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Abstract—Non-negative matrix factorization (NMF) has
become one of the most powerful methods for clustering and
feature selection. However, the performance of the traditional
NMF method severely degrades when the data contain noises and
outliers or the manifold structure of the data is not taken into
account. In this article, a novel method called correntropy-based
hypergraph regularized NMF (CHNMF) is proposed to solve the
above problem. Specifically, we use the correntropy instead of
the Euclidean norm in the loss term of CHNMF, which will
improve the robustness of the algorithm. And the hypergraph
regularization term is also applied to the objective function,
which can explore the high-order geometric information in more
sample points. Then, the half-quadratic (HQ) optimization tech-
nique is adopted to solve the complex optimization problem of
CHNMF. Finally, extensive experimental results on multi-cancer
integrated data indicate that the proposed CHNMF method is
superior to other state-of-the-art methods for clustering and
feature selection.

Index Terms—Correntropy, clustering, feature selection, hyper-
graph regularization, non-negative matrix factorization (NMF).

I. INTRODUCTION

W ITH the advent of the biomolecular era, research on
gene expression data has become an unstoppable trend.

This is because these data contain important information that
regulates gene expression. Research on rich information of
genetic activity will lay the foundation for exploring the
nature of life and the prevention and treatment of diseases.
It is well known that gene expression data also have the
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characteristics of high-dimensional small samples and sam-
ple imbalance. Multiview data formed by integrating data are
receiving more attention from scholars [1], [2]. Dimensionality
reduction technology is one of the effective tools for min-
ing multiview data. In this article, multiview data consist
of different cancers with the same genes. We call them
multi-cancer integrated data. These data can effectively solve
the problem of sample imbalance when clustering. And
multi-cancer integrated data give us an unprecedented oppor-
tunity to explore the potential relationships between multiple
cancers.

In the field of bioinformatics, important applications for
gene expression data include sample clustering and feature
selection [3]. Sample clustering is to divide a series of sam-
ples according to similarity. In this way, samples with high
similarity will be divided into one subset [4]. Sample clus-
tering contributes to the targeted treatment of cancer and the
discovery of new cancer subtypes. In general, only a small per-
centage of genes are involved in the diseases. Therefore, the
identification of abnormally expressed genes by feature selec-
tion is crucial for the study of cancer. The abnormal genes
selected in the multi-cancer integrated data are likely to be
associated with a variety of cancers. This provides us with
a new direction to study multi-cancer.

As an effective dimension reduction method, non-negative
matrix factorization (NMF) [5] has been frequently applied
to data analysis tasks. Due to the existence of non-negative
constraints, NMF produces a natural part-based represen-
tation. To improve the performance of the original NMF,
many NMF extensions have been developed from different
aspects [6]–[8]. For example, Song et al. [9] used the alter-
nating direction method of multiplier (ADMM) to effectively
optimize the NMF method. To preserve the intrinsic geom-
etry of the data space, Cai et al. [10] proposed the graph
regularized NMF (GNMF), which considers the pairwise geo-
metric relationships between samples by constructing a simple
graph. Guan et al. [11] proposed the manifold regularized
discriminative NMF (MD-NMF) by considering the geometry
of the data and the discriminative information of different
classes. The graph dual regularization NMF (DNMF), which
considers both the sample manifold and the feature manifold,
was used for co-clustering [12]. After that, Zeng et al. [13]
proposed the hypergraph regularized NMF (HNMF) that was
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used to encode high-order relationships between multiple
sample points. Because the hyperedge of the hypergraph
contains multiple vertices, it can better reflect the complex
structure inherent in the data.

As we have introduced above, these methods all use the
Euclidean norm to minimize the distance between the origi-
nal data matrix and the reconstruction matrix. In addition, due
to its comprehensibility and mathematical tractability under
the Gaussian assumption, the Euclidean norm is also widely
used in most NMF-based methods. However, many real-world
data contain Gaussian noises, non-Gaussian noises (e.g., in
the process of measuring and collecting gene expression data),
or outliers. In this case, the performance of the NMF meth-
ods based on the Euclidean norm will be drastically reduced.
Fortunately, the correntropy has proven to be effective in deal-
ing with noises and outliers [14]. As a measure of nonlinearity
and local similarity, the correntropy is related to the similarity
probability of two random variables [15]. Unlike the Euclidean
norm that can only consider second-order moment, the corren-
tropy can consider the higher order moments [16]. Therefore,
the correntropy can effectively improve the robustness of the
algorithm, and many variants of the NMF method based on
the correntropy have been proposed. For example, maximum
correntropy criterion-based NMF (MCC-NMF) was developed
for cancer clustering [17]. Wang et al. [18] proposed a cor-
rentropy GNMF (CGNMF) for image clustering. However,
correntropy-based HNMF (CHNMF) method has not yet been
studied.

