
ORIGINAL ARTICLE

Accelerating the kernel-method-based feature extraction
procedure from the viewpoint of numerical approximation

Yong Xu • David Zhang

Received: 8 December 2009 / Accepted: 27 January 2011 / Published online: 22 February 2011

� Springer-Verlag London Limited 2011

Abstract The kernel method suffers from the following

problem: the computational efficiency of the feature

extraction procedure is inversely proportional to the size of

the training sample set. In this paper, from a novel view-

point, we propose a very simple and mathematically trac-

table method to produce the computationally efficient

kernel-method-based feature extraction procedure. We first

address the issue that how to make the feature extraction

result of the reformulated kernel method well approximate

that of the naı̈ve kernel method. We identify these training

samples that statistically contribute much to the feature

extraction results and exploit them to reformulate the

kernel method to produce the computationally efficient

kernel-method-based feature extraction procedure. Indeed,

the proposed method has the following basic idea: when

one training sample has little effect on the feature extrac-

tion result and statistically has the high correlation with

regard to all the training samples, the feature extraction

term associated with this training sample can be removed

from the feature extraction procedure. The proposed

method has the following advantages: First, it proposes, for

the first time, to improve the kernel method through formal

and reasonable evaluation on the feature extraction term.

Second, the proposed method improves the kernel method

at a low extra cost and thus has a much more computa-

tionally efficient training phase than most of the previous

improvements to the kernel method. The experimental

comparison shows that the proposed method performs well

in classification problems. This paper also intuitively

shows the geometrical relation between the identified

training samples and other training samples.

Keywords Pattern recognition � Kernel methods �
Feature extraction � Kernel minimum squared error �
Kernel PCA

1 Introduction

In the field of pattern recognition, the kernel method, which

can deal with nonlinearly separable problems well, has

attracted much attention. The kernel method can implicitly

map the original nonlinearly separable samples into a new

higher dimensional space i.e. feature space, where the

samples from different classes may become linearly sepa-

rable and a linear classifier can accurately classify them

[1, 2]. The reason why the kernel method can do so is that

the mapping function is nonlinear, which is able to convert

nonlinearly separable problems into linearly separable

problems. For the same reason, the kernel method is

referred to as a nonlinear feature extraction method. Up to

now, many kernel methods, e.g. kernel regression, kernel

principal component analysis, and kernel Fisher discrimi-

nant analysis have been developed [3–15].

It is clear that the kernel-method-based feature extraction

is superior to conventional nonlinear feature extraction. As

we know, a conventional nonlinear feature extraction

method should first transform samples into a new space by

an explicit nonlinear mapping and then perform feature

extraction in the new space. However, because of the use of

the kernel function, kernel methods indeed do not explicitly

Y. Xu (&)

Bio-Computing Research Center, Shenzhen Graduate School,

Harbin Institute of Technology, 518055 Shenzhen,

Guangdong, People’s Republic of China

e-mail: laterfall2@yahoo.com.cn

D. Zhang

Biometrics Research Centre, Department of Computing,

The Hong Kong Polytechnic University, Kowloon, Hong Kong

123

Neural Comput & Applic (2011) 20:1087–1096

DOI 10.1007/s00521-011-0534-5

perform a nonlinear mapping. As a result, the kernel meth-

ods are usually more computationally efficient than the

conventional nonlinear methods.

The kernel method also suffers from the following

problem: when it extracts features from a sample, it should

calculate all the kernel functions regarding this sample and

all the training samples. Consequently, the computational

efficiency of the feature extraction procedure is inversely

proportional to the size of the training sample set. On the

other hand, a large-scale training set is helpful for a method

to achieve a good performance. In real-world applications,

people also exploit some scheme to enlarge the training set

with the purpose of the proposed method being able to fit

more data. It is clear that if the size of the training set is very

large, the computation of the kernel method will become

very inefficient and even impractical [11]. Indeed, this might

hinder the kernel method from being applicable to real-

world applications. In this sense, it is significant to improve

the kernel method for obtaining a fast feature extraction

procedure.

A variety of improvements to kernel methods have been

proposed for the purpose of speeding the feature extraction

efficiency. These improvements are proposed from differ-

ent viewpoints. For example, Xu et al. [9, 11, 14, 16]

constructed computationally efficient kernel-method-based

feature extraction procedures based on the nature of dif-

ferent kernel methods. They proposed the improvements to

kernel discriminant analysis (KLDA), kernel minimum

squared error (KMSE), and kernel PCA (KPCA) with the

following idea: the improvements to the kernel methods

should produce the possible optimal values of the corre-

sponding objective functions of naı̈ve kernel methods. For

instance, when reformulating KLDA, they required that the

reformulated KLDA model should be the candidate model

that has the largest Fisher criterion value. M. E. Tipping

also exploited the nature of the principal component

analysis methodology to develop sparse KPCA [17].

Researchers also proposed to construct efficient feature

extraction procedures for kernel methods from the view-

point of vector approximation. For example, Scholkopf

et al. [10] proposed that the discriminant vector of the

improved kernel method should have the minimum

numerical deviation with respect to the genuine discrimi-

nant vector corresponding to the naı̈ve kernel method.

Other methods to improve the kernel method include the

leave-one-out cross-validation method [18] and prototype

reduction schemes [19]. So far, improvements to the sev-

eral typical kernel methods, e.g. improvements to support

vector machine [20], to KPCA [17], to KFD [11, 21], and

to KMSE [14, 16] are all available. However, most of these

improvements have the following common characteristic:

their training phases have a high computational cost, being

much more computationally inefficient than the training

phases of the naı̈ve kernel methods. This characteristic will

reduce the applicability in real-world applications of these

improvements. In this paper, we also show the locations in

the original space and the location in the feature space of

the identified training samples that contribute much to the

feature extraction results, which help us intuitively see the

geometrical relation between the identified training sam-

ples and other training samples.

