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Abstract 
Motivation: Protein fold recognition has attracted increasing attention because it is critical for studies 

of the 3D structures of proteins and drug design. Researchers have been extensively studying this 

important task, and several features with high discriminative power have been proposed. However, 

the development of methods that efficiently combine these features to improve the predictive perfor-

mance remains a challenging problem. 

Results: In this study, we proposed two algorithms: MV-fold and MT-fold. MV-fold is a new computa-

tional predictor based on the multi-view learning model for fold recognition. Different features of pro-

teins were treated as different views of proteins, including the evolutionary information, secondary 

structure information, and physicochemical properties. These different views constituted the latent 

space. The ε-dragging technique was employed to enlarge the margins between different protein 

folds, improving the predictive performance of MV-fold. Then, MV-fold was combined with two tem-

plate-based methods: HHblits and HMMER. The ensemble method is called MT-fold incorporating the 

advantages of both discriminative methods and template-based methods. Experimental results on 

five widely used benchmark datasets (DD, RDD, EDD, TG, and LE) showed that the proposed meth-

ods outperformed some state-of-the-art methods in this field, indicating that MV-fold and MT-fold are 

useful computational tools for protein fold recognition and protein homology detection and would be 

efficient tools for protein sequence analysis. Finally, we constructed an update and rigorous bench-

mark dataset based on SCOPe (version 2.07) to fairly evaluate the performance of the proposed 

method, and our method achieved stable performance on this new dataset. This new benchmark 

dataset will become a widely used benchmark dataset to fairly evaluate the performance of different 

methods for fold recognition. 

Contact: laterfall@hit.edu.cn, bliu@insun.hit.edu.cn  

Supplementary information: Supplementary data are available at Bioinformatics online. 

1 Introduction  

The identification of the tertiary structures of proteins is of great signifi-

cance in understanding the functions of proteins, protein-protein interac-

tions, etc. Proteins in the same fold usually have similar structures and 

functions (Chothia and Finkelstein, 1990). Therefore, accurate prediction 

of protein folds is critically important for studying the structures and 

functions of proteins (Yan et al., 2017). 

Protein fold classification is a typical taxonomy-based problem aim-

ing to classify a query protein into one of known fold types according to 

its primary structure information. As a multiclass classification task, 

several machine learning techniques have been employed in this field 

(Wei and Zou, 2016). Most of these methods contain two stages: (1) 

feature extraction, and (2) discriminative classifier construction. 

For the first stage, several discriminative features have been proposed. 

Some researchers focused on extracting the composition of the amino 

acids along the protein sequences (Cheung et al., 2016). Dubchak et al. 

(Dubchak et al., 1995) proposed a global description method for extract-

ing the sequence features. Later, the neighbouring residues in the pro-

teins were incorporated into the predictors. Fletez-Brant et al. (Fletez-
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Brant et al., 2013) proposed a Kmer-SVM method that extracted the 

features by calculating the frequencies of the continuous neighbouring 

residues in the proteins. The above features effectively capture the local 

discriminative information. Shen and Chou (Shen and Chou, 2006) com-

bined the sequence-order information, hydrophobicity and hydrophilicity 

information using the pseudo-amino acid (PseAAC) approach to incor-

porate the different kinds of features. Recent studies have focused on the 

evolutionary information and secondary structure information, such as 

the Position Specific Scoring Matrices (PSSM) (Altschul et al., 1997). 

Dong et al. (Dong et al., 2009) combined the auto-covariance transform 

and PSSM to extract the evolutionary information. Compared with the 

PSSM, the profile Hidden Markov Model (profile-HMM) (Remmert et 

al., 2012) took each position in the sequence into account to observe an 

insertion or deletion operation. 

For the second stage, many classifiers have been applied in this field. 

Support Vector Machines (SVMs) have been widely used (Liu et al.). 

Furthermore, other well-known machine learning classifiers have also 

been applied in this field, such as Random Forest (Dehzangi et al., 2010; 

Liu et al., 2016), Naive Bayes (John and Langley, 1995), ensemble 

learning (Shen and Chou, 2006; Chen et al., 2012; Lin et al., 2013), etc. 