Inspired by the above, we design a novel CHNMF method
for clustering and feature selection. Specifically, CHNMF can
not only effectively reduce the influence of noises and outliers
but also consider the high-order geometric relationships inher-
ent in the data. The main contributions of this article are as
follows.

1) A novel method called CHNMF is presented to enhance
the performance of traditional NMF. CHNMF uses the
correntropy measure instead of the Euclidean norm in
the objective function, which facilitates capturing the
higher order moments of the data. Furthermore, the
robustness of the CHNMF algorithm to noises and out-
liers is improved. In addition, the CHNMF method is
also applied with the hypergraph regularization term to
consider high-order geometric information of the data.

2) The half-quadratic (HQ) optimization technique [19] is
employed in the proposed CHNMF method. It can trans-
form nonconvex optimization problems into iterative
weighted NMF problems. The multiplicative iterative
algorithm is then used to solve the CHNMF. In addi-
tion, we derive a general algorithm for any data matrix.
We also analyze the convergence, computational com-
plexity, relation with the gradient descent method, and
robustness of the proposed CHNMF algorithm.

3) We perform comprehensive experiments to validate the
CHNMF method on the multi-cancer integrated data.
The experimental results show that our method is mean-
ingful and superior to the other four representative
methods.

The remainder of this article is organized as follows.
NMF, correntropy, and hypergraph regularization are simply

reviewed in Section II. In Section III, the CHNMF method is
described in detail. The experimental results of clustering and
feature selection are demonstrated in Section IV. This article
is concluded in Section V.

II. RELATED WORK

A. Non-Negative Matrix Factorization

NMF is an effective data analysis technique that focuses on
the fact that data elements are non-negative. In the field of
bioinformatics, gene expression datasets can be represented in
the form of non-negative matrices. Columns of non-negative
matrices are used as samples, and rows are used as expression
levels of genes in these samples.

Given a data matrix X = [x1, x2, . . . , xn] ∈ Rm×n, where
xj is a sample vector containing m elements. The goal of
NMF is to seek the product of two non-negative matrices
U = [u1,u2, . . . ,uk] ∈ Rm×k and V = [v1, v2, . . . , vk] ∈ Rn×k

to approximate the data matrix X, that is, X ≈ UVT [20]. The
most commonly used measure in the NMF objective func-
tion is the Euclidean distance, which can be expressed as the
following optimization problem:

min
U,V

∥
∥X− UVT

∥
∥

2
F s.t. U ≥ 0, V ≥ 0 (1)

where ‖ ·‖F represents the Frobenius norm of the matrix. [ · ]T

is the transpose operator. Since xj can be approximated a linear
combination of the columns of U, where the weight is each
row of V [21]. U and V are referred to as the basis matrix and
the coefficient matrix, respectively. Then, the multiplicative
update rules are shown as follows:

U← U
XV

UVTV
(2)

V← V
XTU

VUTU
. (3)

B. Correntropy

In real-world applications, efficient processing of noises
or outliers is an intractable problem. Recently, correntropy
has been proposed for robustness analysis in information the-
oretic learning (ITL), and has been widely used in signal
processing [14], biological information [17], facial recogni-
tion, and other fields [22]. The correntropy is a measure of
nonlinearity and local similarity for two random variables x
and y. It is defined as follows:

C(x, y) = E
[

k(x, y)
]

(4)

where E[ · ] and k(·, ·) are the expectation operator and the
kernel function satisfying the Mercer theory, respectively. In
this article, the commonly used Gaussian kernel is used as
a kernel function of the correntropy, given by

kσ (x, y) = g(x− y) = exp

(

− (x− y)2

2σ 2

)

(5)

where σ is the kernel bandwidth parameter and requires σ > 0.
If x and y are vectors, then the Gaussian kernel function is
kσ (x, y) = g(x − y) = exp(−[‖x − y‖2/2σ 2]). Since the joint
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distribution function of the random variables x and y is usually
unknown, the available data samples {(xn, yn)}Nn=1 are finite.
The sample correntropy can be estimated as

Ĉσ (x, y) = 1

N

N
∑

n=1

g(xn − yn). (6)

The maximization of the correntropy in (6) is called
the maximum correntropy criterion (MCC) [17]. Unlike
the Euclidean norm that can only consider the second-
order moment, the correntropy can consider higher order
moments [14], [16]. Therefore, the MCC-based NMF methods
have better robustness when processing data containing noises
and outliers.

C. Hypergraph Regularization

With the development of graph theory, hyper-
graph learning has become an important tool for
data representation [10], [23]. In reality, there are com-
plex relationships between data samples. However, the
graph regularization only considers the pairwise geometric
relationship between the two data samples, which is not able
to retain the complex structure inherent in the data more
effectively. Because hypergraph regularization considers a
high-order geometric relationship between multiple samples,
it can better capture potential information in data [13].