In this paper, we propose a new numerical approximation

viewpoint and reformulate the kernel method for obtaining a

computationally efficient feature extraction procedure from

this viewpoint. The proposed method is simple, intuitive and

computationally efficient in both the training phase and the

feature extraction phase. Our basic ideas are as follows: first,

suppose that a linear combination of some of the training

samples in the feature space can be used to replace the linear

combination of all the training samples to represent the

genuine discriminant vector. Second, if the feature extrac-

tion results obtained using the constructed approximation

discriminant vector are similar to the feature extraction

results obtained using the genuine discriminant vector, we

say that the constructed approximation discriminant vector

is good. This is because classification is directly based on the

feature extraction result, and similar feature extraction result

can almost produce the same classification decision. Using

the above-mentioned ideas, we develop the algorithm that

evaluates the contribution, to the feature extraction result, of

each element of the training sample set. Actually, as shown

later, the contribution, to the feature extraction result of

samples, of the element of the training set is reflected by the

product of the corresponding kernel function and the com-

ponent of the discriminant vector. The algorithm identifies

the training samples that contribute much to the feature

extraction results and exploit a linear combination of them to

express the discriminant vector in the feature space. Since

the corresponding feature extraction procedure needs to

calculate only as many kernel functions as there are the

identified training samples, which are much fewer than the

total training samples, the feature extraction procedure will

extract features more efficiently than the original feature

extraction procedure based on the naı̈ve kernel method. It

also should be pointed out that the reformulated kernel

method has a lower structure complexity, so it might gen-

eralize better than the naı̈ve kernel method. In addition, we

also illustrate, for the first time, the locations in the original

space and in the feature space of the identified training

samples. This is very useful for us to understand the geo-

metrical relation between the identified training samples and

other training samples.

The remainder of this paper is organized as follows: In

Sect. 2, we present the idea to improve the kernel method,

the scheme to evaluate the contribution, to the feature

extraction results of samples, of the element of the training

1088 Neural Comput & Applic (2011) 20:1087–1096

123

sample set and the rationale of the proposed scheme. In

Sect. 3, we present how to reformulate KMSE and KPCA

as well as the main steps of the corresponding feature

extraction and classification procedure. In Sect. 4, we show

the experimental results on the benchmark datasets.

Finally, we offer our brief conclusion in Sect. 5.

2 The idea, scheme, and analysis of the reformulated

kernel method

2.1 The idea to improve the kernel method

In this subsection, we formally present our idea to improve

the kernel method. For simplicity, in this paper, we assume

that there are only two classes. We focus on only the kernel

method based on the reproducing kernel theory. Typical

examples of this kind of kernel methods include KPCA,

KLDA, and KMSE et al. Each of these kernel methods

correspond to a discriminant vector w in the feature space.

According to the reproducing kernel theory, the discrimi-

nant vector can be expressed as a linear combination of all

the (training) samples in the feature space as follows:

w ¼
Xn

i¼1

ai/ðxiÞ: ð1Þ

For most of kernel methods, the feature extraction result of

sample /(x) in the feature space is indeed the projection

onto w of /(x). As a result, the feature extraction result of

/(x) can be formally expressed as

yðxÞ ¼ wT/ðxÞ ¼
Xn

i¼1

ai/ðxiÞ
 !T

/ðxÞ ¼
Xn

i¼1

aikðxi; xÞ;

ð2Þ

where kðxi; xÞ ¼ uðxiÞTuðxÞ is the defined kernel function.

k(xi, x) is also referred to as the kernel function with regard

to x and xi. The use of the kernel function allows us not to

explicitly perform the nonlinear mapping / for any sample.

It is clear that the feature extraction result of a sample is

one linear combination of all the kernel functions with

regard to this sample and all the training samples.

We also note that in the feature space of KMSE, the

discriminant vector w includes the bias w0, i.e.

w ¼ w0 þ
Pn

i¼1 ai/ðxiÞ. As a result, the feature extraction

result associated with KMSE is formally little different

from (2) and can be described as follows

yðxÞ ¼ w0 þ
Xn

i¼1

aikðxi; xÞ; ð3Þ

From (2) and (3), we know that for sample x, if the

product of the kernel function k(xi, x) and the

corresponding coefficient ai has a large absolute value,

then the i-th training sample xi actually contributes much to

the feature extraction result of x. Once this product always

has a large absolute value for a sample set S = {x} rather

than a sole sample, then we can say that from the viewpoint

of statistics, the i-th training sample xi always contributes

much to the feature extraction result of an arbitrary sample.

On the contrary, if the product of the kernel function k(xj,

x), x [S and the corresponding coefficient aj always has a

small absolute value, then the j-th training sample xj

actually contributes little to the feature extraction result. As

a result, if we remove the term ajk(xj, x), which corresponds

to the j-th training sample, from (2) and (3), the feature

extraction result of x will change only little. Assume that

we can identify all of these kinds of training samples, then

we can remove all the terms corresponding to these training

samples. This will bring only a little change to the feature

extraction result. As a result, we can exploit yðxÞ ¼Pr
i¼1 bikðx0i; xÞ or yðxÞ ¼ w00 þ

Pr
i¼1 bikðx0i; xÞ to extract

feature from sample x. We will show how to determine bi

and w00 in Sect. 3. Since r \ n, we can extract features more

computationally efficiently.

