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Abstract—Magnetic resonance (MR) image acquisition is an
inherently prolonged process, whose acceleration has long been
the subject of research. This is commonly achieved by obtaining
multiple undersampled images, simultaneously, through paral-
lel imaging. In this paper, we propose the Dual-Octave Net-
work (DONet), which is capable of learning multi-scale spatial-
frequency features from both the real and imaginary components
of MR data, for parallel fast MR image reconstruction. More
specifically, our DONet consists of a series of Dual-Octave
convolutions (Dual-OctConv), which are connected in a dense
manner for better reuse of features. In each Dual-OctConv, the
input feature maps and convolutional kernels are first split into
two components (i.e., real and imaginary), and then divided into
four groups according to their spatial frequencies. Then, our
Dual-OctConv conducts intra-group information updating and
inter-group information exchange to aggregate the contextual
information across different groups. Our framework provides
three appealing benefits: (i) It encourages information interaction
and fusion between the real and imaginary components at various
spatial frequencies to achieve richer representational capacity. (ii)
The dense connections between the real and imaginary groups
in each Dual-OctConv make the propagation of features more
efficient by feature reuse. (iii) DONet enlarges the receptive
field by learning multiple spatial-frequency features of both the
real and imaginary components. Extensive experiments on two
popular datasets (i.e., clinical knee and fastMRI), under different
undersampling patterns and acceleration factors, demonstrate
the superiority of our model in accelerated parallel MR image
reconstruction.

Index Terms—MR imaging, feature fusion, image reconstruc-
tion, complex-valued data

I. INTRODUCTION

MAGNETIC resonance (MR) imaging has become in-
creasingly popular in radiology and medicine over the

past decade, thanks to its advantages in being non-radiative,
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Fig. 1: Motivation of our work. Previous methods utilize
vanilla convolutions (a) to process the real- and imaginary-
valued parts of an MR image independently, or complex con-
volutions (b) to jointly deal with the two parts. In contrast, we
propose Dual-OctConv, which is a generalization of complex
convolutions, to process complex-valued inputs in a multi-
frequency space for more effective feature representations.

having a high spatial-resolution, and providing superior soft
tissue contrast [1]. However, a major limitation of MR imag-
ing is that it requires a much longer acquisition time than
other imaging techniques, e.g., computed tomography (CT),
X-Ray, and ultrasound [2, 3]. In addition, it is impossible
to keep patients in the scanner for a long time and obtain
clean data without motion artifacts. Therefore, accelerating
MR reconstruction has become an urgent research problem,
since it can in turn greatly accelerate MR imaging. Recently,
significant efforts have been devoted to this task, which is
typically achieved by reconstructing the desired full images
from undersampled measured data [4, 5].

Compressed Sensing (CS) has achieved significant progress
in fast MR imaging, because sub-Nyquist sampling can
significantly reduce the acquisition time by skipping some
phase information. Specifically, CS-based methods overcome
aliasing artifacts caused by the violation of the Shannon-
Nyquist sampling theorem, by introducing additional prior
knowledge of the images. CS-based methods employ sparse
coding in the transformed domain (e.g., undersampled k-space
data) to naturally compress the MR image through a discrete
cosine transform (DCT) [6, 7], discrete Fourier transform
(DFT) [8, 9], discrete wavelet transform (DWT) [10, 11,
12], or dictionary learning [13]. However, these traditional
methods only exploit prior information of the images to-be-
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reconstructed, or involve very few reference images. For a
large number of medical images acquired in clinical practice,
traditional CS-based methods do not explore the potential
regularities within them. Because CS-based methods require
iterative optimization to find the optimal value, even if the CS
involves only a small number of reference images, they still
suffer from heavy computational overhead.

Recently, parallel MR imaging has been considered as
one of the most important achievements in accelerated MR
imaging [14, 15, 16, 17]. Multi-coil data for parallel imaging
is composed of multiple physical receivers simultaneously
recorded from different perspectives. Parallel MR imaging
reconstructs the data points using the coil sensitivity profiles
across multiple channels, from a small amount of k-space
data. At present, parallel imaging is the default option for
many scanning protocols. Most studies (e.g., SENSE [18],
GRAPPA [19, 20], SPIRiT [21]) take advantage of spatial
sensitivity and gradient coding to reduce the amount of data
required for reconstruction, thereby shortening the imaging
time. However, a higher acceleration rate may introduce
aliased artifacts and substantially reduce the signal-to-noise
ratio (SNR) in clinical practice.