For example, Wei et al. (Wei et al., 2015) proposed a predictor called 

PFPA containing an ensemble learning classifier and a novel feature that 

combines the information from PSI-BLAST (Altschul et al., 1997) and 

PSIPRED (Jones, 1999). Cheung et al. (Cheung et al., 2016) proposed a 

method called NiRecor based on the artificial neural networks and an 

adaptive heterogeneous particle swarm optimizer. 

In addition to the methods based on machine learning techniques, 

template-based methods are commonly used in protein fold recognition 

(Vallat et al., 2015). Template-based methods utilize the sequence ho-

mology or the structural information to match the protein sequences with 

a three-dimensional structure. Xia et al. (Xia et al., 2016) utilized the 

sequence profile templates generated by HMM, and explored the rela-

tionship between the query sequence and template-based profiles. 

Multi-view approaches utilize the information on various aspects of 

protein sequences from different sources (Hu et al., 2016) and integrate 

multiple data sources to improve the predictive performance (Ammad-

ud-din et al., 2017). Each data source provides a specific view of the 

same protein sequence. The representation of each source is defined as a 

descriptor of the view that potentially encodes features of various proper-

ties. For example, the PSSM profile, PSIPRED profile, physicochemical 

profile, and HMM profile are different data sources, and each source 

represents various features (Liu, 2018). In this work, we utilize the multi-

view learning method to predict the protein folds. The multi-view learn-

ing method obtains the latent subspace shared with the multiple views 

using a subspace learning algorithm (Gu et al., 2016). Xia et al. (Xia et 

al., 2010) learned the weight of each view during the learning process 

stage to eliminate the effects of weak views. The combination of differ-

ent features has been recently shown to improve fold recognition per-

formance. When the different features have strong dependencies, the use 

of combinations of features would lead to better performance because the 

correlated features from different descriptors are considered (Cai et al., 

2014). However, the manner in which features are combined may cause 

the curse of dimensionality problem, and the dependency information of 

different features is not well explored (Liu et al., 2015; Gu et al., 2016). 

Inspired by the multi-view low-rank regression model (Wen et al., 

2018; Wen et al., 2018) and the regularized least square regression 

(LSR) framework (Rifkin et al., 2003), we proposed a computational 

method for fold recognition based on the multi-view learning model 

called MV-fold. The method utilizes multiple input sources to learn a 

model. The proposed formulation assumes that only a part of the features 

from the input data source in each view are beneficial for protein fold 

recognition. The proposed method applies the ℓ2,1 norm regularization to 

extract the discriminative features (Nie et al., 2010; Fei et al., 2018; Wen 

et al., 2018) from each view of a data source to constitute the latent 

subspace. Compared with the combining feature approach, the MV-fold 

extracts the discriminative features from the representation of each view 

and constitutes the latent subspace for protein fold recognition. Com-

pared with the traditional linear regression model, the MV-fold applies 

the ε-dragging technique (Xiang et al., 2012; Fang et al., 2018) to en-

large the boundary distances of different protein folds. As a result, the 

MV-fold utilizes the latent effective features from multiple view data 

sources generated from the protein sequences and has greater discrimina-

tive capacity for protein fold recognition. Furthermore, an ensemble-

based approach called MT-fold is proposed that combines MV-fold and 

two template-based methods: HHblits (Remmert et al., 2012) and 

HMMER (Finn et al., 2011). 

2 Materials and Methods 

2.1 Benchmark Datasets 

Five benchmark datasets were used to evaluate the performance of vari-

ous methods. The DD dataset (Ding and Dubchak, 2001) was obtained 

from the Structural Classification of Protein (SCOP) version 1.63, and 

contains 695 sequences with 27 folds. The four major classes in the DD 

dataset are α, β, α+β and α/β. The sequence identity between any two 

sequences is less than 35%. 

The RDD dataset (Yang and Chen, 2011) is a revised version of DD 

dataset. Some sequences in the RDD have been updated according to the 

SCOP 1.75 dataset. 

The extended DD called EDD (Yang and Chen, 2011) dataset from 

SCOP (version 1.75) contains more protein sequences than the DD da-

taset. EDD includes 3418 protein sequences with 27 folds. 

The TG dataset from SCOP (version 1.73) contains 1612 protein se-

quences with 30 different folds. The dataset was proposed by Taguchi 

and Gromiha (Taguchi and Gromiha, 2007). The pairwise sequence 

identity is less than 25%. 

