2 

σ 2 
+ 

y ′ 2 

β2 

)]
cos 

(
2 πμx ′ 

)
, 

(2)

here x ′ = (x − x 0 ) cos θ + (y − y 0 ) sin θ , y ′ = −(x − x 0 ) sin θ + (y −
 0 ) cos θ . ( x 0 , y 0 ) is the center of the function, μ is the radial fre-

uency in radians per unit length, θ is the orientation of the Gabor

lter in radians, and σ ( β) is the standard deviations of the ellip-

ical Gaussian along x ( y ) axis, respectively. The range of x and y

re the sizes of the filter. The competitive code method uses six

ifferent directions of the Gabor templates to extract the domi-

ant direction of the palmprint based on winner-take-all rule. Let

 ( θ j ) be the real part of the Gabor template with the direction of

j = jπ/ 6( j = 0 , 1 , ..., 5) . The competitive code of a palmprint im-

ge is taken as: 

ompet it i v e _ code (x, y ) = arg min 

j 

( r j ) = arg min 

j 

(
G ( θ j ) ∗I(x, y ) 

)
, 

{ j = 0 , 1 , ..., 5 } . (3)

The competitive code method is actually the direction of the

abor template that achieves the largest filtering response with

he palmprint. In addition, Luo et al. [16] proposed a dual com-

etitive code method by extracting double direction codes with
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Table 1 

Nine surface type codes and corresponding surface shapes. 

GC > 0 GC = 0 GC < 0 

MC < 0 Peak (STC = 1) Ridge (STC = 2) Saddle ridge (STC = 3) 

MC = 0 None (STC = 4) Flat (STC = 5) Minimal surface (STC = 6) 

MC > 0 Pit (STC = 7) Valley (STC = 8) Saddle valley (STC = 9) 
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he maximum and minimum filtering responses. In the template-

ased direction feature extraction, the templates are limited and

heir directions are discrete. It is possible that no template can

etter monitor the most dominant direction feature of palmprint.

o extract more accurate direction feature, Xu et al. [39] improved

he competitive code to the discriminative robust competitive code

DRCC) method. It argued that the accurate dominant direction

sually located on the neighboring side of the competitive code

ith a larger filtering response than that of the other neighboring

ide. The DRCC of the palmprint can be extracted as follows: 

RC C _ code = [ O c (x, y ) , O s (x, y ) ] 

= 

[
arg min ( 

j 

r j ) , sign ( r le f t( j) − r right( j) ) 

]
, (4) 

here sign ( u ) equals to 1 when u ≥ 0, and 0 otherwise. left ( j ) and

ight ( j ) represent the two neighboring directions of the current

ominant direction. Therefore, the DRCC, i.e. [ O c , O s ], is the com-

ination of the competitive code with a dominant direction side

ode. 

The BOCV method [23] pointed out that using only one domi-

ant direction feature to represent a local region may lose the in-

ormation in the other direction. To this end, the BOCV method

roposed to extract and encode multiple direction features of the

almprint. BOCV encode scheme can be represented as: 

OCV _ cod e i (x.y ) = sign (T ( θi ) ∗I(x, y )) , { i = 0 , 1 , .., 5 } . (5)

The extended BOCV (E-BOCV) method [40] showed us that the

OCV codes with small convolved results are possibly the fragile

its, which should be marked by thresholding: 

 ragile _ code (x, y ) = sign (| T (θ ) ∗I(x, y ) | − τ ) , (6)

here τ is a positive thresholding parameter. The fragile code and

table BOCV code maps are respectively compared in the stage of

almprint matching. In addition, Sun et al. [28] extracted the mul-

iple perpendicular direction features of the palmprint by using

hree combined orthogonal line Gaussian filters. 

To improve the robustness of direction feature representation,

he recent direction-based methods proposed to use the statis-

ics of the selected direction features as the feature descriptor

f the palmprint. For example, Luo et al. [41] formed the palm-

rint descriptor by concatenating the block-wise histograms of the

wo selected directions of the palmprint. In addition, Zhang et al.

28] used the block-wised histograms of the competitive code of

he palmprint. Fei et al. [42] exploited the block-wise statistical

eatures on the multiple dominant directions of the palmprint. 

.2. Curvatures and surface type of 3D palmprint 

3D palmprint images depict the depth information of a palm

urface with various convex and concave shapes. Given a point on

 palm surface, it has multiple curvatures along different direc-

ions. Among them, the largest and smallest ones are considered

s the most principal curvatures of the point. The mean value of

hese two principal curvatures is named as the mean curvature

MC) and the multiplication of them is called the Gaussian curva-

ure (GC). Both the mean and Gaussian curvatures can depict the

haracteristics of a surface. In addition, the GC and MC shows high

obustness to translation and rotation because they depend only

n the surface shape but not on the way of the palm is placed in

he 3D space. So the MC and GC are of two intrinsic measurements

or 3D palmprint feature extraction and recognition. 

It is hard to calculate all possible curvatures of a point on a

urface to obtain its MC and GC. To address this issue, Besl et al.

43] provided us an effective way to obtain the MC and GC based

n a group of pre-defined templates. In the following, we describe
he basic procedures of the mean curvature and Gaussian curvature

alculations. 