More recently, with the renaissance of deep neural networks,
deep learning techniques, especially convolutional neural net-
works (CNNs) [22, 23], have been widely used for parallel MR
imaging [24, 25]. Since models are trained offline over large-
scale data, only a few extra online samples are required for
reconstruction. The model-based unrolling methods [26, 27]
combine mathematical structures (e.g., variational inference,
compressed sensing) with deep learning for fast MR image
reconstruction. Moreover, extensive approaches [2, 28, 29,
30, 31] introduce end-to-end learnable models to remove the
aliasing artifacts from images that are reconstructed from
undersampled multi-coil k-space data. The mapping between
a zero-filled k-space and fully-sampled MR image is automat-
ically learned by CNNs, requiring no sub-problem division.

Most of the above approaches directly borrow vanilla
convolutions used in standard CNNs for k-space data in
MR image reconstruction. However, vanilla convolutions are
designed for real-valued natural images, and cannot deal
with complex-valued inputs. To solve this, early studies [32]
simply discarded the imaginary part or processed the real and
imaginary parts independently for real-valued convolutions
(see Fig. 1(a)). To avoid information loss, the complex convo-
lution [33] was recently proposed to process complex-valued
inputs and encourage information exchange between real and
imaginary values (see Fig. 1(b)). Though impressive, existing
complex convolution operations ignore the intrinsic multi-
frequency property of MR images, leading to limited single-
scale contextual information and high spatial redundancy in
the final representations.

To address these limitations, we take a further step towards
exploring multi-frequency representation learning in parallel
MR image reconstruction (see Fig. 1(c)). Specifically, we pro-
pose a novel Dual-Octave Network (DONet) which contains a
series of Dual-Octave Convolutions (Dual-OctConv), enabling
our model to learn multi-frequency representations of multi-
coil MR images [34]. The dense connections in the Dual-

OctConv enable the feature propagation of the high- and low-
frequency components of both the real and imaginary data.
Unlike complex convolutions, our DONet processes the real
(or imaginary) part of MR image features by factorizing it
into high- and low-frequency components. The low-frequency
component shares information across neighboring locations,
and can thus be efficiently processed in low-resolution to
enlarge the receptive field and reduce the spatial redundancy.
Finally, we combine the features of the real and imaginary
parts for reconstruction. Benefiting from the Dual-OctConv,
our network has a more powerful capability in multi-scale
representation learning, and can thus better capture soft tissues
(e.g.,blood vessels, muscles) with varying sizes and shapes.

Our main contributions are three-fold: First, we propose a
novel DONet containing multiple Dual-OctConvs connected
in a dense manner for multi-frequency feature reuse, and
demonstrate their ability to capture multi-scale contextual
information. Second, we employ the Dual-OctConv to deal
with complex-valued inputs in a multi-frequency representa-
tion space, and encourage information exchange and fusion
across various frequency domains. The Dual-OctConv is a
generalization of the standard complex convolution, and en-
dows our model several appealing characteristics (e.g.,a larger
receptive field, higher flexibility, and more computational
efficiency). Third, our model shows significant performance
improvements against state-of-the-art algorithms on a clinical
knee dataset and the fastMRI dataset.

Compared with our preliminary conference version [35],
this paper provides the following extensions. (1) We generalize
the architecture of the Dual-Octave (corresponding to DONet†

in this paper) from [35] to a more powerful version (i.e.,
DONet). This is done by employing dense connections for
better feature reuse. Our DONet is demonstrated to achieve
significantly better performance than Dual-Octave [35] (§III).
(2) We further apply the proposed DONet to the currently
largest raw MRI dataset, fastMRI, to demonstrate the advan-
tages of our method over other deep learning models (§IV).
(3) Finally, we also provide a more inclusive and insightful
overview of recent work on fast parallel MRI reconstruction
(§II).

II. RELATED WORK

A. Deep Learning in MR Image Reconstruction

Ever since the pioneering works introducing CNNs for
computer vision tasks, such as image classification and face
recognition, researchers have made substantial efforts to im-
prove medical and clinical practice using deep learning tech-
niques [36, 37]. Wang et al. [32] proposed the first deep
learning based MR image reconstruction framework, which
learns the mapping between fully-sampled single-coil MR
images and their counterpart data reconstructed from a zero-
filled undersampled k-space. A large number of networks have
since been developed for MR image reconstruction, especially
non-parallel reconstruction [38]. For example, [39] proposed
a model-based unrolling method, which formulates the algo-
rithm within a deep neural network, and trained the network
with a small amount of data. As an end-to-end method,
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Fig. 2: Architecture of our DONet for parallel MR image reconstruction. The input is a set of zero-filled multi-coil k-space
measurements, while the output is the reconstructed multi-channel MR image. IFT represents the 2D inverse Fourier transform.
See §III-B for details.