Typically, triple G = (V,E,W) is used to represent the
hypergraph. V is a vertex set and E is a hyperedge set. In
addition, W is a hyperedge weight matrix, which is a diagonal
matrix. And w(e) is the corresponding weight of the hyper-
edge e. The vertex–edge incidence matrix H ∈ R|V|×|E| can be
computed as

H(v, e) =
{

1, if v ∈ e
0, otherwise

(7)

where H is a binary matrix. Then, the weight Wi of each
hyperedge ei is defined as

Wi =W(ei) =
∑

vj∈ei

exp

(

−
∥
∥vi − vj

∥
∥

2
2

δ

)

(8)

where δ = ∑

vj∈ei
‖vi − vj‖22/k, k is the value of k-nearest

neighbors for each vertex. In addition, the degree of a vertex
v can be expressed as

d(v) =
∑

e∈E

w(e)H(v, e). (9)

The degree of a hyperedge e can be expressed as

f (e) =
∑

v∈V

H(v, e). (10)

Finally, hypergraph regularization [13] can be measured by

1

2

∑

e∈E

∑

(i,j)∈e

w(e)

f (e)

∥
∥vi − vj

∥
∥2

= Tr
(

VT(Dv − E)V
)

= Tr
(

VTLhyperV
)

(11)

where vi and vj are low-dimensional representations of the
original data points xi and xj, respectively. Dv represents
the diagonal matrix composed of d(v). E = HW(De)

−1HT,
where W is a diagonal matrix composed of w(e), and De is
a diagonal matrix whose entries are f (e). Lhyper is called the
unnormalized hypergraph Laplacian matrix [23].

III. CORRENTROPY-BASED HYPERGRAPH REGULARIZED

NON-NEGATIVE MATRIX FACTORIZATION

In this section, we introduce the CHNMF algorithm in
detail.

A. Objective Function

The traditional NMF-based algorithms use the Euclidean
norm measure, which is easy to solve in mathematics.
However, the performance of these algorithms will be severely
affected when there are noises and outliers in the original
data [24]. In other words, the NMF algorithms based on the
Euclidean norm are sensitive to noises and outliers. In addition,
it is necessary to consider the low-dimensional manifold struc-
ture embedded in high-dimensional space for performance
improvement.

To overcome these limitations, an algorithm called CHNMF
is proposed. We use the correntropy instead of the Euclidean
norm in the loss term of CHNMF, which will improve the
robustness of the algorithm. Moreover, to explore high-order
geometric information in more sample points, the hypergraph
regularization term is also applied to the objective function.
Therefore, the objective function of CHNMF can be written
as follows:

max
U,V

M
∑

i=1

g

⎛

⎝

√
√
√
√

N
∑

j=1

(

Xi,j −
(

UVT)

i,j

)2

⎞

⎠− λTr
(

VTLhyperV
)

(12)

where λ ≥ 0 denotes a regularization parameter for balancing
the correntropy of CHNMF in the first term and the hypergraph
regularization in the second term. Obviously, the objective
function of CHNMF is nonquadratic and nonconvex, which
is difficult to directly optimize the solution. Fortunately, the
HQ technique [25] based on the convex conjugate function
theory can effectively solve the above optimization problem.
It converts the correntropy term in the objective function into
a quadratic term of the multiplicative form [26]. By using the
property of the convex conjugate function, Proposition 1 [22]
is defined as follows.

Proposition 1: There exists a convex conjugate function φ(·)
of g(x), such that

g(x) = max
z

(

z
‖x‖2
σ 2
− φ(z)

)

(13)

and for a fix x, the maximum is reached at z = −g(x).
According to Proposition 1, we substitute (13) into (12).

This makes it possible to obtain the augmented objective
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function in an enlarged parameter space

max
U,V,z

M
∑

i=1

g

⎛

⎝
zi

σ 2

⎛

⎝

√
√
√
√

N
∑

j=1

(

Xi,j −
(

UVT)

i,j

)2

⎞

⎠− φ(zi)

⎞

⎠

− λTr
(

VTLhyperV
)

(14)

where z = [z1, . . . , zM]T denotes the auxiliary vector in the
HQ technique. Then, maximizing the augmented objective
function with respect to z by fixing U and V, we obtain

zi = −g

⎛

⎝

√
√
√
√

N
∑

j=1

(

Xij −
(

UVT)

ij

)2

⎞

⎠

= − exp

⎛

⎜
⎝−

∑N
j=1

(

Xij −
(

UVT)

ij

)2

2σ 2

⎞

⎟
⎠. (15)

The kernel bandwidth parameter σ is usually empirically
determined. In this article, we refer to [17] to obtain

σ =
√
√
√
√

1

M

M
∑

i=1

N
∑

j=1

(

Xi,j −
(

UVT)

i,j

)2
. (16)