In general, a bank of partial derivative window templates

re predefined as follows: D x = d 0 d 
T 
1 

, D y = d 1 d 
T 
0 

, D xx = d 0 d 
T 
2 

,

 yy = d 2 d 
T 
0 and D xy = d 1 d 

T 
1 , where d 0 = 

1 
7 [1 1 1 1 1 1 1] T , d 1 =

1 
28 [ −3 − 2 − 1 0 1 2 3] T , d 2 = 

1 
84 [5 0 − 3 − 4 − 3 0 5] T . Also, a bi-

omial template is defined for smoothing 3D palmprint images:

 = s s T , where s = 

1 
64 [1 6 15 20 15 6 1] T . Then, the partial deriva-

ive maps of a 3D palmprint f can be obtained as follows [36,43] :

f u (x, y ) = ( D u ∗(S ∗ f (x, y )) ) , ( u = x, y, xx, yy, xy ) . (7)

Finally, the GC and MC can be directly obtained as: 

C = 

(1 + f 2 x ) f yy + (1 + f 2 y ) f xx − 2 f x f y f xy 

2 

(
1 + f 2 x + f 2 y 

)3 / 2 
, (8) 

nd 

C = 

f xx f yy − f 2 xy (
1 + f 2 x + f 2 y 

)2 
. (9) 

To describe the characteristic of a 3D surface, Bsel et al.

43] classified a surface into eight fundamental types that is the

urface type (ST). These STs depend on the signs and values of the

C and GC. It is pointed out that a special ST with MC = 0 and

C > 0 corresponding to non-existing surface shape is also used for

ompleteness. As a result, nine surface types are used in represent-

ng the surface shape of 3D palmprint, which can be represented

y using nine surface type codes (STC) as in Table 1 . Therefore, the

urface type of a point in 3D palmprint images can be represented

s one of the nine STCs. 

. Precision direction and compact surface type representation 

To extensively exploit the multiple dimensional features of 3D

almprint, we propose a precision direction code scheme to repre-

ent the 2D features and use a compact but efficient surface type

ode to represent the 3D features of the palmprint. Furthermore,

e combine the precision direction with the compact surface type

or more accurate 3D palmprint recognition. 

.1. Precision direction code 

Existing works have proven that the dominant direction-based

ethods show promising performance in the direction-based

ethod community. These methods are based on the observation

hat a palmprint contains many visible lines which generally carry

ominant direction features. However, the visible lines are usually

imited in a palmprint. Instead, plenty of points in a palmprint are

n a flat area, carrying no visible direction feature. 

The basic idea of direction feature extraction is based on a se-

ies of direction-based templates with multiple directions. Suppose

hat there are many templates with all possible directions used for

he convolution of direction feature extraction. It is believed only a

ew templates, as well as the few directions, can obtain the max-

mum convolved response. Also, only a few directions of the tem-

lates can reach the minimum convolved response. Comparatively,

 medium convolved response can be obtained by more templates
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Fig. 1. The curvature distributions of 100 3D palmprint images. (a) The Mean cur- 

vature distribution; (b) The Gaussian curvature distribution. 
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with more directions. Theoretically, the maximum and minimum

convolved responses can only be achieved by a few directions of

the templates. That means these directions have relatively higher

discriminative power than other directions. A medium convolved

response can possibly achieve by more directions. Thus, the corre-

sponding directions possibly have low discriminative power. There-

fore, one can assume that a point in a palmprint usually carry

two potential direction features, including a normally visible di-

rection feature and a latent direction feature. Inspired by this, we

propose to extract more precision direction representation for both

directions with the maximum and minimum convolved responses.

Specifically, we convolve a palmprint image with pre-defined tem-

plates to obtain the convolved results as follows 

c j (x, y ) = T ( θ j ) ∗I(x, y ) , (10)

where T ( θ j ) represent the direction-based template with direction

of θ j , and θ j = ( j − 1) π/ N θ . N θ is the direction number of the em-

ployed templates. In this paper, we empirically use the Gabor fil-

ters as the templates and set the number of templates as: N θ = 12 .

Based on the convolved results, we can extract the first poten-

tial direction feature based on the maximum-based winner-take-all

rule as follows: 

D C max (x, y ) = arg max 
j 

( c j (x, y )) . (11)

In real operations, the employed templates are usually limited

and it is possible that no template has the same orientation as the

dominant direction of the palmprint. In this case the extracted di-

rection may not precisely represent the dominant direction feature

of the palmprint. It is seen that a template with a more similar

direction as the exact dominant direction of the palmprint gener-

ally can produce a larger response than the others. In other words,

the more precision direction feature is generally on the neighbor-

ing side of the DC max with a larger convolved response than the

other one. Inspired by this, we propose to extract a precision di-

rection side code as follows: 

S C max (x, y ) = sign 

(
c mod ( D C max +1 , N θ ) (x, y ) 

−c mod ( D C max −2+ N θ , N θ ) +1 (x, y ) 
)
, (12)

where “mod ” is the modular operator. Intuitively, the side code can

be used as a supplementary of the extracted dominant direction to

precisely represent the direction feature of the palmprint. Similarly,

we extract another potential direction feature from the minimum-

based winner-take-all rule and the corresponding precision direc-

tion side code as follows: 

D C min (x, y ) = arg min 

j 
(T ( θ j ) ∗I(x, y )) , (13)

and 

S C min (x, y ) = sign 

(
c mod ( D C min −2+ N θ , N θ ) +1 (x, y ) 

−c mod ( D C min +1 , N θ ) (x, y ) 
)
. (14)

After that, we can obtain the precision direction code (PDC) of

the palmprint image as follows: 

P DC = [ P D C max , P D C min ] = [ D C max × 2 −S C max , D C min × 2 −S C min ] . 