[40] employed U-Net to model a domain adaptation structure
that removes aliasing artifacts from corrupted images. Zhu et
al. [41] proposed the automated transform by manifold approx-
imation (AUTOMAP) framework, which they implemented
using a deep neural network to learn a mapping between the
sensor and image domain. Han et al. [40] proposed a deep
learning approach with domain adaptation which uses a large
amount of X-ray computed tomography (CT) or synthesized
radial MR data and is fine-tuned with a small amount of real
radial MR data. Dongwook et al. [42] trained amplitude and
phase, respectively, using a residual network to reduce the
computational cost of the reconstruction algorithm. With the
pioneering works on Generative Adversarial Networks (GANs)
for natural image synthesis, GAN-based methods have also
made great progress in MR image reconstruction [43, 44, 45].
For example, Tran et al. [43] designed an adversarial model
for CS-MR image reconstruction, accurately interpolating and
restoring data in an undersampled k-space data, and with a loss
of data consistency. Moreover, image refinement on specific
network structures with different training objectives, such as
the adversarial loss [44] or perceptual loss [43], has gained
more attention.

In parallel imaging, one representative model is the vari-
ational network (VN-Net) [26], which combines the mathe-
matical structure of the variational model with deep learning
for fast multi-coil MR image reconstruction. Another model-
based deep framework [27] was designed with a split Bregman
iterative algorithm to achieve accurate reconstruction from
multi-coil undersampled k-space data. To obtain high-fidelity
reconstructions, GrappaNet [31] was proposed to combine
traditional parallel imaging methods with deep neural net-
works. Recently, complex-valued representations have demon-
strated superiority in processing complex-valued inputs [33].
For example, [2] applied complex convolutions to jointly
process real and imaginary values for comprehensive feature
representations. In contrast, our approach represents complex-
valued input features in a multi-frequency space. The Dual-
OctConv, proposed for processing such multi-frequency data,
can capture richer contextual knowledge, leading to significant
improvement in performance.

B. Multi-Scale Representation Learning

Multi-scale information has proven effective in various com-
puter vision tasks (e.g., image classification, object detection,

semantic segmentation). Especially in the era of deep learning,
multi-scale representation has been successfully applied in
various fields due to its strong robustness and generalization
ability. Several strategies have been proposed for this, yielding
significant performance improvement in a number of tasks. For
example, [46] proposed a multi-grid network to propagate and
integrate information across multiple scales for image classifi-
cation. Multi-scale information has also been proven effective
in restoring image details for image enhancement [47, 48, 49].
Seungjun et al. [47] proposed a multi-scale convolutional
neural network together with a multi-scale loss function for
dynamic scene deblurring. In addition, various well-known
techniques (e.g., FPN [50] and PSP [51]) have been proposed
for learning multi-scale representations in object detection and
segmentation tasks. For example, Lin et al. [50] proposed a
top-down feature pyramid architecture with lateral connections
at all scales for object detection. Recently, the Octave convo-
lution [34] was proposed to learn multi-scale features based
on the spatial frequency model [52, 53], greatly improving
performance in natural image and video recognition.

In this work, we demonstrate the appealing properties of
the Octave convolution for accelerated parallel MR image
reconstruction, which helps to capture multi-scale information
from features of multiple spatial frequencies. Based on this,
we propose a novel Dual-OctConv for accelerated parallel MR
image reconstruction, which enables our model to capture
details of vasculatures and tissues with varying sizes and
shapes, yielding high-fidelity reconstructions.

III. METHODOLOGY

A. Problem Formulation

MR scanners acquire k-space data through the receiver coils
and then utilize an inverse multidimensional Fourier transform
to obtain the final MR images. In parallel imaging, multiple
receiver coils are used to simultaneously acquire k-space data
from the target under scanning.

Let A = MF ∈ CM×N denote the undersampled Fourier
encoding matrix, where F is the multidimensional Fourier
transform, and M is an undersampled mask operator. In
parallel imaging, the same mask is used for all coils. The
undersampled k-space data from each coil can be expressed
as:

yi = A(Six), (1)
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Fig. 3: Detailed design of our Dual-OctConv block. X ∈ Cc×h×w represents the input complex-valued feature maps, and
Y∈Cc×h×w indicates the corresponding output feature maps, modulated by the Dual-OctConv. u and p denote the upsampling
and average pooling operations, respectively. Please see Eq. (9) for more details.

where i = 1, 2, ..., c, with c denoting the number of coils, x∈
CN×1 is the ground truth MR image, yi ∈CM×1(M <<N)
is the undersampled k-space data for the i-th coil, and Si is a
complex-valued diagonal matrix encoding the sensitivity map
of the i-th coil. The coil sensitivities, which are measured by
each coil, modulate the k-space data. The coil configuration
and interactions with the anatomical structures under scanning
can affect the coil sensitivities, so Si changes across different
scans. In addition, the obtained image will contain aliasing
artifacts if the inverse Fourier transform is directly applied to
the undersampled k-space data. For single-coil MR imaging,
i = 1.