Then, for a fixed σ , the augmented objective function in (14)
can be rewritten as

max
U,V

M
∑

i=1

⎛

⎝
zi

σ 2

⎛

⎝

N
∑

j=1

(

Xi,j −
(

UVT)

i,j

)2

⎞

⎠

⎞

⎠

− λTr
(

VTLhyperV
)

(17)

which can also be equivalent to the following optimization
problem:

min
U,V

M
∑

i=1

⎛

⎝− zi

σ 2

⎛

⎝

N
∑

j=1

(

Xi,j −
(

UVT)

i,j

)2

⎞

⎠

⎞

⎠

+ λTr
(

VTLhyperV
)

. (18)

B. Optimization of CHNMF

Since we use the HQ technique to optimize the CHNMF
algorithm, the optimization problem in (18) becomes
a weighted NMF problem [27]. But it is nonconvex with
respect to U and V together. The alternate iterative strategy can
be utilized to derive a local optimal solution. Therefore, the
optimization problem (18) can be further rewritten as follows:

f = Tr
((

X− UVT)TD(X− UV)
)

+ λTr
(

VTLhyperV
)

= Tr
(

XTDX
)− 2Tr

(

VUTDX
)+ Tr

(

VUTDUVT)

+ λTr
(

VTLhyperV
)

(19)

where D represents a diagonal matrix whose entries are

Dii = − zi

σ 2
= σ−2 exp

⎛

⎝− 1

2σ 2

N
∑

j=1

(

Xi,j −
(

UVT)

i,j

)2

⎞

⎠. (20)

The multiplicative iteration method is applied to solve (19).
Suppose ψ = [ψik] and ϕ = [ϕjk] are Lagrange multipliers

Algorithm 1 CHNMF

Data Input: X ∈ Rm×n

Parameters: λ
Output: U ∈ Rm×k,V ∈ Rn×k,Lhyper ∈ Rn×n

Initialization: U ≥ 0, V ≥ 0
Set r = 1.
Repeat

Update σ by (16);
Update D by (20);
Update U by (26);
Update V by (27);
r = r + 1;

Until convergence

for constraining U ≥ 0 and V ≥ 0, respectively. Then, the
Lagrange function L is defined as

L = Tr
(

XTDX
)− 2Tr

(

VUTDX
)+ Tr

(

VUTDUVT)

+ λTr
(

VTLhyperV
)+ Tr

(

ψUT)+ Tr
(

ϕVT). (21)

Then, the partial derivative of L with respect to U and V is

∂L
∂U
= −2DXV+ 2DUVTV+ψ (22)

∂L
∂V
= −2XTDU+ 2VUTDU+ 2λLhyperV+ ϕ. (23)

By using the KKT conditions [28] ψU = 0 and ϕV = 0,
we have

− (DXV)ikuik +
(

DUVTV
)

ikuik = 0 (24)

−(XTDU
)

jkvjk +
(

VUTDU
)

jkvjk + λ
(

LhyperV
)

jkvjk = 0. (25)

According to the above equations, the update rules are as
follows:

uik ← uik
(DXV)ik
(

DUVTV
)

ik

(26)

vjk ← vjk

(

XTDU
)

jk
(

VUTDU+ λLhyperV
)

jk

. (27)

Finally, the detailed steps of the proposed CHNMF method
are summarized in Algorithm 1.

C. Complexity Analysis

In this section, we discuss the computational complexity
of the CHNMF algorithm. O notation is used to describe the
computational cost. Based on update rules (26) and (27), the
computational complexity of the proposed CHNMF algorithm
is O(mnk). Moreover, both the kernel bandwidth parameter σ
and the diagonal matrix D need to be updated in (16) and (20),
and their computational cost is also O(mnk). Hypergraph
requires O(n2m) to build. Assuming t is the number of itera-
tions of the algorithm, then the total computational complexity
of CHNMF is O(tmnk+n2m). The computational cost required
for the graph is also O(n2m). The computational complexity
of the five methods used in this article is listed in Table I.
From Table I, we can observe that the computational costs
of the five methods are comparable. In other words, the
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TABLE I
COMPARISON OF COMPUTATIONAL COMPLEXITY OF FIVE METHODS

proposed CHNMF method does not increase the computational
complexity compared to other baseline methods.