2.2 The scheme to evaluate the feature extraction term

We devise the scheme to evaluate the feature extraction

term as follows. Hereafter, let S be identical to the training

set, i.e. S ¼ fxp; p ¼ 1; 2; . . .; ng. For the p-th element xp of

S, the main part (or the whole part) of its feature extraction

result is
Pn

i¼1 aikðxi; xpÞ. As mentioned in Sect. 2.1, the

value of jaijkðxi; xpÞ indeed represents the contribution of

the i-th training sample to the feature extraction result of

xp. We also refer to ai as discriminant component corre-

sponding to the i-th training sample. We can evaluate the

sum of the contribution of the i-th training sample to the

feature extraction result of all the elements of S by

fi ¼
Pn

p¼1 jaijkðxi; xpÞ. We also calculate the variance f̂i of

jaijkðxi; xpÞ as follows: f̂i ¼ 1
n

Pn
p¼1 fip � �fi

� �2
, where �fi

represents the mean of fip ¼ aij jkðxi; xpÞ, p ¼ 1; 2; . . .; n.

We define Fi ¼ fi þ tt � f̂i. If j ¼ arg
i

min Fi, then from the

viewpoint of statistics, we can consider that the j-th train-

ing sample contributes the least to the feature extraction

result of all the elements. The coefficient tt allows the

effect of the variance of fip to be partially considered.

Indeed, a small Fi not only means that the contribution to

the feature extraction result of the i-th training sample is

small but also implies that the contribution also appears to

be stable. As a result, if we remove the term ajkðxj; xpÞ
from the feature extraction result of each xp,

p ¼ 1; 2; . . .; n, this removal will cause only a little change

to the feature extraction result. aikðxi; xpÞ is referred to as

Neural Comput & Applic (2011) 20:1087–1096 1089

123

the i-th feature extraction term of sample xp. Since there are

a number of feature extraction terms whose F have small

values, we can identify all these terms and remove them

from the feature extraction result of each xp at one time.

Then, we can reformulate the kernel method, solve the

solution, and exploit it to perform computationally efficient

feature extraction.

2.3 More analysis on the algorithm framework

In this subsection, we attempt to show the underlying

rationale of the scheme presented in Sect. 2.2 from another

viewpoint. According to the definition of the kernel func-

tion, we have
Pn

p¼1 jaijkðxi; xpÞ ¼ aij j
Pn

p¼1 /TðxiÞ/ðxpÞ ¼
aij j �

Pn
p¼1 /ðxpÞ
�� ��: /ðxiÞk kcos hip where hip stands for the

angle between the sample vectors /(xi) and /(xp). We can

say that the lower the value of cos hip, the higher the

correlation between /(xi) and /(xp). Thus, the value of

cos hip also partially indicates the correlation between

different sample vectors. From this, we know that the term

removing rule shown in Sect. 2.2 indeed takes into account

both the correlation between different sample vectors and

the value of the coefficient ai. While the term removing

rule inclines to remove the feature extraction term whose

discriminant component has a small absolute value, it is

also probably that this rule removes the feature extraction

term in which the corresponding training sample has high

correlation with regard to all the other training samples.

Thus, from this viewpoint, the term removing rule is also

reasonable.

Furthermore, if the kernel function is set to the Gaussian

function, then we have
Pn

p¼1 /ðxpÞ
�� �� � /ðxiÞk k ¼

ffi
kðxp; xpÞkðxi; xiÞ

p
¼ 1. As a result,

Pn
p¼1 jaijkðxi; xpÞ ¼

jaij �
Pn

p¼1 cos hip. From this, we can conclude that when

the Gaussian kernel function is adopted, the scheme pro-

posed in Sect. 2.2 removes the contribution, to the feature

extraction results, of the training samples with small dis-

criminant component and with high statistical correlation

with respect to other training samples.

We use Figs. 1 and 2 to describe the structure of the

training phase of the kernel method and the reformulated

kernel method, respectively. Figure 1 shows that all of

x1; x2; . . .; xn serve as the inputs of the training phase of the

kernel method. The training phase exploits the desired

outputs of the inputs to determine the coefficients

a1; a2; . . .; an. We can regard that the second layer of Fig. 1

plays a similar role of one hidden layer of the neural net-

work. Figure 2 shows that the training phase of the refor-

mulated kernel method has a similar structure as the kernel

method except that its second layer has fewer nodes than

the second layer of Fig. 1. Thus, we can say that the

reformulated kernel method has a lower structure com-

plexity, which implies that it is possible for the reformu-

lated kernel method to generalize better than the kernel

method.

3 To reformulate KMSE and KPCA

3.1 Description of KMSE

KMSE is established on the basis of the following

equation:

KAþ N ¼ Y ; ð4Þ

where

K ¼

1 kðx1; x1Þ � � � kðx1; xnÞ
1 kðx2; x1Þ � � � kðx2; xnÞ
..
. ..

. ..
.

1 kðxn; x1Þ � � � kðxn; xnÞ

2
6664

3
7775:

N ¼ ½ e1 . . . en �T stands for the error vector. Y ¼
½ y1 y2 . . . yn �T represents the known output vector

of samples. For two-class classification problems,

Y represents the known class labels of all training

Fig. 1 The illustration of the kernel method

Fig. 2 The illustration of the reformulated kernel method

1090 Neural Comput & Applic (2011) 20:1087–1096

123

samples. For example, if the i-th training sample is from

the first class, we can set yi to 1; otherwise, we set yi to -1.

As presented in [16], A can be solved using the following

equation:

A ¼ ðKTK þ cIÞ�1KT Y : ð5Þ

where c is a small positive constant and I is the identity

matrix.