We can reconstruct x̂ with prior knowledge of its proper-
ties, which can be formulated as the following optimization
problem:

x̂ = arg min
x

c∑
i=1

‖yi −A(Six)‖22 + λΨ(x), (2)

where Ψ is a regularization function and λ controls the trade-
off between the two terms.

The problem presented in Eq. (2) can be effectively re-
solved using CNNs, which avoids time-consuming numerical
optimization and the need of a coil sensitivity map. During
training, we update the network weights by minimizing an `1
loss function,

θ̂ = arg min
θ

1

N

N∑
n=1

‖x′(n)− fθ(y′(n))‖1, (3)

where y′(n) is the n-th multi-channel image obtained from
the zero-filled k-space data, x′(n) is the n-th multi-channel
ground truth image, N is the total number of training samples,
and fθ(·) is an end-to-end mapping function parameterized
by θ, which contains a large number of adjustable network
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Fig. 4: The Dual-OctConv kernels. Red and blue squares
correspond to the imaginary and real kernels, respectively.

weights. Training with Eq. (3) can reconstruct the expected
MR images, but the original information of the data acquired
in the k-space cannot be well preserved. If we incorporate
the undersampled k-space data into the data fidelity at the
training stage, the network can yield improved reconstruction
results. For this purpose, we add the data fidelity units in our
network, as in [2]. After the network is trained, we obtain a
set of optimal parameters θ̂ for the reconstruction of a multi-
channel image, and predict this image via x̂′ = fθ̂(y′). Finally,
we use an adaptive coil combination method [2] to obtain the
expected MR image from x̂′.

B. Framework Overview

Fig. 2 illustrates the architecture of our DONet, which
simultaneously considers both k-space data fidelity and image
space proximity to achieve high-fidelity reconstruction. Specif-
ically, given an undersampled multi-coil k-space measurement
as input, we first convert it to aliased multi-channel images via
an inverse Fourier transform (IFT). The transformed image is
then fed into a cascade of T Dual-OctConv blocks, with each
block followed by a data fidelity unit [2]. The data fidelity
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unit helps to preserve the original k-space information during
training. Formally, the t-th data fidelity unit can be written as:

Xt = F−1((1−M)F(X̌t) + My), (4)

where X̌t denotes the reconstructed output image of the t-
th Dual-OctConv block, while Xt represents the output after
applying the t-th data fidelity unit, which will be fed into the
t+1-th Dual-OctConv block as input. F−1 denotes the inverse
Fourier transform.

Next, we will describe the details of our Dual-OctConv
block in §III-C and the Dual-OctConv layer in §III-D.

C. Dual-Octave Convolutional Block

We present the detailed architecture of our Dual-OctConv
block, which is employed to learn comprehensive, multi-scale
feature representations for reconstruction. In the following
paragraphs, the superscript ‘t’ is omitted for conciseness,
unless necessary.

As shown in Fig. 3, each Dual-OctConv block consists of
K Dual-OctConv layers {Dk}Kk=1. These layers accecpt X
as input and produce the reconstruction X̌, in a sequential
manner. More specifically, to obtain rich multi-scale context
information, we first represent the multi-channel input with
complex filters, and then decompose it into low and high
spatial frequency parts. Let X∈Cc×h×w = Xr(0) + iXi(0) be
the input complex feature maps with c, h, and w denoting the
number of channels, height, and width, respectively. The Xr(0)

and Xi(0) are the real and imaginary parts of the complex
data, respectively. As illustrated in Fig. 3, we initially split
the complex input feature maps into low- and high-frequency
groups: Xr(0) = {XL

r(0),X
H
r(0)}, Xi(0) = {XL

i(0),X
H
i(0)}, where

XH ∈ C(1−α)c×h×w captures the high-frequency fine details
of the data and XL ∈ Cαc×0.5h×0.5w determines the low-
frequency image contrast. Here, α ∈ [0, 1] controls the ratio
of channels that are allocated to low-frequency and high-
frequency feature maps. Note that the Dual-OctConv becomes
the standard complex convolution [33] when α=0. Then, for
the k-th Dual-OctConv layer Dk, we have:

XL
r(k),X

H
r(k),X

L
i(k),X

H
i(k)

= Dk(XL
r(k−1),X

H
r(k−1),X

L
i(k−1),X

H
i(k−1)),

(5)

where XL
r(k−1), X

H
r(k−1), X

L
i(k−1), X

H
i(k−1) are the inputs, and

XL
r(k), XH

r(k), XL
i(k), XH

i(k) are the outputs of Dk. Then, for
each block, we obtain the final feature representations at the
K-th Dual-OctConv layer, which are combined to obtain the
reconstruction:

X̌ = u(c(XL
r(K),X

L
i(K)), 2) + c(XH

r(K),X
H
i(K)), (6)

where u(·, z) denotes the upsampling operation with a factor
of z. Here, we use the nearest neighbor interpolation. c(·, ·)
denotes the concatenation operation. The output X̌ is then fed
into the data fidelity layer Eq. (4) as well as the subsequent
Dual-OctConv block for cascade reconstruction.