D. Connection With the Gradient Descent Method

In this section, we use the gradient descent method [29]
to solve the optimization problem of CHNMF. So the update
rules of the objective function (18) are as follows:

uik ← uik + ηik
∂f

∂uik
, vjk ← vjk + ξjk

∂f

∂vjk
(28)

where ηik and ξjk denote the step size parameters.
Set ηik = −(uik/2(DUVTV)ik), we obtain

uik + ηik
∂f

∂uik
= uik − uik

2
(

DUVTV
)

ik

∂f

∂uik

= uik − uik

2
(

DUVTV
)

ik

(−2DXV+ 2DUVTV
)

ik

= uik
(DXV)ik
(

DUVTV
)

ik

. (29)

Similarly, set ξjk = −(vjk/2(VUTDU+ λLhyperV)jk), then
we obtain

vjk + ξjk
∂f

∂vjk
= vjk − vjk

2
(

VUTDU+ λLhyperV
)

jk

∂f

∂vjk

= vjk − vjk

2
(

VUTDU+ λLhyperV
)

jk

× (−2XTDU+ 2VUTDU+ 2λLhyperV
)

jk

= vjk

(

XTDU
)

jk
(

VUTDU+ λLhyperV
)

jk

. (30)

Clearly, using some tricks to choose the step size parameters
in the gradient descent method, the multiplicative updat-
ing rules (26) and (27) can be regarded as the special
cases of the gradient descent method. However, the gradi-
ent descent method cannot guarantee the non-negativity of the
decomposed matrices U and V. Fortunately, the multiplicative
iteration method overcomes this shortcoming.

E. Robustness Analysis

In this section, we analyze the robustness of the proposed
CHNMF method. Because we use the HQ technology to
solve CHNMF, this transforms the nonconvex optimization
problem into an iteratively weighted NMF problem. According

to Proposition 1, when matrices U and V are fixed, each entry
of each sample in the data matrix X is assigned a weight. The
weight can be calculated as

zi = −g

⎛

⎝

√
√
√
√

N
∑

j=1

(

Xij −
(

UVT)

ij

)2

⎞

⎠

= − exp

⎛

⎜
⎝−

∑N
j=1

(

Xij −
(

UVT)

ij

)2

2σ 2

⎞

⎟
⎠. (31)

Let R = X − UVT be the error matrix. When entries are
severely damaged, this can produce large reconstruction errors.
According to (31), they will be assigned a smaller weight [27].
Further, they make a smaller contribution to the objective func-
tion. Therefore, the CHNMF method has better robustness. As
we all know, the NMF algorithms based on the Euclidean norm
seriously suffer from noisy data. Fortunately, the correntropy
is insensitive to noises and outliers, which helps improve the
performance of the algorithm.

Next, we design an experiment to further illustrate the
robustness of CHNMF. NMF and HNMF are used as com-
parison methods. They are applied together with CHNMF to
a synthetic dataset consisting of 200 2-D data points. All
data points are distributed in a 1-D subspace. Fig. 1(a) reveals
the ability of these three methods to learn subspace on a clean
dataset. In Fig. 1(b)–(d), 50, 100, and 150 data points are
randomly selected as contaminated data points, respectively.
It can be seen that the ability of the NMF and HNMF to
recover the subspace is severely limited as the number of con-
taminated points increases. The ability of NMF and GNMF
to recover subspace is similar. In Fig. 1(b)–(d), CHNMF can
still successfully explore the subspace structure, even in the
case of extreme noise points. Therefore, our proposed CHNMF
method has better robustness. Comparing CHNMF with NMF
and HNMF, we can get the correntropy is a robust metric. The
NMF method based on correntropy has better quality.

IV. RESULTS ON MULTI-CANCER INTEGRATED DATA

In this section, clustering samples and selection of abnormally
expressed genes are performed to analyze the performance
of the CHNMF method. In addition, NMF [5], GNMF [10],
HNMF [13], and CGNMF [18] are used as comparison methods
to verify the effectiveness of the proposed method.

A. Datasets

The datasets used in these experiments are described
as follows. As the largest database of cancer multiomics
information, The Cancer Genome Atlas (TCGA) aims to apply
high-throughput genomic analysis techniques to help people
better understand cancer. At the same time, it also contains
a lot of valuable information, so the in-depth study of TCGA is
very necessary. In this article, we use integrated gene expres-
sion data from a variety of cancers to analyze the performance
of the CHNMF method. Each cancer data can be down-
loaded from the TCGA (https://tcgadata.nci.nih.gov/tcga/).
These data include pancreatic adenocarcinoma (PAAD_GE),
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(a) (b)

(c) (d)

Fig. 1. Robust comparison of NMF, HNMF, and CHNMF on the synthetic dataset. (a) Clean dataset. (b) 50 contaminated data points. (c) 100 contaminated
data points. (d) 150 contaminated data points.

TABLE II
SUMMARY OF FOUR MULTI-CANCER INTEGRATED DATA

head and neck squamous cell carcinoma (HNSC_GE), esoph-
agus carcinoma (ESCA_GE), colon adenocarcinoma (COAD),
cholangiocarcinoma (CHOL_GE), and breast invasive carci-
noma (BRCA_GE). The six cancers after removing the normal
sample above are integrated into four datasets. Then we use
principal component analysis (PCA) to reduce the dimensions
of the datasets to 2000. This still retains the main information
in the data. Specific information on multi-cancer integrated
data is listed in Table II.