3.2 Improvement to KMSE

The main steps to implement the improvement to KMSE

and the corresponding feature extraction and classification

procedure are as follows:

Step 1 We solve A using (5).

Step 2 We evaluate the contribution, to the feature

extraction results, of each training sample using

the scheme described in Sect. 2.2. Then, we order

the training samples in terms of their contributions

to the feature extraction results and identify the first

n - r training samples that contributes little to the

feature extraction results and denote them by

xn
1; x

n
2; x

n
3; . . .; xn

n�r, respectively. Since each of the

kernel vectors ½ kðx1; x
n
i Þ kðx2; x

n
i Þ . . .

kðxn; x
n
i Þ�

T
corresponding to xn

i , i ¼ 1; 2; . . .; n� r

must be one column of K, we identify these

columns and remove them from K and denote the

renewed K by K1. In other words, K1 is defined as

ðK1Þij ¼ kðxi; x
0
jÞ, where i ¼ 1; 2; . . .; n and

j ¼ 1; 2; . . .; r. x0i, i ¼ 1; 2; . . .; r belong to the

set fx0ig ¼ fx1; x2; . . .; xng � fxn
1; x

n
2; x

n
n�rg. xn

1; x
n
2;

xn
n�r are the identified n - r training samples that

contribute little to the feature extraction results.

Step 3 Since the new KMSE system has the equation

K1A1 þ N1 ¼ Y , we solve A1 using the equation

A1 ¼ ðK1T K1Þ�1K1T Y . We perform feature extrac-

tion for an arbitrary sample x using

yðxÞ ¼ w00 þ
Pr

i¼1 bikðx0i; xÞ, where A1 ¼
½w00 b1 b2 . . . br �T .

Step 4 We extract the feature from an arbitrary sample

x using yðxÞ ¼ w00 þ
Pr

i¼1 bikðx0i; xÞ.
Step 5 We exploit the feature extraction result to classify

samples as follows. If y(x) [0, we classify it into

the first class; otherwise, we classify it into the

second class.

3.3 Description of KPCA

In this subsection, we briefly describe KPCA. KPCA solves

the m eigenvectors corresponding to the first m largest

eigenvalues of the Gram matrix P defined as ðPÞij ¼
kðxi; xjÞ and takes the discriminant vectors of the feature

space corresponding to these eigenvectors as transform

axes to transform a sample into an m dimensional feature

space. The feature extraction results of sample x can be

formulated by [22]

Z2 ¼
PN

j¼1

að1Þj kðxj;xÞ
,

ffiffiffiffiffi
ka

1

p PN

j¼1

að2Þj kðxj;xÞ
,

ffiffiffiffiffi
ka

2

p
. . .

PN

j¼1

aðmÞj kðxj;xÞ
,

ffiffiffiffiffiffi
ka

m

p
" #T

ð6Þ

where að1Þ; að2Þ; . . .; aðmÞ are respectively the m eigenvec-

tors corresponding to the first m largest eigenvalues

ka
1; k

a
2; . . .; ka

m of P. Note that aðiÞj denotes the j-th compo-

nent of the vector a(i).

According to the nature of the PCA methodology, the

first component of the feature extraction result can capture

the data component that varies most. As a result, we regard

that the first component of the feature extraction result is

the most important among all the m components. We thus

exploit only the first component to evaluate the contribu-

tion of a training sample to the feature extraction result.

Since the first component is produced by the first transform

axis, we also say that we exploit only the first transform

axis to evaluate the ‘‘contribution’’.

3.4 Improvement to KPCA

In this subsection, we present the main steps to implement

the improvement to KPCA and the corresponding feature

extraction and classification procedure.

Step 1 We solve the eigenvector corresponding to the

largest eigenvalue of the Gram matrix P of

KPCA.

Step 2 We evaluate the contribution, to the feature

extraction results, of each training sample using

the scheme described in Sect. 2.2. Then, we order

the training samples in terms of their contribu-

tions to the feature extraction results and identify

the first n - r training samples that contributes

little to the feature extraction results and denote

them by xn
1; x

n
2; x

n
3; . . .; xn

n�r, respectively.

Since each of the kernel vectors ½ kðx1; x
n
i Þ

kðx2; x
n
i Þ. . .kðxn; x

n
i Þ�

T
corresponding to xn

i , i ¼
1; 2; . . .; n� r must be one column of K, we

identify these columns and remove them from

K and denote the renewed K by K1. In other

words, ðK1Þij ¼ kðxi; x
0
jÞ, i ¼ 1; 2; . . .; n, j ¼ 1; 2;

. . .; r. fx0jg ¼ fx1; x2; . . .; xng � fxn
1; x

n
2; . . .; xn

n�rg.
Step 3 We solve the m eigenvector corresponding to the

first m largest eigenvalues of the following

equation:

Neural Comput & Applic (2011) 20:1087–1096 1091

123

K1ðK1ÞTb ¼ kb
i K2b; ð7Þ

where K2 is defined as ðK2Þij ¼ kðx0i; x0jÞ, i; j ¼ 1; 2; . . .; r

[22]. We perform feature extraction for sample x using

ZðxÞ¼
Pr

j¼1

bð1Þj kðx0j;xÞ
, ffiffiffiffiffi

kb
1

q Pr

j¼1

bð2Þj kðx0j;xÞ
, ffiffiffiffiffi

kb
2

q
...
Pr

j¼1

bðmÞj kðx0j;xÞ
, ffiffiffiffiffiffi

kb
m

q" #T

:

kb
i , i ¼ 1; 2; . . .;m are the first m largest eigenvalues of K1,

respectively, and bð1Þ; bð2Þ; . . .; bðmÞ respectively denote the

corresponding m eigenvectors of (7). bðiÞ ¼
½ bðiÞ1 bðiÞ2 . . . bðiÞr

�T , i ¼ 1; 2; . . .;m. x0i, i ¼ 1; 2; . . .; r

still belongs to the set fx0ig ¼ fx1; x2; . . .; xng�
fxn

1; x
n
2; x

n
n�rg.