In addition, we emphasize that the sequential pipeline
mentioned above conducts individual feature learning layer-
by-layer, neglecting the feature fusion among different layers,

which often produces more comprehensive feature represen-
tations [54, 55]. To this end, we improve the sequential
Dual-OctConv block by introducing dense connections in an
interleaved manner. Formally, for the output of the k-th (k≥1)
Dual-OctConv layer, its features are modulated as follows:

XL
r(k) = Ck([XL

r(k),X
L
r(k−1), · · · ,X

L
r(0)]),

XL
i(k) = Ck([XL

i(k),X
L
i(k−1), · · · ,X

L
i(0)]),

XH
r(k) = Ck([XH

r(k),X
H
r(k−1), · · · ,X

H
r(0)]),

XH
i(k) = Ck([XH

i(k),X
H
i(k−1), · · · ,X

H
i(0)]).

(7)

Here, the feature maps at the k-th layer are firstly concatenated
the features at all previous layers, and then processed with
a function Ck to learn collective knowledge from all these
feature maps. Following [55], we implement Ck as: BN-ReLU-
Conv(1×1)-BN-ReLU-Conv(3×3). Such dense connections
enable our model to reuse features from previous layers
with high computational efficiency, since there is no need to
relearn redundant feature maps. They also help to alleviate the
gradient vanishing problem when the number of layers in our
network increases. In our experiments, we demonstrate that
the reconstruction performance significantly improves after
introducing these dense connections.

D. Dual-Octave Convolutional Layer

Now we present the proposed Dual-Octave convolutional
layer, which fuses the real and imaginary parts of a complex
valued input. For the k-th layer Dk, we denote X(k−1) =
Xr(k−1) + iXi(k−1) as its input. We convolve X(k−1) with a
complex filter matrix K(k) = Kr(k) + iKi(k) as follows:[
<(K(k) ∗X(k−1))
=(K(k) ∗X(k−1))

]
=

[
Kr(k) −Ki(k)
Ki(k) Kr(k)

]
∗
[
Xr(k−1)
Xi(k−1)

]
, (8)

where the matrices Kr(k) and Ki(k) represent real and imag-
inary kernels, respectively. Note that all the kernels and
feature maps are expressed by real matrices since the complex
arithmetics are simulated by real-valued entities.

As shown in Fig. 4, the complex filter matrix is further ex-
pressed as KH

r = [KH→L
r(k) ,KH→H

r(k) ], KH
i(k) = [KH→L

i(k) ,KH→H
i(k) ],

KL
r(k) =[KL→H

r(k) ,KL→L
r(k) ], KL

i(k) =[KL→H
i(k) ,KL→L

i(k) ] to convolve
with XL

r(k−1), X
L
i(k−1), X

H
r(k−1) and XH

i(k−1). Then, Dk can
be formulated as:

XL
r(k) =f(XL

r(k−1);K
L→L
r(k) ) + u(f(XL

r(k−1);K
L→H
r(k) ), 2)

+ f(XL
r(k−1);K

L→L
i(k) ) + u(f(XL

r(k−1);K
L→H
i(k) ), 2),

XL
i(k) =f(XL

i(k−1);K
L→L
r(k) ) + u(f(XL

i(k−1);K
L→H
r(k) ), 2)

− f(XL
i(k−1);K

L→L
i(k) )− u(f(XL

i(k−1);K
L→H
i(k) ), 2),

XH
r(k) =f(XH

r(k−1);K
H→H
r(k) ) + f(p(XH

r(k−1), 2);KH→L
r(k) ))

+ f(XH
r(k−1);K

H→H
i(k−1)) + f(p(XH

r(k−1), 2);KH→L
i(k) )),

XH
i(k) =f(XH

i(k−1);K
H→H
r(k) ) + f(p(XH

i(k−1), 2);KH→L
r(k) ))

− f(XH
i(k−1);K

H→H
i(k) )− f(p(XH

i(k−1), 2);KH→L
i(k) )),

(9)

where f(X;K) indicates the convolution with kernel K,
u(X, k) denotes the upsampling operation with a factor of k
via nearest interpolation, and p(X, z) represents an average
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TABLE I: Quantitative comparison of state-of-the-art methods under different undersampling patterns on the clinical knee
dataset. Best and second best results are marked in red and blue, respectively.

undersampling pattern 1D Uniform 1D Cartesian 2D Random 2D Radial
acceleration rate 3x 5x 3x 5x 3x 5x 4x 6x