(15)

It is seen that PDC consists of two basic components, including

the maximum-based precision direction and the minimum-based

precision direction features, which correspond to the commonly

visible and the potential invisible direction features of palmprint,

respectively. 

3.2. Compact surface type code 

The conventional methods use nine codes to represent the sur-

face types of 3D palmprint images based on the positive, negative
igns and zero-values of the curvature features. In practical calcu-

ations, the mean and Gaussian curvatures of 3D palmprint images

re floats. To determine the cases of MC = 0 and GC = 0 , they nor-

alize the curvatures falling into the range of −1 to 1, and set the

urvatures with small absolute values to zero. 

3D palmprint images are usually captured with palms com-

letely opened and flat, resulting a lot of small curvatures of the

oints. Fig. 1 depicts the mean curvature and Gaussian curvature

istributions of 100 3D palmprint images randomly selected from

he PolyU 3D palmprint database [44] , showing that numerous

oints have small curvature values around zero. Therefore, the con-

entional methods use a very small threshold to define the range

f the zero-curvature cases [32,36] . In other words, two small

hresholds including a positive one and a negative one are actu-

lly used, as shown in Fig. 1 . 

It is believed that the curvatures of those points around the two

hresholds are easily influenced by external noises, such as sweat,

irt, and the changes of the palm opening degree, and they are

amed as unreliable points. The curvature of an unreliable point

ay be encoded into a correct code or it may not. The curvature

ncodings are random events as the likelihood of curvature codes

an be correctly encoded or not is equal. Therefore, we can assume

hat the number of error encoding points follows the Binomial dis-

ribution: 

 err ∼ B (n, p) , (16)

here p is the error curvature encoded probability of an unreli-

ble point and n denotes the total number of the unreliable points.

he likelihood of the curvature encoding error (CEE) of a palmprint

ample can be represented as: 

= 1 − (1 − p) n . (17)

It is seen that the likelihood of CEE completely relies on the

umber of unreliable points ( n ) and the error curvature encoded

robability ( p ) of the unreliable points, where p is mainly deter-

ined by the palmprint images. Therefore, one can argue that the

ikelihood of CEE can be decreased by reducing n . We see that

he conventional curvature encoding scheme based on the abso-

ute value (abs-encoding) essentially use two small thresholds, in-

luding a positive threshold and a negative one. Intuitively, we can

se a single zero threshold to encode, referred to as zero-encoding,

he curvature features to reduce n . In the following, we show the

ikelihood of CEE in the zero-encoding scheme. 

For the zero-encoding scheme, the unreliable points are gener-

lly referred to as the points whose curvatures are close to zero.

e can reasonably assume that the number of error encoding

oints follows the Binomial distributions: 

 err ∼ B (m, q ) , (18)

here q is the error curvature encoded probability of an unreli-

ble point and m is the total number of the unreliable points. The

ikelihood of CEE for the zero-encoding can be represented as: 

= 1 − (1 − q ) m . (19)
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Table 2 

The compact surface type representation. 

GC > 0 GC < 0 

MC > 0 CSTC = 1 CSTC = 2 

MC < 0 CSTC = 3 CSTC = 4 
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For the zero-encoding scheme, the unreliable points are re-

erred to the points whose curvatures are close to zero. Therefore,

he total number of unreliable points is proportional to the per-

entage of the zero-curvature. In contrast, the unreliable points of

he abs-encoding scheme are mainly the points whose curvatures

re close to the positive and negative thresholds, both of which

re very close to zero. It is not hard to deduce from Fig. 1 that

he sum percentage of the unreliable points on the two non-zero

hresholds is larger than the percentage of the zero value. Thus,

he total number of unreliable points of the abs-encoding scheme

e.g. n ) is larger than that (e.g. m ) of the zero- encoding. 

In general, the encoding error of the zero- encoding scheme is

ainly created by the changes of concavity and the encoding error

f abs-encoding scheme is easily affected by the degree of bend-

ng the palmprint surface. It is thought that a convex (concave)

alm surface is difficult to change to a concave (convex) one. By

ontrast, the bending degree of the palm surface is easy to change

ith the opening degree of palms. Therefore, the error probabil-

ty of zero-encoding scheme is possibly lower than that of the

bs-encoding scheme, that is q < p . Therefore, the likelihood of the

EE in the abs-encoding scheme is possibly larger than that of the

ero-encoding scheme. That is: 

abs −encoding > φzero−encoding , (20) 

hich motivates us to use a simple zero threshold to encode the

urvature features. Inspired by this, we propose to use a compact

urface type (CST), which uses only four compact surface type code

CSTC) as shown in Table 2 , to represent the surface features of 3D

almprint images. It can be seen that the CST only depends on the

igns of the curvatures and thus it is suitable for the float-based

urvature encoding. 

In summary, ST is widely used to represent surface features of

D palmprint images. However, statistical results show that the

urvatures of numerous points in 3D palmprint images are very

mall float. The conventional ST defines two thresholds to divide

he curvature features of 3D palmprint into three intervals so that

hey are encoded into three codes, which will produce more en-

oding errors than that of using a single zero threshold. In addi-

ion, there is no real surface with MC = 0 and GC > 0. To this end,

e propose to use the simple yet effective CST, which encodes the

urvature features into two intervals based on the signs of them,

o represent the surface features of 3D palmprint images. 