Step 4 We exploit the feature extraction result Z(x) and

the nearest neighbor classifier to classify samples.

3.5 Characteristics of the proposed method

The proposed method has the following characteristics.

First, it provides an intuitive and very mathematically

tractable means to produce computationally efficient

kernel-method-based feature extraction procedure. Starting

from the viewpoint of numerical approximation, the pro-

posed method can find the training samples that statistically

contribute much to the feature extraction results and exploit

them to reformulate KMSE or KPCA. Second, the pro-

posed method also has a computationally efficient training

phase. Indeed, the main computational burden of its

training phase is to solve the equations of naı̈ve KMSE (or

naı̈ve KPCA) and the reformulated KMSE (or KPCA)

model. Since naı̈ve KMSE or naı̈ve KPCA also should

solve one equation, the extra cost that the proposed method

needs is just from solving the equation of the reformulated

KMSE (or KPCA) model. On the contrary, other

improvements to KPCA or KMSE such as the ones pro-

posed in [16, 22] usually improve KPCA or KMSE at a

very high extra computational cost.

4 Experimental results

We used several benchmark datasets [16] to test the pro-

posed method and other methods. Every dataset except for

‘‘Splice’’ includes 100 partitions each consisting of one

training sample subset and one test sample subset. We

adopted the Gaussian kernel in the form of kðx; yÞ ¼
expð� x� yk k2=rÞ. When testing the methods using each

dataset, we took the first training subset as the training set

and took all the testing subsets as the testing set. Because

every test subset obtained an error rate, we figured out the

mean of the error rates of all the testing subsets of one

dataset and showed it by the table.

4.1 Experiments on the reformulated KPCA

This subsection presents the experiments on KMSE. The

kernel function parameter r was set to the squared norm of

the covariance matrix of the training samples. Tables 1 and 2

show the means of the classification error rates of our

KPCA method and the naı̈ve KPCA method, respectively.

Table 3 shows the mean of the classification error rat of the

KPCA proposed in [22]. In these tables, the first column

shows the value of r. r varies from 10 to 44. In Table 2,

r denotes the dimension of the features obtained using

naı̈ve KPCA. In Table 1, r represents both the dimension of

the features obtained using our KPCA and the number of

the identified training samples that contribute much to the

feature extraction results. In Table 3, the different rows

show similarly except that the used method is the KPCA

proposed in [22]. For each dataset shown in one table, the

second row to the last row respectively show the variation

with r of the mean of the classification error rates of the

corresponding KPCA method. These tables show that

averagely the classification error rate obtained using our

KPCA method is not higher than the error rate obtained

using the KPCA method in [22] and is only little higher

than the error rate obtained using naive KPCA. Moreover,

as shown in early, our KPCA method has a much more

computationally efficient training phase than the KPCA

method in [22].