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Zero-filing 24.406 0.676 23.579 0.655 25.922 0.726 24.550 0.685 30.540 0.827 27.078 0.750 31.026 0.826 28.107 0.766
SPIRiT 29.385 0.700 28.300 0.676 32.310 0.801 31.222 0.782 32.179 0.786 32.258 0.812 30.308 0.720 29.061 0.702

L1-SPIRiT 29.815 0.847 27.353 0.788 33.346 0.887 30.912 0.837 38.597 0.937 34.071 0.887 37.004 0.919 34.149 0.881
VN-Net 35.436 0.907 32.730 0.858 36.364 0.912 33.236 0.866 38.409 0.956 35.734 0.923 37.956 0.930 34.609 0.907

ComplexMRI 34.989 0.909 32.803 0.873 35.957 0.916 34.126 0.876 39.563 0.946 37.315 0.908 38.098 0.933 35.768 0.904

DONet† 36.243 0.919 34.128 0.885 37.029 0.923 34.944 0.884 39.964 0.948 38.279 0.930 38.607 0.935 36.584 0.908
DONet 36.338 0.918 34.526 0.892 37.074 0.931 35.400 0.902 40.652 0.953 38.428 0.930 38.387 0.935 36.281 0.909

pooling layer with kernel size z × z. The real and imagi-
nary parts are fused with the operations {L→ L,H→ H}
and {H→ L,L→ H}, which correspond to the information
updating and exchanging between high- and low-frequency
feature maps. Therefore, our Dual-OctConv is able to enlarge
the receptive fields of the low-frequency feature maps both
in the real and imaginary parts. To put this into perspective,
after convolving the low-frequency feature maps of the real
and imaginary parts ( XL

r(k−1), X
L
i(k−1)) with z × z complex

convolutional kernels, the receptive fields of both achieve a
2× enlargement compared to the vanilla convolution. Thus,
our Dual-OctConv has a strong ability to capture rich context
information at different scales.

IV. EXPERIMENTS

A. Datasets

We introduce a clinical knee [26] dataset and the
fastMRI [56] dataset under different undersampling patterns
and acceleration factors to evaluate our method. The clinical
multi-coil fully-sampled MR knee dataset is acquired using a
clinical 3T Siemens Magnetom Skyra scanner with a sequence
called “Coronal Spin Density Weighted without Fat Suppres-
sion”. The imaging protocol is detailed as follows: 15-channel
knee coil, matrix size 320×320×20, TR=2750 ms, TE=27
ms, and in-plane resolution = 0.49×0.44 mm2. There are 20
subjects in total with the following information: 5 female/15
male, age 15-76, and BMI 20.46-32.94. We randomly select
fourteen patients for training, three for validation, and three
for testing. For the fastMRI dataset, we randomly select
400 patients from the multi-coil knee dataset using a Proton
Density (PD) weighted sequence for training, 40 for validation,
and 60 for testing. In our experiments, we exclude the first few
slices of each volume since the frontal slices are much noisier
than the other slices, making the distribution of frontal slices
different from the rest. More details of the fastMRI dataset
can be obtained from [56].

The pre-defined undersampling masks are used to obtain the
undersampled measurements. In our experiments, we adopt
four different k-space undersampling patterns, including 1D
uniform, 1D Cartesian, 2D random, and 2D radial. Exam-
ples of the undersampling patterns are illustrated in Fig. 5
and Fig. 6. For 1D uniform, 1D Cartesian, and 2D random

masks, the acceleration rate is set to 3× and 5×. For the 2D
radial mask, 4× and 6× accelerations are adopted.

B. Implementation Details

We implement our model using Tensorflow 1.14 and per-
form experiments using an NVIDIA 1080Ti GPU with 11GB
of memory. Following [2], we initialize the magnitude and
phase of the complex parameters using Rayleigh and uniform
distributions, respectively. The network is trained using the
Adam optimizer [2] with initial learning rate 0.001 and weight
decay 0.95. The batch size is set to four and the convolutional
kernel size is set to 3×3. Each complex convolutional layer has
64 feature maps, except for the last layer, which is determined
by the concatenated real and imaginary channels of the data.
The spatial frequency ratio α is set to 0.125 by default.

To demonstrate their effectiveness, we compare our DONet
and DONet† (without dense connections) with several state-of-
the-art parallel MR imaging approaches, including traditional
methods (SPIRiT [21] and L1-SPIRiT [57]) as well as CNN-
based methods (VN-Net [26] and ComplexMRI [2]). All these
methods are trained on the same dataset with their default
settings. For CNN-based methods, we re-train them according
to the specifications with TensorFlow, using their default
parameter settings.

C. Quantitative Evaluation

We use peak signal-to-noise ratio (PSNR) and structural
similarity index measure (SSIM) [2] for quantitative evalua-
tion. Table I reports the average PSNR and SSIM results with
respect to different undersampling patterns and acceleration
factors on the clinical dataset. As can be seen, DONet† ob-
tains consistent performance improvements against all baseline
methods, demonstrating the superiority of our Dual-OctConv.
Moreover, by incorporating dense connections, our full model
(i.e., DONet) further improve the performance significantly
across various settings.