.3. TPTSR-based PDCST identification 

PDC and CST respectively depict the different level and differ-

nt dimensional features of 3D palmprint images. We believe that

ombining the 2D feature-based PDC with 3D feature-based CST

an better represent the multiple dimensional features of 3D palm-

rint. We record the combination of the PDC and CST as PDCST.

or better representation and removing the small misalignment of

D palmprint images, we use block-wise statistics to represent the

ocal features of 3D palmprint. Specifically, PDCST consists of two

recision direction codes and one compact surface type code. For

ach code map, we calculate the block-wise histograms and con-

entrate all block-wise histograms forming a vector-based descrip-

or for palmprint identification. 

The two-phase test sample sparse representation (TPTSR)

ethod [27,45] provides us an effective way to conduct pattern
ecognition. TPTSR has the close-form solution and thus has high

un efficiency. In addition, TPTSR can improve the performance

ver the CR-based method [46] by simply performing two steps

f collaborative representation without heavily affecting the effi-

iency. To this end, in this paper, we adopt the TPTSR to per-

orm PDCST-based palmprint identification. In the following, we

rst briefly review the basic idea of TPTSR and then present the

PTSR-based PDCST identification. 

TPTSR consists of two steps of sparse representation. The first

tep of TPTSR is to represent a test sample as the liner combination

f the training samples as follows: 

 = a 1 x 1 + a 2 x 2 + ... + a n x n = X A, (21)

here y is the test sample, a i (i = 1 , 2 , ..., n ) is the weight coeffi-

ient, and x i (i = 1 , 2 , ..., n ) is the training sample. A = [ a 1 a 2 ... a n ] 
T 

nd X = [ x 1 x 2 ... x n ]. Both x and y are column-based vectors, that is

he PDCST-based descriptor in this paper. In general, A can be di-

ectly calculated as: A = ( X T X + λI) −1 X T y , where λ is a small pos-

tive constant and I is the identity matrix. After that, M training

amples that produce the M largest representing contributions, i.e.,

 i x i , are selected to form the training set in the second step of

PTSR. Therefore, the test sample can be represented as: 

 = b 1 x i 1 + b 2 x i 2 + ... + b M 

x i M = X 

′ B, (22)

here B is the coefficient matrix, which can be similarly obtained

s the calculation of A . Hence, the residual of the j th class can be

alculated as: 

 j = || y −
(

b j 1 x j 1 + b j 2 x j 2 + ... + b j n j 
x j n j 

)
| | 2 , (23)

here j k ( k = 1 , 2 , ..., n j ) represents the sequence number of k th

raining sample from the j th class. Finally, test sample can be

dentified into the class that produces the smallest residual. 

It can be seen that the TPTSR first forms a linear representation

or a query sample and calculates the contributions of the training

amples to the query sample. In general, a training sample mak-

ng a large contribution to the query sample is more likely to be

ighly related to the query sample and thus taken as a competitive

raining sample. As a result, the TPTSR selects a group of training

amples (e.g. M samples) with the largest M contributions to form

he competitive training sample set. In the second step of TPTSR,

t uses the competitive training samples to linearly represent the

uery sample to conduct the identification [45] . 

The PDCST descriptor consists of three feature vectors, including

he PDC max , PDC min and CST feature-based vectors. In this paper,

or each feature map, we conduct TPTSR to obtain the representa-

ion deviation of each class. Then, we fuse the representation devi-

tions of all classes of the training samples on three kinds of fea-

ure maps, which are finally used for identification. The complete

rocedure of the PDCST based palmprint identification is described

n Algorithm 1 . 

. E xperiments 

In this section, we conduct both the inter-comparative and

ntra-comparative experiments on the widely used palmprint

atabases to test the proposed method. 

.1. 3D palmprint identification 

In this paper, we use the public PolyU 3D (PolyU_3D)

44] palmprint database to conduct inter-comparative experiments

mong the proposed PDCST method and the state-of-the-art 3D

almprint recognition methods. The PolyU_3D database contains

,0 0 0 3D palm surface depth data of the 3D palmprint images

ollected from 200 volunteers. An individual provided 20 sam-

les for both the left and right palms. Thus, there are 400 palms
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Table 3 

The identification accuracies (average accuracy ± standard deviation) of different methods on the PolyU_3D palmprint im- 

age database. 

#k MCI_comp MCI_Ordinal SII_Comp_LBP MCI_GCI_ST ST_CR PDCST_NN PDCST_TPTSR 

1 87.16 ± 0.70 83.12 ± 1.08 81.74 ± 0.90 80.99 ± 2.50 90.51 ± 1.43 95.85 + 0.73 97.04 ± 0.34 

2 94.90 ± 2.36 93.09 ± 3.70 91.46 ± 3.03 92.09 ± 3.08 95.10 ± 1.44 98.65 ± 0.93 99.23 ± 0.61 

3 96.86 ± 1.68 93.86 ± 3.15 95.19 ± 3.01 95.06 ± 2.09 97.83 ± 1.01 99.30 ± 0.60 99.69 ± 0.33 

4 98.75 ± 0.18 97.95 ± 0.51 96.48 ± 1.45 97.50 ± 0.55 98.36 ± 0.52 99.60 ± 0.61 99.86 ± 0.05 

Fig. 2. Some typical 3D palmprint images of the PolyU_3D database. The first two 

images depict two different views of the same palmprint, and the other two images 

are from another palmprint. 
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of 3D palmprint image samples. In addition, the database in-

cludes the region of interest (ROI) of the 3D palmprint samples

(128 × 128 pixels). Fig. 2 shows some typical 3D palmprint image

samples of the PolyU_3D database. To the best of our knowledge,

the PolyU_3D database is the most popular 3D palmprint image

database typically used as the benchmark in the field. 