Figures 3 and 4 use the magenta circles to respectively

show the location in the original space and the location in

Table 1 The mean of the classification error rat of our KPCA

method

r Splice Thyroid Diabetes Heart Banana German

10 0.2484 0.0099 0.1160 0.1049 0.1355 0.1153

12 0.2417 0.0217 0.1274 0.1106 0.1367 0.1077

14 0.2336 0.0224 0.1215 0.0819 0.1384 0.0964

16 0.2288 0.0281 0.1178 0.0853 0.1384 0.0991

18 0.2313 0.0316 0.1267 0.0891 0.1368 0.1048

20 0.2307 0.0225 0.1344 0.0872 0.1356 0.1055

22 0.2266 0.0145 0.1222 0.0836 0.1363 0.1047

24 0.2273 0.0235 0.1210 0.0777 0.1400 0.1106

26 0.2311 0.0193 0.1240 0.0736 0.1465 0.1116

28 0.2266 0.0224 0.1240 0.0907 0.1379 0.1043

30 0.2181 0.0224 0.1233 0.0937 0.1352 0.1085

32 0.2177 0.0377 0.1241 0.0851 0.1325 0.0997

34 0.1994 0.0329 0.1238 0.0965 0.1361 0.1075

36 0.2051 0.0331 0.1252 0.0840 0.1352 0.1044

38 0.1937 0.0289 0.1205 0.0976 0.1369 0.1009

40 0.1928 0.0195 0.1229 0.0973 0.1354 0.0990

42 0.1925 0.0195 0.1210 0.1052 0.1356 0.1003

44 0.1944 0.0268 0.1195 0.1056 0.1344 0.1004

1092 Neural Comput & Applic (2011) 20:1087–1096

123

the feature space of the identified training samples that

contribute much to the feature extraction results. They

intuitively show that since the mapping function corre-

sponding to the kernel trick is a nonlinear function, in the

original space and in the feature space, samples might have

entirely different locations and distribution. Due to the

same reason, it is feasible for us to identify the samples that

contribute much to the feature extraction results through

analysis on the feature space, whereas it is not a right way

to identify these samples through the analysis on the ori-

ginal space. Indeed, in this paper, we also exploit the

analysis on the feature extraction results in the feature

space to obtain the reformulated KMSE method and the

reformulated KPCA method. Figure 5 shows the location

Table 2 The mean of the classification error rat of naı̈ve KPCA

r Splice Thyroid Diabetes Heart Banana German

10 0.2168 0.0099 0.1077 0.0828 0.1371 0.0988

12 0.2153 0.0099 0.1077 0.0870 0.1380 0.1051

14 0.2237 0.0099 0.1120 0.0910 0.1367 0.0962

16 0.2078 0.0099 0.1171 0.0735 0.1373 0.0960

18 0.2035 0.0099 0.1167 0.0735 0.1380 0.0932

20 0.2062 0.0099 0.1171 0.0735 0.1378 0.0947

22 0.2060 0.0099 0.1199 0.0769 0.1382 0.0975

24 0.2031 0.0099 0.1132 0.0803 0.1380 0.0950

26 0.2048 0.0099 0.1140 0.0803 0.1380 0.0961

28 0.2033 0.0099 0.1175 0.0803 0.1380 0.0908

30 0.1984 0.0099 0.1169 0.0803 0.1380 0.0934

32 0.2032 0.0099 0.1160 0.0803 0.1380 0.0945

34 0.2025 0.0099 0.1169 0.0803 0.1380 0.0908

36 0.1969 0.0099 0.1172 0.0803 0.1380 0.0946

38 0.1898 0.0099 0.1141 0.0803 0.1380 0.0975

40 0.1908 0.0099 0.1130 0.0726 0.1380 0.0970

42 0.1894 0.0099 0.1130 0.0726 0.1380 0.0959

44 0.1899 0.0099 0.1171 0.0726 0.1380 0.0968

Table 3 The mean of the classification error rat of the KPCA pro-

posed in [22]

r Splice Thyroid Diabetes Heart Banana German

10 0.2625 0.0147 0.1133 0.1051 0.1369 0.1071

12 0.2560 0.0223 0.1085 0.0966 0.1365 0.0964

14 0.2435 0.0229 0.1009 0.0986 0.1355 0.0996

16 0.2532 0.0195 0.1108 0.1018 0.1372 0.0954

18 0.2472 0.0193 0.1178 0.1030 0.1368 0.0934

20 0.2371 0.0195 0.1077 0.1009 0.1348 0.0993

22 0.2335 0.0241 0.1046 0.0927 0.1351 0.1048

24 0.2394 0.0193 0.1133 0.0905 0.1370 0.1000

26 0.2182 0.0188 0.1070 0.0919 0.1344 0.1038

28 0.2127 0.0228 0.1108 0.0865 0.1317 0.1036

30 0.2114 0.0228 0.1179 0.0942 0.1350 0.0983

32 0.2122 0.0269 0.1221 0.0940 0.1339 0.1036

34 0.2086 0.0291 0.1130 0.0974 0.1340 0.1092

36 0.2059 0.0265 0.1097 0.1010 0.1357 0.1046

38 0.2154 0.0228 0.1133 0.1050 0.1372 0.1081

40 0.2178 0.0285 0.1132 0.0915 0.1380 0.1086

42 0.2134 0.0269 0.1198 0.0909 0.1367 0.1085

44 0.2126 0.0269 0.1224 0.0838 0.1405 0.1046

Fig. 3 Location in the original space of the 40 identified training

samples that contribute much to the feature extraction results.

Magenta circles denote the identified training samples, and blue
circles denote other training samples. The samples are all from the

first training subset of the dataset ‘‘Banana’’

Fig. 4 Location in the feature space of the 40 identified training

samples that contribute much to the feature extraction results.

Magenta circles denote the identified training samples, and blue
circles denote other training samples. The samples are all from the

first training subset of the dataset ‘‘Banana’’. Only the first two

components of the features obtained using our KPCA method are

shown in this figure

Neural Comput & Applic (2011) 20:1087–1096 1093

123

in the feature space of the 40 identified training samples

that were used to construct the KPCA method in [22].

The samples in Figs. 3, 4, and 5 are all from the first

training subset of the dataset ‘‘Banana’’. The difference

between Figs. 4 and 5 also indicate that different

improvements to KPCA may use entirely different samples

to construct the improved KPCA method. On the other

hand, these different improvements incline to obtain sim-

ilar classification performance as shown in Tables 1 and 3.

4.2 Experiments on the reformulated KMSE

This subsection describes the experiments on KMSE. The

kernel function parameter r was set as follows: First, we

calculated the mean of all the training samples. Then, we

calculated the squared norm of the result of each training

sample subtracted from the mean and set r to the mean of

these squared norms. Table 4 shows the mean of the

classification error rat of the naive KMSE method on dif-

ferent datasets. Tables 5 and 6 show the mean of the

classification error rates of our KMSE method and the

KMSE method proposed in [16], respectively. In Tables 5

and 6, the first column shows the ratio of r to N, the total

number of the training samples. From these tables, we see

that while r/N increases, the classification errors of both our

KMSE method and the KMSE method proposed in [14]

decreases. In addition, our KMSE method classifies more

efficiently than the KMSE method proposed in [14]. If

r/N is not too small, the classification error rate obtained

using our KMSE method will be close to the error rate

obtained using the naı̈ve KMSE method. For example,

when r/N = 0.23, our KMSE method obtained the means

of the classification error rates, 0.1648, 0.0135, 0.1947,

0.1102 for datasets ‘‘Cancer’’, ‘‘Thyroid’’, ‘‘Diabetes’’ and

‘‘Banana’’, respectively. The means of the classification

error rates that the naı̈ve KMSE method obtained for these

datasets are 0.1825, 0.135, 0.1821, and 0.1103,

respectively.

5 Conclusion

The method proposed in this paper is able to obtain com-

putationally efficient feature extraction procedure for the

kernel method. The method solves the efficient feature

extraction problem from the viewpoint of numerical

Fig. 5 Location in the feature space of the 40 identified training

samples that were used to construct the KPCA method in [22].