Additionally, we observe that the undersampling patterns
greatly affect the quality of reconstruction. For instance, the
2D sampling masks generally outperform the 1D masks. An-
other important observation is that the reconstruction becomes
more difficult when the acceleration rate increases.
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TABLE II: Quantitative comparison of state-of-the-art methods under different undersampling patterns on fastMRI dataset.
Best and second best results are marked in red and blue, respectively.

undersampling pattern 1D Uniform 1D Cartesian 2D Random 2D Radial
acceleration rate 3x 5x 3x 5x 3x 5x 3x 5x

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Zero-filing 22.981 0.681 22.600 0.662 22.553 0.689 22.274 0.671 29.292 0.833 25.614 0.760 31.308 0.849 28.460 0.787
SPIRiT 27.305 0.601 27.185 0.610 29.387 0.694 28.133 0.648 30.950 0.725 30.293 0.735 29.778 0.681 28.099 0.611

L1-SPIRiT 29.597 0.827 26.501 0.774 28.757 0.835 28.000 0.801 37.275 0.911 33.107 0.852 36.896 0.907 34.420 0.868
VN-Net 31.032 0.860 28.641 0.810 32.105 0.875 31.544 0.853 37.113 0.907 34.726 0.813 36.516 0.894 33.899 0.825

ComplexMRI 31.548 0.867 29.922 0.829 32.773 0.888 31.590 0.852 37.751 0.926 35.227 0.891 37.238 0.922 34.753 0.882

DONet† 32.415 0.874 29.895 0.829 33.204 0.891 32.576 0.862 38.058 0.927 35.911 0.894 37.523 0.930 35.112 0.884
DONet 33.890 0.888 32.780 0.856 35.094 0.904 33.644 0.868 38.316 0.928 36.385 0.896 37.905 0.925 35.413 0.886

SPIRiT L1-SPIRiT VN-Net DeepComplex

28.997/0.684 27.712/0.834 35.258/0.905 35.506/0.913 37.045/0.9291D Uniform 3×

Ground truth

0.10

0.08

0.06

0.04

0.02

0.00

0.10

0.08

0.06

0.04

0.02

0.00

1D Cartesian 3× 32.205/0.875 35.510/0.910 35.003/0.892 35.505/0.89832.137/0.802 36.269/0.930

37.526/0.944

DONetDONet†

Fig. 5: Comparison of different methods in terms of reconstruction accuracy on the clinical knee dataset, with 1D
undersampling patterns and a 3× acceleration rate. Reconstruction results and error maps are presented with corresponding
quantitative measurements in PSNR/SSIM.

In particular, our model significantly outperforms previous
methods under extremely challenging settings (e.g., 2D masks
with 5× and 6× acceleration). This can be attributed to
the powerful capability of our DONet in aggregating rich
contextual information of real and imaginary data. Moreover,
the overall results in Table I show the strong robustness of our
model under various undersampling patterns and acceleration
rates. For example, our method restores more information and
with minimum artifacts, as demonstrated in Fig. 5 and Fig. 6
with error maps.

In Table II, we provide reconstruction evaluations of our
model on fastMRI, which is currently the largest MR image

dataset. As we can see, DONet obtains the best reconstruction
results among different undersampling patterns and acceler-
ation rates. In particular, under 1D uniform undersampling
patterns with 5× acceleration, our DONet improves the re-
construction PSNR from 29.992 dB to 32.780 dB and SSIM
from 0.829 to 0.856, compared to the best previous state-of-
the-art fusion method, ComplexMRI. Similarly, we observe
that our DONet yields outstanding results on both the 1D
uniform and 1D Cartesian undersampling patterns with 3×
and 5× acceleration. More importantly, even without the dense
connection, our DONet† achieves compelling reconstruction
results compared to the state-of-the-art methods. Under the
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1D Cartesian 3X 40.319/0.961 39.592/0.95539.731/0.952 36.364/0.930 33.348/0.804 

2D Random 5× 36.957/0.93134.639/0.92534.698 0.92534.050/0.88632.281/0.821

0.10

0.08

0.06

0.04

0.02

0.00

30.744/0.769 39.451/0.958 38.469/0.95532.721/0.962 37.013/0.9432D Radial 4×

SPIRiT L1-SPIRiT VN-Net DeepComplexGround truth

0.10

0.08

0.06

0.04

0.02

0.00
40.308/0.964

37.245/0.935

DONetDONet†

Fig. 6: Comparison of different methods in terms of reconstruction accuracy on the clinical knee dataset, with 2D
undersampling patterns and 4× and 5× acceleration rates. Reconstruction results and error maps are presented with
corresponding quantitative measurements in PSNR/SSIM.