Palmprint identification is the procedure of one-against-many

comparisons to identify the class label of a query sample. Specif-

ically, some labeled samples from each palm are selected as the

training samples, and use the rest samples as the query samples. A

query sample will be compared with training samples and identi-

fied based on the comparisons. In this paper, the proposed method

identifies a query sample based on the representation residuals

of the TPTSR. To evaluate the effectiveness of the TPTSR classi-

fier, we use the conventional NN (Nearest Neighbor) scheme for

the PDCST based identification and compare it with the TPTSR.

Specifically, we calculate the Chi-square distance as the match-

ing score of two PDCST-based descriptors and adopt the NN for

identification. We write the proposed method with the TPTSR and

NN classifiers as PDCST_TPTSR and PDCST_NN, respectively. In ad-

dition, the conventional state-of-the-art 3D palmprint recognition

methods are also implemented and compared with the proposed

method. The compared methods include the MCI-based competi-

tive code method (referred to as MCI_Comp) [33] , MCI-based or-

dinal code method (referred to as MCI_Ordinal) [34] , the fusion

method of SII based on competitive code and LBP features (referred

to as SII_Comp_LBP) [35] , the combination method of the MCI, GCI

and ST binarization features (referred to as MCI_GCI_ST) [31] , and

the surface type-based collaborate representation method (ST_CR)

[36] . 

In this study, we randomly select one to four samples

( k = 1,2,3,4) from each palm to form the training sample sets and

use the remaining images as the query samples. We run each

method 10 times, and report the average rank-one accuracy as well

as the standard deviation on the four training sample sets. Table 3

summarizes the identification results of different methods, which

shows that the proposed method consistently achieves higher ac-

curacies than the five compared methods on the four training sam-

ple datasets. In addition, the TPTSR classifier outperforms the NN

classifier, showing the effectiveness of the TPTSR in feature identi-

fication. 
.2. Effectiveness of the precision direction representation 

The proposed PDCST method contains the 2D feature-based

recision direction representation and the 3D feature-based CST

epresentation. To validate the effectiveness of the precision di-

ection representation, we conduct the 2D palmprint recogni-

ion experiment based on the PDC-based descriptor on the two-

imensional MCI palmprint image dataset recovered from 3D

almprint images (3D_MCI). Furthermore, two widely used 2D

almprint databases, including the PolyU 2D palmprint image

atabase and the CASIA palmprint image database, are also used. 

The PolyU 2D palmprint image database (PolyU_2D) [44] con-

ains 7,752 palmprint 2D gray-level images collected from 193 dif-

erent individuals, and each provided about 20 samples for both

he left and right palms. The ROIs with the sizes of 128 × 128 pix-

ls are also included in the database. The CASIA palmprint image

atabase [47] claims that it contains 5502 2D palmprint images

ollected from 312 subjects. It is noted that the two subjects pro-

ided no sample and the last right palmprint image of the 270 th

ubject does not belong to the individual. This means that the CA-

IA database includes 5501 2D palmprint image samples of 310

ubjects with 620 palms, each of which has around 10 samples.

n the experiments, the ROIs (128 × 128 pixels) of the palmprint

mages are cropped by the palmcode method [17] . 

Fig. 3 shows some palmprint examples selected from the

D_MCI, PolyU_2D and CASIA palmprint datasets. It can be seen

hat different 2D palmprint images show different characteristics.

olyU_2D palmprint images are captured under a contact-based

evice and thus have better quality. The CASIA palmprint images

re contactless palmprint images, which are captured under a free

nvironment and show serious variant in translation and rotation.

oth the PolyU_2D and CASIA palmprint samples show clearer tex-

ure features than that of the 3D_MCI. Therefore, we propose to

se three different kinds of palmprint images to better test the

DC-based descriptor on 2D palmprint feature representation. 

To evaluate the PDC-based method on 2D palmprint recogni-

ion, we compare it with state-of-the-art 2D palmprint recogni-

ion methods, including the competitive code method [21] , ordi-

al code method [25] , BOCV method [23] , LLDP method [41] and

he HOL method [26] . It is seen that the representative LLDP and

OL methods use the Chi-square distance to calculate the match-

ng score of two compared palmprint samples. For a fair compar-

son, we use the Chi-square distance to compute the dissimilar-

ty of two PDC-based descriptors. Similarly, we randomly select k

 k = 1,2,3,4 ) palmprint images from each palm as the training sam-

les and treat the rest as the query samples for palmprint identi-

cation. Each method is repeated 10 times and the average accu-

acy is reported. Table 4 provides the comparative summary of the

dentification results, showing that the PDC based method consis-

ently outperforms the five compared methods on all the training

ample subsets. 

Moreover, we conduct palmprint verification, which is a one-

gainst-one matching procedure [11] . We calculate the false accep-

ance rate (FAR) and false rejection rate (FRR) for different methods

nd draw the ROC (FAR versus FRR) to compare different methods,

s shown in Fig. 4 . It illustrates that the PDC based method can
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Fig. 3. Typical 2D palmprint samples selected from the 3D_MCI, PolyU_2D and CASIA palmprint datasets. The first two samples are from the 3D_MCI dataset; the middle 

two samples are from the PolyU_2D dataset; the last two samples are from the CASIA dataset. 

Table 4 

The rank-one identification accuracies of different methods on the 3D_MCI, PolyU_2D and CASIA palmprint image 

datasets. 