Magenta circles denote the identified training samples, and blue
circles denote other training samples. The samples are all from the

first training subset of the dataset ‘‘Banana’’. Only the first two

components of the features obtained using our KPCA method are

shown in this figure

Table 4 The mean of the classification error rat of the naive KMSE

method

Cancer Splice Thyroid Diabetes Heart Solar Banana German

0.1825 0.0909 0.135 0.1821 0.1043 0.3243 0.1103 0.1512

Table 5 The mean of the classification error rat of our KMSE

method

r/N Cancer Splice

(tt = 0.1)

Thyroid Diabetes Heart Banana German

0.03 0.2462 0.2179 0.0799 0.2371 0.1761 0.1333 0.2339

0.04 0.2504 0.1871 0.0656 0.2385 0.1651 0.1161 0.2276

0.05 0.2600 0.1788 0.0713 0.2391 0.1718 0.1136 0.2152

0.06 0.2596 0.1658 0.0712 0.2348 0.1710 0.1119 0.2187

0.07 0.2597 0.1564 0.0505 0.2302 0.1681 0.1121 0.2207

0.08 0.2555 0.1453 0.0460 0.2295 0.1668 0.1125 0.2282

0.09 0.2400 0.1390 0.0409 0.2226 0.1729 0.1117 0.2215

0.10 0.2566 0.1357 0.0361 0.2235 0.1622 0.1115 0.2153

0.11 0.2447 0.1342 0.0361 0.2297 0.1661 0.1117 0.2171

0.12 0.2339 0.1221 0.0233 0.2305 0.1758 0.1110 0.2184

0.13 0.2126 0.1191 0.0185 0.2225 0.1574 0.1111 0.2129

0.14 0.2079 0.1157 0.0185 0.2237 0.1560 0.1119 0.2064

0.15 0.2087 0.1166 0.0185 0.2195 0.1639 0.1111 0.2040

0.16 0.2301 0.1152 0.0185 0.2170 0.1439 0.1111 0.1977

0.17 0.2319 0.1129 0.0185 0.2154 0.1490 0.1113 0.2008

0.18 0.2323 0.1089 0.0135 0.2074 0.1513 0.1115 0.1917

0.19 0.2200 0.1113 0.0135 0.2065 0.1481 0.1115 0.1940

0.20 0.1766 0.1076 0.0135 0.2058 0.1586 0.1107 0.1868

0.21 0.1723 0.1084 0.0135 0.2084 0.1448 0.1103 0.1891

0.22 0.1723 0.1101 0.0135 0.1968 0.1347 0.1100 0.1713

0.23 0.1648 0.1100 0.0135 0.1947 0.1288 0.1102 0.1709

0.24 0.1694 0.1063 0.0135 0.1931 0.1318 0.1096 0.1710

For all the datasets except ‘‘Splice’’, tt was set to 1

1094 Neural Comput & Applic (2011) 20:1087–1096

123

approximation. The method identifies the terms that con-

tribute little to the feature extraction results and improves

the feature extraction efficiency by removing the corre-

sponding feature extraction terms from the feature extrac-

tion procedure. This method has the following rationale:

when one training sample corresponds to a discriminant

component with a small absolute value and statistically has

high correlation with regard to all the other training sam-

ples, the feature extraction term associated with this

training sample can be removed from the feature extraction

procedure. The proposed method also has an efficient

training phase. The experimental results also show that the

proposed method can obtain a good classification perfor-

mance. The figures on the locations in the original space

and the location in the feature space of the identified

training samples that contribute much to the feature

extraction results is very helpful to intuitively show the

geometrical relation between the identified training sam-

ples and other training samples.

Acknowledgments This article is partly supported by Program for

New Century Excellent Talents in University (NCET-08-0156),

National Nature Science Committee of China under grant Nos.

61071179, 90820306, 60902099, and 61001037, the Fundamental

Research Funds for the Central Universities (HIT.NSRIF. 2009130),

863 Program Project under Grant No. 2007AA01Z195 and the CERG

fund from the HKSAR Government and the central fund from Hong

Kong Polytechnic University.