Fig. 7: Quantitative comparison of Dual-OctConv and the
baseline convolution (α = 0) in terms of PSNR and SSIM.
Note that ratio α=0 is equivalent to the complexMRI model.

2D radial pattern with 3× acceleration, DONet† achieves
SSIM = 0.930. All the results demonstrate that our DONet
preserves powerful and rich contextual information for real
and imaginary data.

D. Qualitative Evaluation

For qualitative analysis, we first show the reconstructed
images and corresponding error maps for 1D uniform and
1D Cartesian sampling with a 3× acceleration rate in Fig. 5.

36.3 

36.1 

35.9 

� 
z35.7 

� 35.5 

35.3 

35.1 

34.9 ��-��-��-���
0 0.1250.250.375 0.5 0.6250.750.875 1 

a 

0.918 

0.916 

0.912 

0.91 

0.908 ��-��-��-���
0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1 

a 

Fig. 8: Analysis of spatial frequency ratio (α) in terms of
PSNR and SSIM.

In general, 1D Cartesian masks provide better results in
comparison to 1D uniform masks. Our method provides the
best-quality reconstructed images and significantly reduces
prediction errors. In contrast, the baseline methods yield large
prediction errors and show unsatisfactory performance.

We next examine the results for 2D radial masks with a 4×
acceleration rate and 2D random masks with a 5× acceleration
rate. As shown in Fig. 6, CNN-based methods significantly
improve the results with less errors and clearer structures, in
comparison with SPIRiT and L1-SPIRiT. In particular, our
DONet produces higher-quality images with clear details and
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Fig. 9: Performance comparison of our network with respect
to the number of Dual-OctConv blocks.

Fig. 10: FLOPs analysis with respect to spatial frequency ratios
(α). The number below each point is the value of α. We see
that, under various settings (0<α<1), our DONet is always
more efficient and accurate than the baseline model (α=0).

minimum artifacts. The superior performance is owed to the
fact that our method can effectively aggregate the information
of various spatial frequencies present in the real and imaginary
parts of an MR image.

E. Ablation Studies

The crucial part of our DONet is the Dual-OctConv. It
is thus important to prove the effectiveness of the proposed
convolution. First, we study the effects of Dual-OctConv. For
comparison, we build a baseline convolution by setting α=0,
which turns our method into a standard complex convolution.
We conduct experiments on the test set of in vivo dataset with
60 complex-valued images under the uniform undersampling
mask with a 3× acceleration rate. As illustrated in Fig. 7, our
Dual-OctConv significantly outperforms the baseline model,
especially in terms of SSIM. This reveals the superiority of
the proposed method in improving the reconstruction.

Secondly, we investigate the influence of the spatial fre-
quency ratio α for reconstruction. The ratio determines the
receptive fields in both the real and imaginary parts, and
also influences the fusion of these parts at multiple spatial
frequencies. As shown in Fig. 8, our model achieves the best
PSNR and SSIM scores at α = 0.125, which means that
12.5% of the channels in the real and imaginary parts are
reduced to a low spatial frequency. When α becomes larger,
the performance quickly degrades due to severe information
loss induced by over-large ratios.

The number of network parameters increases as the number
of blocks (bn) increases. Therefore, it is necessary to choose
an appropriate number of blocks to ensure that the network

structure reaches the highest reconstruction accuracy without
inducing higher computational and memory requirements.
Herein, we carry out various experiments using different
numbers of blocks. The results are presented in Fig. 9. As
can be seen from the curves, our model can successfully
reconstruct the MR images at bn= 4, and the reconstruction
accuracy reaches the highest at bn=10.

Finally, we study the FLOPs of DONet with respect to
different α in Fig. 10. The number below each point is the
value of α, and α = 0 refers to the baseline model. As can
be observed, a small α leads to improved performance with a
higher FLOPs. Moreover, compared with the baseline model
(e.g., α=0), our model consistently shows better performance
with much lower FLOPs.

V. CONCLUSION

In this work, we focus on spatial frequency feature ex-
pression in complex-valued data for parallel MR image re-
construction. For this purpose, we propose a DONet with
a series of novel Dual-OctConv operations to deal with the
real and imaginary components of the data at multiple spatial
frequencies. By convolving the feature maps of both the real
and imaginary components under different spatial resolutions,
the proposed Dual-OctConv facilitates our DONet to learn
more comprehensive feature representations, yielding higher-
quality reconstructed images with significantly reduced arti-
facts. We conduct extensive experiments on the in vivo knee
and fastMRI datasets under different settings of undersampling
patterns and acceleration rates. The results demonstrate the
advantages of our model against state-of-the-art methods in
accelerated MR image reconstruction.
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