B. Parameter Setting

In the proposed CHNMF method, hypergraph regu-
larization parameter λ needs to be selected. Its value
will directly affect the experimental results. The value
of λ means the degree to which high-order geometric
relationships of data are explored. In order to reason-
ably select hypergraph regularization parameters, the
five-fold cross-validation method is used. In the experiment,
regularization parameter λ is automatically adjusted in
{10r : r ∈ {−5,−4,−3, . . . , 3, 4, 5}}. Fig. 2 depicts the effect
of parameter changes on CHNMF clustering performance.

Fig. 2. Performance of the CHNMF set with different values of λ.

We can see from Fig. 2 that CHNMF is sensitive to regu-
larization parameters. Fig. 2 suggests that the hypergraph
regularization parameters λ are 102, 10−1, 101, and 100

on PAAD_HNSC_ESCA_GE, PAAD_HNSC_ESCA_COAD_
GE, PAAD_HNSC_ESCA_COAD_CHOL_GE, and PAAD_H
NSC_ESCA_COAD_CHOL_BRCA_GE, respectively. For
convenience, in Fig. 2, PAAD_HNSC_ESCA_GE, PAAD_HN
SC_ESCA_COAD_GE, PAAD_HNSC_ESCA_COAD_CHOL
_GE, and PAAD_HNSC_ESCA_COAD_CHOL_BRCA_GE
are replaced with Datasets3, Datasets4, Datasets5, and
Datasets6, respectively (in Fig. 3, we also use this
shorthand).

C. Convergence Analysis

In this section, we design an experiment to demonstrate the
convergence of the proposed CHNMF algorithm. The error
value of the y-axis is the loss function value, and the iteration
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TABLE III
CLUSTERING PERFORMANCE ON MULTI-CANCER INTEGRATED DATA

Fig. 3. Convergence curves of CHNMF on multi-cancer integrated data.

number of x-axis is set to 100. From Fig. 3, we can see that
the error value gradually decreases as the number of itera-
tions increases. This proves that CHNMF is convergent on
all datasets. The CHNMF algorithm converges quickly within
100 iterations.

D. Clustering Results

In this section, to illustrate the superiority of our
proposed method, clustering experiments are performed on the
multi-cancer integrated data. We use the K-means algorithm
to cluster on the decomposed coefficient matrix.

1) Evaluation Metrics: In clustering experiments, three
commonly used metrics are adopted to strictly analyze cluster-
ing performance, namely, accuracy (AC), normalized mutual
information (NMI), and silhouette coefficient (SC) [30], [31].
AC represents the percentage of samples that are correctly
clustered. The AC can be calculated by

AC =
∑n

i=1 δ(si,map(ri))

n
× 100% (32)

where n represents the total number of samples, si is the
ground-truth label provided by the dataset, and ri is the
clustering label obtained by our algorithm. map(·) denotes

the optimal permuting function that maps the clustering
label to the ground-truth label using the Kuhn–Munkres
algorithm [32]. Then, δ(x, y) is a delta function. δ(x, y) is
equal to 1 if x = y, otherwise, δ(x, y) is 0.

NMI represents the similarity of two cluster sets. Given two
cluster sets C and C′, C is the ground-truth cluster and C′
is the cluster obtained by our algorithm. Then their mutual
information (MI) is expressed as

MI
(

C,C′
) =

∑

ci∈C,c′j∈C′
p
(

ci, c′j
)

log
p
(

ci, c′j
)

p(ci)p
(

c′j
) (33)

where p(ci) and p(c′j) represent the probability that any sample
points belong to C and C′, respectively. p(ci, c′j) is the proba-
bility that the sample points belong to both cluster sets C and
C′. Then, NMI is formulated as

NMI
(

C,C′
) = MI

(

C,C′
)

max(H(C),H(C′))
(34)

where H(C) and H(C′) are the entropies of C and C′,
respectively.

SC combines the tightness and separation of clusters to eval-
uate clustering quality. Let i denote any sample. Assuming it
belongs to cluster A, then the SC S(i) of i is defined as follows:

S(i) = b(i)− a(i)

max(a(i), b(i))
(35)

where a(i) represents the average distance from sample i to the
other samples in cluster A. b(i) denotes the minimum of the
average distance of sample i to all samples in other clusters C.
Then, SC can be computed by

SC = 1

n

n
∑

i=1

S(i) (36)

where n is the total number of samples. As we all know, the
values of AC and NMI range from 0 to 1. The value of SC is
−1 to 1. And the larger their values, the better the clustering
performance of the method.
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2) Comparison of Clustering Performance: To reduce the
impact of random initialization on the experimental results,
we run each method 50 times. The mean and variance of
AC, NMI, and SC are then calculated as the final experimen-
tal results. The clustering performance of all methods on the
multi-cancer integrated data is recorded in Table III.