References

1. Muller KR, Mika S, Ratsch G et al (2001) An introduction to

kernel-based learning algorithms. IEEE Trans Neural Netw

12(2):181–201

2. Vapnik VN (1995) The nature of statistical learning theory.

Springer, Berlin

3. Xu J, Zhang X, Li Y (2001) Kernel MSE algorithm: a unified

framework for KFD, LS-SVM and KRR. In: Proceedings of the

international joint conference on neural networks (IJCNN-2001),

Washington, DC, pp 1486–1491

4. Muller K-R, Mika S, Rätsch G, Tsuda K, Schölkopf B (2001) An

introduction to kernel-based learning algorithms. IEEE Trans

Neural Netw 12(1):181–201

5. Girolami M (2002) Mercer kernel based clustering in feature

space. IEEE Trans Neural Netw 13(4):669–688

6. Shawe-Taylor J, Cristianini N (2004) Kernel methods for pattern

analysis. Cambridge University Press, Cambridge

7. Yang J, Frangi AF, Yang J-Y, Zhang D, Jin Z (2005) KPCA Plus

LDA: A complete kernel fisher discriminant framework for fea-

ture extraction and recognition. IEEE Trans Pattern Anal Mach

Intell 27(2):230–244

8. Schölkopf B, Smola A (2002) Learning with kernels. MIT Press,

Cambridge

9. Xu Y, Yang JY, Lu JF, Yu DJ (2004) An efficient renovation on

kernel Fisher discriminant analysis and face recognition experi-

ments. Pattern Recogn 37:2091–2094

10. Scholkopf B, Mika S, Burges C, Knirsch P, Muller KR, Ratsch G,

Smola A (1999) Input space versus feature space in kernel-based

methods. IEEE Trans Neural Netw 10(5):1000–1017

11. Xu Y, Yang JY, Yang J (2004) A reformative Fisher discriminant

analysis. Pattern Recogn 37:1299–1302

12. Schölkopf B, Smola A, Muller KR (1998) Nonlinear component

analysis as a kernel eigenvalue problem. Neural Comput

10(5):1299–1319

13. Mika S, Rätsch G, Weston J, Schölkopf B, Müller K-R (1999)

Fisher discriminant analysis with kernels. In: Neural networks for

signal processing IX. IEEE, New York, pp 41–48

14. Xu Y, Yang JY, Lu JF (2005) An efficient kernel-based non-

linear regression method for two-class classification. Proceed-

ings of the fourth international conference on machine learning

and cybernetics, Guangzhou, China, 18–21 August 2005,

pp 4442–4445

15. Steve B, Kian L (2002) Nonlinear Fisher discriminant analysis

using a minimum squared error cost function and the orthogonal

least squares algorithm. Neural Netw 15(1):263–270

16. Xu Y, Zhang D, Jin Z, Li M, Yang J-Y (2006) A fast kernel-based

nonlinear discriminant analysis for multi-class problems. Pattern

Recogn 39(6):1026–1033

17. Tipping ME (2000) Sparse kernel principal component analysis.

In: Leen TK, Dietterich TG, Tresp V (eds) NIPS 2000:

Neural information processing systems. MIT Press, Cambridge,

pp 633–639

18. Cawley GC, Talbot NLC (2003) Efficient leave-one-out cross-

validation of kernel fisher discriminant classifiers. Pattern Recogn

36(11):2585–2592

19. Kim S-W, Oommen BJ (2008) On using prototype reduction

schemes to optimize kernel-based fisher discriminant analy-

sis. IEEE Trans Syst Man Cybern Part B Cybern 38(2):

564–570

Table 6 The mean of the classification error rat of the KMSE

method proposed in [14]

r/N Cancer Splice Thyroid Diabetes Heart Banana German

0.03 0.2648 0.2402 0.0752 0.2385 0.1732 0.1313 0.2394

0.04 0.2656 0.2092 0.0752 0.2328 0.1644 0.1284 0.2221

0.05 0.2617 0.1734 0.0623 0.2272 0.1528 0.1176 0.2288

0.06 0.2617 0.1590 0.0623 0.2258 0.1688 0.1150 0.2223

0.07 0.2578 0.1528 0.0513 0.2217 0.1682 0.1134 0.2151

0.08 0.2478 0.1498 0.0460 0.2196 0.1761 0.1131 0.2128

0.09 0.2391 0.1429 0.0460 0.2213 0.1761 0.1140 0.2140

0.10 0.2158 0.1371 0.0460 0.2194 0.1624 0.1119 0.2153

0.11 0.2121 0.1299 0.0460 0.2164 0.1662 0.1121 0.2145

0.12 0.2113 0.1274 0.0409 0.2159 0.1636 0.1125 0.2232

0.13 0.2008 0.1283 0.0420 0.2195 0.1591 0.1108 0.2113

0.14 0.1930 0.1254 0.0328 0.2195 0.1594 0.1110 0.2115

0.15 0.1849 0.1252 0.0328 0.2104 0.1691 0.1119 0.2029

0.16 0.1751 0.1235 0.0183 0.2111 0.1655 0.1121 0.2087

0.17 0.1751 0.1184 0.0183 0.2064 0.1573 0.1119 0.2100

0.18 0.1858 0.1222 0.0183 0.2107 0.1575 0.1117 0.1995

0.19 0.1826 0.1203 0.0183 0.2079 0.1645 0.1115 0.2051

0.20 0.1718 0.1210 0.0183 0.2009 0.1609 0.1117 0.1965

0.21 0.1929 0.1166 0.0183 0.2053 0.1452 0.1119 0.1874

0.22 0.1853 0.1161 0.0135 0.2042 0.1402 0.1121 0.1853

0.23 0.1847 0.1136 0.0135 0.2024 0.1375 0.1126 0.1827

0.24 0.1800 0.1148 0.0135 0.2027 0.1363 0.1126 0.1782

Neural Comput & Applic (2011) 20:1087–1096 1095

123

20. Burges CJC, Scholkopf B (1997) Improving the accuracy and

speed of support vector learning machines. In: Mozer M, Jordan M,

Petsche T (eds) Advances in neural information processing sys-

tems, vol 9. MIT Press, Cambridge, pp 375–381

21. Mika S, Ratsch G, Müller K-R (2001) A mathematical pro-

gramming approach to the kernel Fisher algorithm. Adv Neural

Inf Process Syst 13:591–597

22. Xu Y, Zhang D, Song F et al (2007) A method for speeding up

feature extraction based on KPCA. Neurocomputing 70:

1056–1061

1096 Neural Comput & Applic (2011) 20:1087–1096

123

	Accelerating the kernel-method-based feature extraction procedure from the viewpoint of numerical approximation
	Abstract
	Introduction
	The idea, scheme, and analysis of the reformulated kernel method
	The idea to improve the kernel method
	The scheme to evaluate the feature extraction term
	More analysis on the algorithm framework

	To reformulate KMSE and KPCA
	Description of KMSE
	Improvement to KMSE
	Description of KPCA
	Improvement to KPCA
	Characteristics of the proposed method

	Experimental results
	Experiments on the reformulated KPCA
	Experiments on the reformulated KMSE

	Conclusion
	Acknowledgments
	References