#k Competitive Ordinal BOCV LLDP HOL PDC 

3D_MCI 1 90.39 ± 1.04 71.56 ± 1.54 77.83 ± 2.88 93.22 ± 0.85 87.871 ± 0.93 95.41 ± 0.77 

2 96.67 ± 2.36 84.30 ± 6.74 87.98 ± 3.88 96.33 ± 1.58 94.44 ± 2.98 98.67 ± 0.83 

3 97.84 ± 1.40 91.10 ± 1.73 93.89 ± 4.15 99.11 ± 0.16 96.84 ± 2.32 99.42 ± 0.43 

4 99.18 ± 0.12 92.23 ± 5.08 96.93 ± 0.25 99.46 ± 0.26 98.36 ± 0.52 99.48 ± 0.60 

PolyU_2D 1 98.36 ± 0.15 93.15 ± 0.44 95.98 ± 0.24 99.04 ± 0.19 98.71 ± 0.77 99.53 ± 0.15 

2 99.81 ± 0.18 95.70 ± 0.64 98.12 ± 0.81 99.52 ± 0.26 99.61 ± 0.16 99.89 ± 0.08 

3 99.67 ± 0.29 97.34 ± 0.90 98.58 ± 0.99 99.73 ± 0.19 99.77 ± 0.15 99.90 ± 0.08 

4 99.85 ± 0.16 97.35 ± 0.94 98.23 ± 0.79 99.78 ± 0.17 99.78 ± 0.11 99.91 ± 0.06 

CASIA 1 80.71 ± 1.84 72.48 ± 5.30 83.30 ± 1.41 87.34 ± 0.97 83.03 ± 0.47 87.43 ± 0.29 

2 88.60 ± 3.45 85.39 ± 5.22 91.10 ± 2.71 92.42 ± 1.90 88.37 ± 2.44 93.80 ± 1.18 

3 91.43 ± 3.18 87.31 ± 3.13 94.49 ± 0.05 95.08 ± 1.83 92.45 ± 2.88 95.23 ± 1.27 

4 92.64 ± 2.53 92.35 ± 1.10 94.39 ± 0.90 95.82 ± 1.21 94.87 ± 0.36 95.90 ± 0.59 

Fig. 4. The ROC curves of different methods. (a)–(c) The ROCs of six compared methods on the 3D_MCI, PolyU_2D and CASIA datasets, respectively. 
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Table 5 

The rank-one accuracies of palmprint identification based on different f eature de- 

scriptors on the 3D_MCI, PolyU_2D and CASIA palmprint image datasets. 

#k PDC max DC max PDC min DC min 

3D_MCI 1 93.60 ± 0.58 92.20 ± 0.81 94.22 ± 0.67 93.86 ± 0.84 

2 97.42 ± 2.15 98.31 ± 1.00 97.28 ± 0.95 96.90 ± 1.34 

3 98.67 ± 1.08 98.51 ± 1.05 99.35 ± 0.14 99.07 ± 0.84 

4 99.12 ± 0.89 99.41 ± 0.20 99.49 ± 0.07 99.45 ± 0.11 

PolyU_2D 1 99.58 ± 0.14 99.40 ± 0.22 99.30 ± 0.23 99.20 ± 0.27 

2 99.88 ± 0.05 99.81 ± 0.18 99.77 ± 0.13 99.72 ± 0.25 

3 99.92 ± 0.04 99.83 ± 0.16 99.76 ± 0.12 99.75 ± 0.12 

4 99.92 ± 0.08 99.89 ± 0.08 99.84 ± 0.16 99.80 ± 0.08 

CASIA 1 84.81 ± 2.95 83.22 ± 2.92 84.14 ± 2.93 82.86 ± 2.82 

2 92.20 ± 2.18 90.01 ± 2.93 92.42 ± 1.67 91.72 ± 2.26 

3 94.02 ± 1.57 93.67 ± 1.66 93.68 ± 1.46 93.11 ± 2.19 

4 94.82 ± 1.26 93.88 ± 1.57 95.58 ± 0.70 93.41 ± 1.75 

d  

p

 

s  

a

a  
chieve a lower EER than the five compared methods, demonstrat-

ng the effectiveness of the PDC on 2D palmprint representation. 

.3. Comparisons within PDC 

The PDC consists of two components, that is, the precision di-

ection code extracted based on the winner-take-all rule of the

aximum convolved result, and the precision direction code ex-

racted based on the winner-take-all rule of the minimum con-

olved result. Moreover, the precision direction code comprises

 direction code and a side code. To further validate the effec-

iveness of PDC, we use the different components of the PDC as

he feature descriptors for palmprint identification and verification.

pecifically, we use the direction code extracted based on the max-

mum and minimum winner-take-all rules, which are recorded as

C max and DC min , respectively. Further, we use the precision di-

ection codes, which is the combination of the direction code and

he side code. Both precision direction codes based on maximum

nd minimum rules are recorded as PDC max and PDC min , respec-

ively. For a fair comparison with the results of PDC, we obtain the

eature descriptors by forming the block-wise based histograms of
ifferent code maps, and use the Chi-square distance for the com-

arison of different descriptors. 

The procedures of palmprint identification and verification are

imilar as Section 4.2 and the results of them are shown in Table 5

nd Fig. 5 , respectively. It can be seen that the DC min and PDC min 

chieve comparable performances to DC max and PDC max , respec-
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Fig. 5. The ROCs obtained based on different feature descriptors. (a)–(c) The ROCs of different feature descriptors on the 3D_MCI, PolyU_2D and CASIA datasets, respectively. 