Based on Table III, we can draw the following conclusions.
1) On the four multi-cancer integrated datasets, compared

with the GNMF method, the HNMF method can achieve
3%, 1%, and 1% improvement on the metrics AC, NMI,
and SC, respectively, in average. The CHNMF method is
also superior to the CGNMF method, by about 2%, 2%,
and 1% on the metrics AC, NMI, and SC, respectively,
on average. That is to say, the methods based on hyper-
graph regularization are better than that based on the
graph regularization. The reason is that the hypergraph
regularization preserves high-order geometric relation-
ships whereas the graph regularization considers pairs
of geometric relationships. There are complex relation-
ships between samples in multi-cancer integration data.
So considering the manifold structure between multiple
samples is necessary in clustering applications.

2) With the four multi-cancer integrated datasets as
a whole, the CGNMF method performs better than the
GNMF method by about 8%, 5%, and 2% in terms of the
mean of AC, NMI, and SC. The CHNMF method out-
performs the HNMF method approximately 7%, 6%, and
3% on the metrics AC, NMI, and SC, respectively, on
average. It can be seen from Table III that the methods
of using correntropy measure to the objective function
exceed that of using the Euclidean norm. This is because
the correntropy is a local measure that takes into account
the higher order moments of the data, which in turn
makes the methods based on correntropy insensitive to
noises and outliers.

3) The clustering result of the NMF method is
not always the worst, for example on the
PAAD_HNSC_ESCA_COAD_GE dataset. This implies
that the improvement of the traditional NMF method
may result in the loss of useful information in the data,
which in turn affects the clustering results.

4) From Table III, we can see that the proposed CHNMF
method has the best performance compared to other
methods by more than 2%, 2%, and 1%, with respect
to the average values of the metrics AC, NMI, and
SC. The reason is that the correntropy measure and
hypergraph regularization are used in the objective func-
tion. Therefore, the CHNMF method not only has
better robustness but also encodes high-order geometric
information present in the data.

E. Feature Selection

1) Abnormally Expressed Genes Selection Results: Cancer
production is a consequence of genomic changes and genetic
mutations, and cancer research is imminent [33], [34]. To save
space, the PAAD_HNSC_ESCA_GE dataset is used to select
abnormally expressed genes to test the validity of the proposed

TABLE IV
ABNORMAL GENES SELECTION RESULTS ON FIVE METHODS

Fig. 4. Overlap among the abnormal genes identified by GeneCards.

method. The selected abnormal genes may be expressed in
PAAD, HNSC, and ESCA. Therefore, these genes can directly
reflect the relationship between various cancers, and then more
valuable biological information can be mined.

In the experiment, we score all the genes and then arranged
them in descending order. A gene with a high score is con-
sidered to be an abnormal gene. For a fair comparison, the
top 500 genes for each method are selected. Then these genes
are placed on the GeneGards (http://www.genecards.org/) for
analysis. GeneCards is a comprehensive, searchable compre-
hensive database for predicting and annotating human genes.
The results of the selection of abnormal genes are listed in
Table IV.

In Table IV, Num is the number of abnormal genes obtained
by matching the common virulence gene pools of PAAD,
HNSC, and ESCA. The identification accuracy (IA) represents
the proportion of abnormal genes selected by our method in the
GeneCards of pathogenic genes. It can be seen from Table IV
that the number of abnormal genes obtained by CHNMF is
5 more than that of HNMF. The IA of CHNMF is 1% higher
than HNMF. This is because the correntropy as a robust mea-
sure is not susceptible to noises and outliers. Furthermore,
the robustness of the enhancement algorithm is important for
improving the performance of the feature selection experiment.
From Table IV, we can observe that CHNMF is 3 and 0.6%
more than CGNMF on Num and IA, respectively. Hypergraph
regularization can capture more complex relationships among
samples than graph regularization. It will make the poten-
tial geometric information considered more comprehensive.
This in turn contributes to the improvement of the experi-
mental results. In addition, the feature selection performance
of CHNMF is better than NMF and GNMF. It has the high-
est Num and IA. This shows that CHNMF is reasonable to
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Fig. 5. Gene co-expression network of four modules. The number of nodes in the four modules (a)–(d) decreases in turn.

enhance the robustness of the algorithm and to consider the
high-order manifold structure in the feature selection.

Here, we use the Venn diagram to overlap the abnormal
genes identified in the GeneCards. We can see from Fig. 4,
the number of abnormal genes that can be selected by CHNMF
without being selected by other methods is 61. In other words,
the CHNMF method has the largest number of unique genes.
At the same time, these genes are highly correlated with
PAAD, HNSC, and ESCA according to GeneCards. As shown
in Table IV, CHNMF has the highest IA. Therefore, the
proposed CHNMF is effective in selecting abnormal genes. In
addition, the number of abnormal genes selected by the five
methods is 14. In the next section, we conduct an in-depth
study of the selected abnormal genes.