The LE dataset derived from SCOP (version 1.37) dataset was pro-

posed by Lindahl and Elofsson (Lindahl and Elofsson, 2000). The se-

quence identity between any pair of sequences is less than 40%. Depend-

ing on the all-against-all comparison results of the total sequences, the 

dataset includes 321 sequences at the fold level (covering 38 folds). We 

evaluated the performance of different methods at the fold level. 

Although these five benchmark datasets have been widely used to 

evaluate the performance of various predictors for fold recognition, they 

have the following disadvantages: (1) for the four benchmark datasets 

DD, RDD, EDD and TG, some proteins in the training set and test set are 

in the same superfamily. Therefore, for these proteins the fold recogni-

tion task cannot be rigorously simulated. In fact, these four benchmark 

datasets actually evaluate the prediction performance for an easier task: 

protein homology detection (Liu et al.; Liu et al., 2014; Li et al., 2017; 

Chen et al., 2018). (2) Among the aforementioned five datasets, LE is 

the only rigorous benchmark dataset. However, it only contains 321 

sequences with 38 folds. In order to overcome the two disadvantages of 

the existing benchmark datasets, we constructed an update, rigorous 

dataset (YK) based on the SCOP database (Murzin et al., 1995). YK 

dataset contains 4843 sequences with 82 folds. Proteins were extracted 

from the latest SCOPe dataset (version 2.07) genetic domain sequence 

subsets with less than 40% pairwise identify to each other released in 

2018. The dataset was divided into three subsets, including training set, 

validation set, and test set. To guarantee the homologous sequence re-
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dundancy between different subsets, we adopt two different strategies for 

homology reduction: the removal of redundant sequences at the fold 

level and a reduction in identical sequences (Hou et al., 2017). The first 

strategy splits proteins in the SCOPe 2.07 dataset into a fold-level train-

ing set, a fold-level validation set, and a fold-level test set based on su-

perfamilies, namely, the proteins from the different subsets are not in the 

same superfamily. Then the second strategy was to reduce the sequence 

redundancy between different subsets by using CD-HIT (Li and Godzik, 

2006) and PSI-BLAST (Altschul et al., 1997) following the studies (Zhu 

et al., 2017). Following the criterion of constructing the LE dataset 

(Lindahl and Elofsson, 2000), we utilized CD-HIT (sequence identity: 

40%) and PSI-BLAST (E-value: 1e-4) to remove the similar protein in 

the three subsets. After these filtering operations, the sequences identity 

among different subsets is less than 40%. Finally, there are 1536, 1628, 

1679 sequences in training, validation, and test subsets, respectively. The 

YK benchmark dataset is given in Supporting Information S1. 

 

2.2 Multi-view learning model 

The benchmark dataset contains n proteins {(𝑥𝑖 , 𝑦𝑖)}𝑖=1
𝑛  from c types of 

folds based on the SCOP, where 𝑥𝑖 ∈ ℝ𝑚 is the feature of the i-th pro-

tein and 𝑦𝑖 represents its protein fold type. For a clear description of the 

categories of different protein folds, 𝑦𝑖 is the strict binary vector whose 

dimension is c. If the i-th protein sequence belongs to the 𝑗(𝑗 ∈

[1, ⋯ , 𝑐])-th fold, then the j-th element in 𝑦𝑖 is 1 and the other elements 

are 0, such as y𝑖 = [0, ⋯ ,0,1,0, ⋯ ,0] ∈ ℝ𝑐. 

Suppose that n sequences on the benchmark dataset and r query se-

quences are represented in D views. Let 𝐗tr
(𝑑)

= [𝑥tr
1,(𝑑)

, ⋯ , 𝑥tr
𝑛,(𝑑)

]
𝐓

∈

ℝ𝑛×𝑚𝑑(𝑑 ∈ [1, ⋯ , 𝐷]) be the protein sequences in the benchmark from 

the d-th view, where 𝑥tr
𝑖,(𝑑)

∈ ℝ𝑚𝑑 is the representation vector of the i-th 

protein sequence, and 𝐘 = [𝑦1, ⋯ , 𝑦𝑛]T ∈ ℝ𝑛×𝑐 is the strict binary ma-

trix of the fold types of 𝐗tr
(𝑑)

 sequences. The r query protein sequences 

are represented as 𝐗tt
(𝑑)

= [𝑥tt
1,(𝑑)

, ⋯ , 𝑥tt
𝑟,(𝑑)

]
T

∈ ℝ𝑟×𝑚𝑑(𝑑 ∈ [1, ⋯ , 𝐷]) 

from the d-th view. 