Fig. 6. The identification accuracies of TPTSR based palmprint identification with 

different M. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. The accuracy trend curve along w CST . 

Table 6 

The rank-one identification accuracies obtained based on the ST-based and CST- 

based descriptors. 

#k ST-Chi CST-Chi ST-TPTSR CST-TPTSR 

1 88.28 + 1.12 89.12 + 1.00 92.69 + 0.67 94.92 + 0.52 

2 94.00 + 2.19 95.04 + 3.05 94.83 + 1.37 98.41 + 1.60 

3 97.26 + 2.21 97.88 + 1.56 99.21 + 0.04 99.59 + 0.08 

4 98.68 + 0.26 99.35 + 0.06 99.52 + 0.11 99.65 + 0.23 
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tively, demonstrating the comparable discriminative power of the

potential invisible direction and the visible dominant direction fea-

tures of the palmprint. Therefore, one can argue that the dis-

criminability of the direction feature essentially depends on the

winner-take-all rule but not on the maximum and minimum con-

volved results of the rule. In addition, both the PDC max and PDC min 

can achieve a comparable or better performance than the DC max 

and DC min , respectively, in most instances, showing the superior-

ity of the precision direction over the conventional direction rep-

resentation. Obviously, the PDC combining the PDC max and PDC min 

outperforms both of them. 

4.4. Comparison between the ST and CST 

To validate the effectiveness of CST, we conduct several compar-

isons between the ST-based and CST-based descriptors. We form

the feature descriptors based on ST derived and CST derived block-

wise histograms, and use the Chi-distance and TPTSR schemes to

perform palmprint identification, respectively. We conduct palm-

print identification by randomly selecting k ( k = 1,2,3,4) palmprint

images for each palm as the training samples and the remaining as

the test samples. Each method is performed 10 times and the av-

erage identification results are reported in Table 6 . It is not hard to

conclude that the CST-based descriptors consistently achieve bet-

ter performances than the ST-based descriptors, which validates

the effectiveness of CST in 3D surface feature representation of 3D

palmprint images. This is true even through the conventional ST

uses more surface type codes to describe a palm surface. However,

it is hard to distinguish nine different surface types based on the

curvature features of the palmprint because a plenty of points on
he palmprint have very small curvatures. By contrast, CST provides

s with a simple but effective way to represent the 3D surface fea-

ures of 3D palmprint images. 

.5. M selection 

The proposed method forms the PDCST-based 3D palmprint im-

ge descriptor and uses the TPTSR scheme for PDCST identification.

he key step of TPTSR is to select M competitive training samples

o represent a query sample. The selection of competitive training

amples will affect the identification result of TPTSR, and a M value

hat is too large or small will reduce the identification accuracy.

he CRC method [46] shows that it is the collaborative representa-

ion from all classes of training samples that improve the classifi-

ation performance of sparse representation. In other words, it re-

uires enough training samples to ensure the complete representa-

ion of the query sample. A small M means a few training samples

re used, which possibly cannot guarantee the complete collabo-

ative representation of the query sample, leading to a decline of

he recognition performance. In addition, a large M will introduce

ome redundant and even noisy training samples to the represen-

ation of the query sample, resulting in the decreasing of identifi-

ation accuracy. In addition, the optimal M values are possibly dif-

erent for different query samples and different training samples.
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Table 7 

The computational time (s) of different methods in a palmprint identification proce- 

dure. 

Methods 2-D feature extraction 3-D feature extraction Identification 

MCI_Comp 0.0107 0.0023 0.0243 

SII_Comp_LBP 0.0193 0.0058 0.2359 

MCI_GCI_ST 0.0014 0.0042 0.1696 

PDCST_NN 0.0227 0.0040 0.0201 

PDCST_TPTSR 0.0227 0.0040 0.0171 

Algorithm 1 

The procedure of the PDCST-based 3D palmprint identification. 

Input: The training 3D palmprint images and a query palmprint image 

Initialize : M = 50 

For all the training samples and the query sample: 

1.Calculate the mean and curvature maps based on formulas (8) and (9); 

2.Calculate the PDC max and PDC min feature maps based on formula (15) and 

form the vector-based descriptors; 

3.Calculate the CST feature map based on Table 2 and form the 

vector-based descriptor; 

End 

4.Form the three training feature matrices: X i (i = 1,2,3) based on the 

PDC max , PDC min and CST feature maps of the training samples; 

For each feature descriptor X i (i = 1,2,3) 

5.Represent the query vector as Eq. (21) to select M competitive training 

samples; 

6.Represent the query vector as Eq. (22) based on the M competitive 

training samples; 

7.Calcuate the residual (e.g. r i 
j 
) of j th class of training samples based on 

descriptor X i by using Eq. (23); 

End 

8. Fuse the residuals: f j = (r 1 
j 
+ r 2 

j 
+ r 3 

j 
) / 3 ; 

9. The unknown sample is identified by the q th class, which produces the 

smallest residual: q = arg min 
i 

f i 

Output: Identity of the query sample 
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o the best of our knowledge, there is no effective way to find the

ptimal M for different scenarios. 

In this study, to show the affects of M on palmprint identifica-

ion, we conduct TPTSR based palmprint identification by setting

ifferent M values. We randomly select different ( k = 1,2,3,4) palm-

rint images from each palm to form the training sample set and

reat the rest as the test samples. We repeat the proposed method

 times for each scenario and calculate the average identification

ccuracies, as shown in Fig. 6 . It can be seen the optimal M values

re different for different training sample sets, and they generally

alls in the range of 10 to 100. A value of M that is too large or too

mall will result in obvious drops in identification accuracies. In

ddition, Fig. 6 shows that the identification accuracy is very close

o the best one with a slight fluctuation when M falls in the range

f from 10 to 100, which is consistent with the results of [45] . To

his end, we empirically set M to an intermediate value, i.e. 50, in

ur manuscript. 