2) Discussion of Abnormal Genes: Some genes selected by
CHNMF that have been ignored by the other methods makes
a meaningful contribution to the study of cancer. Table V
lists the details of unique abnormal genes with the relevance
scores greater than 11. Relevance scores indicate the correla-
tion between genes and diseases. When the score of a gene is
higher, it means that the gene is likely to be a pathogenic gene.
In Table V, the relevance scores for STAT3 are 46.11, 100.46,
and 33.6 in PAAD, HNSC, and ESCA, respectively. The pro-
tein encoded by this gene is a member of the STAT protein
family. STAT3 plays a key role in many cellular processes,
such as cell growth and apoptosis. Published articles confirmed
the relationship between STAT3 and the emergence of PAAD,
HNSC, and ESCA [35]–[37]. VEGFA induces proliferation
and migration of vascular endothelial cells, and is essential
for both physiological and pathological angiogenesis. And its
expression is correlated with tumor stage and progression.
VEGFA has been shown to be associated with PAAD, HNSC,

and ESCA [38]–[40]. H19 is an RNA Gene, and is affiliated
with the noncoding RNA class. H19 promotes the metastasis
of PAAD by antagonizing let-7 [41]. And overexpression of
H19 causes HNSC and ESCA production [42], [43]. Through
the above analysis, we can get the mutation of one gene that
may cause many kinds of cancers. So the analysis of the
unique abnormal genes selected for CHNMF helps to explore
the link between PAAD, HNSC, and ESCA.

In recent years, gene co-expression networks have become
an important tool for disease research. It can reveal the
relationship between genes and diseases from a macro per-
spective. And the pathogenic genes and pathogenic modules
in the network contain a wealth of information. Here, we use
500 abnormal genes selected by CHNMF to construct a gene
co-expression network. Cytoscape is then used to visualize the
network. Fig. 5 shows only modules with at least 40 nodes.

In Fig. 5, the larger the node is, the higher the degree is. The
degree of a node represents the number of edges in the network
that are directly connected to this node. A node with a large
degree is called a hub node. So we use the degree measure for
node mining. To save space, the first five nodes with the largest
degree are then analyzed in GeneCards. Table VI summarizes
the details of these five genes.

In Table VI, ATP1B1 is a protein coding gene. It can
encode a beta 1 subunit. And it is related to the emergence of
PAAD, ESCA, and breast cancer [44]–[46]. KHDRBS1 may
be involved in a variety of cellular processes, including tumori-
genesis, and regulation of human immunodeficiency virus
gene expression. Therefore, its mutation can cause cancer.
Gene ontology annotations related to ITGB6 include virus
receptor activity. And it has lots to do with the transfer of
ESCA [47]. RER1 is involved in the retention of endoplasmic
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TABLE V
SUMMARY OF THE ABNORMAL GENES SELECTED ONLY BY THE CHNMF METHOD

TABLE VI
TOP 5 GENES WITH HIGHER DEGREE

reticulum (ER) membrane proteins. At the same time, RER1 is
confirmed to be associated with breast cancer [48]. The full
name of STOM is stomatin. Currently, there are few studies
on STOM. But the importance of this gene cannot be ignored.
It is called a new oncogene. This suggests that biologists need
to further study the relationship between STOM and cancer.

V. CONCLUSION

In this article, we propose a robust NMF method called
CHNMF. The proposed CHNMF method uses correntropy
measure to reduce the negative impact of noises and out-
liers on experimental results. In addition, the CHNMF method
also uses with the hypergraph regularization term to consider
high-order geometric information of the data. The experimen-
tal results on multi-cancer integrated data demonstrate the
effectiveness of the CHNMF method superiority to other four
methods. The proposed CHNMF may provide new insights for
the improvement of the next NMF method. At the same time,
it is a general method that can be used in various applications.
The clustering results on the two image datasets are simply
shown in the supplementary material.

Because the CHNMF method combines the correntropy
and hypergraph regularization constraints, it will outperform
other representative methods when the data contain noises and
outliers or manifold structures. Which part contributes more to
the improvement of CHNMF depends on the characteristics of
the dataset itself. However, the proposed CHNMF method also

has limitations. For example, the proposed CHNMF method
needs to update the kernel bandwidth parameter σ and the
diagonal matrix D during the solution process, its computation
time is longer than the NMF method based on the Euclidean
norm. The value of σ will affect U and V. We perform the
clustering experiment on the coefficient matrix V and perform
feature selection experiment on the basis matrix U. This will
affect the experimental results of clustering and feature selec-
tion. That is to say, the update of σ will affect the stability
of the algorithm. The value of σ will also affect other appli-
cations of the CHNMF method in the real world. Presently,
the kernel bandwidth parameter σ is generally empirically
determined. We will seek a more computationally efficient
algorithm for CHNMF.
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