Inspired by the regularized least square regression (LSR) (Rifkin et 

al., 2003) and robust feature selection (RFS) framework (Nie et al., 

2010), we embedded the protein sequences from the D views and its 

corresponding label matrices in the following model: 

 min𝐏(𝑑) ‖∑ 𝐗tr
(𝑑)

𝐏(𝑑)𝐷
𝑑=1 − 𝐷𝐘‖

F

2
+ λ ∑ ‖𝐏(𝑑)‖

2,1
𝐷
𝑑=1  (1) 

where λ is a positive regularized parameter. The notation in the regulari-

zation term is the ℓ2,1 norm of P (Nie et al., 2010). 𝐏(𝑑) ∈ R𝑚𝑑×𝑐 is the 

transformation matrix of the 𝑑-th view to obtain insight into the im-

portant features. 

Because the traditional binary regression target has weak separability, 

the ε-dragging technique enforces the regression target of different clas-

ses by enlarging the margins between different categories of protein 

folds to the greatest extent possible. Inspired by the previous study 

(Xiang et al., 2012), we relaxed the strict binary into a slack variable 

matrix by adding a non-negative matrix 𝐌. 

Now we provide an example to show how to relax the strict binary la-

bel matrix into a slack variable matrix. Let 𝑥1, 𝑥2, 𝑥3 be the feature vec-

tors of three training samples with three different folds. The correspond-

ing label matrix is defined as 𝐘 = [
0 1 0
0 0 1
1 0 0

] ∈ ℝ3×3 (where the first, 

second and third rows of 𝐘 denote the second, third and first folds, re-

spectively). The distance between any two samples from different classes 

is √2  (i.e., the distance between the second and third samples is 

√(0 − 1)2 + (0 − 0)2 + (1 − 0)2 = √2 ). However, the distance be-

tween two samples from different classes varies, because the protein 

sequences from different categories exhibit specific properties. We ex-

pect that the strict binary target matrix is relaxed into a slack matrix by 

applying the ε-dragging technique (Xiang et al., 2012; Fang et al., 2018). 

The technique drags the initial binary matrix along the different direc-

tions. More specifically, we combined the non-negative relaxation matrix 

𝐌  with the original binary matrix 𝐘  to form a slack matrix 𝐘′ =

[

−m11 1 + m12 −m13

−m21 −m22 1 + m23

1 + m31 −m32 −m33

] , s. t. mij ≥ 0. The distance between any 

two samples from different classes is greater than or equal to √2 (i.e., the 

distance between the first and second samples is 

√(m11 − m21)2 + (1 + m12 + m22)2 + (m13 + 1 + m23)2 ≥ √2). As a 

result, the strict binary matrix 𝐘 is relaxed into the slack matrix 𝐘′ and 

the margins from different classes are enlarged through the non-negative 

matrix 𝐌. 

By applying the ε-dragging technique, the strict binary matrix 𝐷𝐘 in 

Eq. 1 is relaxed into the slack constraint so that it has more freedom to 

fit the regression target (Chen et al., 2012; Wen et al., 2018). The slack 

variable 𝐘′ is defined as: 

 𝐘′ = 𝐷𝐘 + 𝐁⨀𝐌 (2) 

where the symbol ⨀ represents a Hadamard product operator of matrices, 

𝐌 is the non-negative label matrix, and 𝐁 ∈ ℝ𝑛×𝑐 is a constant matrix, 

which is defined as follows(Xiang et al., 2012): 

 𝐵𝑖𝑗 = {
+1, if 𝑦𝑖𝑗 = 1

−1, if 𝑦𝑖𝑗 = 0
 (3) 