.6. Fusion of the multi-dimensional feature descriptors 

The proposed PDCST method extracts two precision direction

escriptors for 2D feature representation and one compact sur-

ace type descriptor for 3D feature representation of 3D palm-

rint images, and they are fused at the matching score level with

qual weights. It is seen that both the PDC max and PDC min use

4 codes to depict the direction features, which are more than

eatures of the CST. Therefore, the PDC max and PDC min should be

ore informative than the CST. To better show the affection of

ST on the PDCST method, we test the performance of the pro-

osed method with different weights for the PDC max , PDC and
min 
ST descriptors, referred to as w PD C max 
, w PD C min 

and w CST , respec-

ively, and w PD C max 
+ w PD C min 

+ w CST = 1 . It is seen that the PDC max 

nd PDC min have the similar coding schemes and thus we set

 PD C max 
= w PD C min 

. Therefore, the fusion of the three descriptors

n Algorithm 1 can be written as f j = 

(1 −w CST ) 
2 r 1 

j 
+ 

(1 −w CST ) 
2 r 2 

j 
+

 CST r 
3 
j 
. 

We gradually increase w CST from 0 to 1 with a step of

.1, and conduct palmprint identification experiment, in which k

 k = 1,2,3,4) images from each palm are randomly selected as the

raining samples and the rest images are used as the query sam-

les. For each case of w CST and the training sample set, we repeat

he proposed method 5 times and calculate the average identifica-

ion accuracy, as shown in Fig. In addition, we draw the accuracy

rend curve along w CST , as shown in Fig. 7 . It can be seen that the

ccuracy of the proposed method achieves the maximum on the

oint of w CST = 0 . 1 and it gradually decreases with the increasing

f w CST , demonstrating the higher discriminability of the PDC max 

nd PDC min over the CST. Even so, the fusion of the CST with the

DC can significantly improve the accuracy of 3D palmprint iden-

ification, showing the effectiveness of the CST. To our knowledge,

here is no effective way to find the optimal weight combination.

n this paper, we adopt the simple equal-weight fusion because the

eight addition of the PDC max and PDC min is larger than that of

he CST, and the accuracy of the equal-weight fusion is close to

he best one. 

.7. Computational cost 

The proposed method consists of multiple dimensional fea-

ure extraction and TPTSR-based identification. To better show

he efficiency of the proposed method, we use the 3D_MCI sam-

les calculate the computational time of the feature extraction

s well as the feature identification, respectively. In addition,

hree baseline multiple-dimensional based methods, including the

CI_Comp, SII_Comp_LBP, and MCI_GCI_ST, are also implemented

nd compared with the proposed. To evaluate the efficiency of

he TPTSR classifier, the PDCST descriptor with the NN classifier

s also tested. For a fair comparison, all the methods are exe-

uted under the same platform containing a PC with an Intel(R) i7-

700CPU@3.60HZ, a 16 G RAM, and MATLAB R2014a. Each method

s repeated 10 times and the average computational time, includ-

ng the time taken for feature extraction and identification of a 3-D

almprint image, are reported in Table 7 . It is pointed out that 2

amples for each palm are selected to form the training sample set

nd the time cost of curvature calculation is included in 3-D fea-

ure extraction. It can be seen that the proposed method takes a

it more time than the baseline competitive code methods in 2-D

eature extraction. A possible reason is that the proposed method

xtracts twice the direction features as well as the extra corre-

ponding side code information. By contrast, the proposed method

as a relatively fast 3-D feature extraction speed due to the sim-

le CST encoding scheme. In general, the feature extraction of the

raining samples can be performed outline before a query sample

oming. Therefore, the efficiency of palmprint identification heavily
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depends on the feature identification speed. It can be seen that the

proposed method has the least identification time, making it suit-

able for palmprint identification. In addition, the TPTSR scheme of

the proposed method is faster than the NN scheme, demonstrating

the effectiveness of the TPTSR on palmprint identification. 

5. C onclusion 

A 3D palmprint image essentially contains both the 2D palm-

print gray-level information and the 3D palm surface depth-level

data. In this paper, we propose a precision direction descriptor to

represent the 2D texture features and compact surface type to rep-

resent the 3D surface structure features for 3D palmprint recogni-

tion. The proposed precision direction code can better exploit both

the visible and potential direction features of the palmprint. In ad-

dition, the conventional surface type is not very suitable to depict

the surface features of 3D palmprint images because it is hard to

distinguish nine surface types based on the small float-based cur-

vature features of the palmprint. To solve this issue, we use a sim-

ple yet effective CST to represent the characteristics of a 3D palm

surface. Furthermore, this paper combines the PDC and CST to from

the PDCST, to provide more accurate 3D palmprint identification

based on the two-phase sparse representation scheme. Extensive

experimental results on three widely used palmprint databases

have validated the promising performance of the proposed method

on 3D palmprint identification as well as the effectiveness of the

PDC and CST on feature representation of 3D palmprint. Hence, it

would be interesting to exploit multiple precision directions to fur-

ther improve the palmprint recognition performance, and to ap-

ply the CST to other 3D-based pattern recognition tasks to further

demonstrate its effectiveness. 
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