The distances between different protein folds are enlarged in 𝐘′. The 

dragging direction is related to the elements in 𝐁, where " + 1" is used to 

enlarge in the positive axis and vice versa. The elements in 𝐌 measure 

the dragging distances between the margins of different protein folds’ 

and have more freedom to fit the regression target. 
Then we propose the following objective function for multi-view fold: 

 min𝐏(𝑑),𝐌‖∑ 𝐗tr
(𝑑)

𝐏(𝑑)𝐷
𝑑=1 − 𝐷𝐘 − 𝐁 ⊙ 𝐌‖

F

2
+ λ ∑ ‖𝐏(𝑑)‖

2,1
, s. t. 𝐌 ≥ 0𝐷

𝑑=1 (4) 

where 𝐏(𝑑) has more discriminative ability based on the ℓ2,1 norm. Ac-

cording to the previous study (Nie et al., 2010), the ℓ2,1 norm regulariza-

tion matrix is beneficial to select the most discriminative features across 

all data points with joint sparsity. Therefore, the transformation matrix 

𝐏(𝑑) is robust to feature selection. 

Once we obtain the transformation matrix 𝐏(𝑑), the predicted fold 𝑦𝑣 

of the query protein sequence 𝑥tt
𝑣  with 𝐷 views is calculated by the fol-

lowing rules: 

 𝑗 = argmax1≤𝑗≤c(𝑦𝑣) (5) 

where vector 𝑦𝑣 = ∑ 𝑥tt
𝑣,(𝑑)

𝐏(𝑑) ∈ R𝑐𝐷
𝑑=1 , 𝑥tt

𝑣,(𝑑)
 is the feature vector of 

the 𝑣-th query sequences feature of view 𝑑(𝑑 ∈ [1, ⋯ , 𝐷]). Thus, the 

predicted protein fold utilizes the information from each view. The mod-

el obtains 𝑐 scores corresponding to different classes and each score is 

calculated by accumulating the results from 𝐷  views. The prediction 

results are directly associated with 𝑐  scores (summation of different 

views). Larger score indicates that the query sample is more likely to 

belong to the corresponding fold type. The solution of the proposed 

method is presented in Supporting Information S2. 

In summary, our MV-fold model obtains different transformation ma-

trices 𝐏(𝑑) based on the different views, and a nonnegative label matrix 

𝐌. The transformation matrix 𝐏(𝑑) is powerful for selecting the discrim-

inative features. Finally, the query sample is predicted by Eq. 5. Com-

pared with the feature combination approaches and ensemble learning 

methods, MV-fold selects the discriminative features from original rep-
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resentations of each view and the slack variable matrix provides more 

freedom to fit the discriminative regression target. Therefore, MV-fold is 

a more robust method for protein fold recognition. 

 

2.3 Multi-view feature representation 

Protein fold recognition is a typical classification problem. MV-fold 

utilizes multiple views of protein sequences to predict the fold type. In 

this section, we will introduce several representations related to various 

data sources, which are treated as different views of proteins. 

 

2.3.1 Representation of the PSI-BLAST profile 

The autocross-covariance (ACC) transformation proposed by Dong 

(Dong et al., 2009) is used to convert the PSSM matrix to a fixed-length 

feature vector, whose dimension is 400 × 𝐿𝐺 (where 𝐿𝐺 is the distance 

between the amino acids in the PSSM). The PSSM is generated using 

PSI-BLAST (Altschul et al., 1997) to search the query sequences against 

the NCBI’s non-redundant dataset (nrdb90). The parameters are set as ‘-j 

3 –h 0.001’. In this study, the ACC is treated as the view of the represen-

tation of the PSI-BLAST profile. 

 

2.3.2 Representation of the HHblits profile 

ACC is also used to convert the HHblits profile to a fixed-length feature 

vector, which is denoted as ACC_HMM. HHblits based on the HMM-

HMM alignment algorithm is a state-of-the-art algorithm (Remmert et 

al., 2012). The query sequence is searched against the database UniProt 

20_2013_06 by HHblits with the parameter ‘-n 4’. The dimension of the 

HMM profile is 𝐿 × 30, where the first 20 columns are the match state of 

amino acid emission frequencies along the sequence and the next 10 

columns are seven transition frequencies and three local diversities (Xia 

et al., 2016). In this study, we extracted our features from the first 20 

columns of amino acid emission profile information, which are similar to 

the 20 columns of the PSSM (Lyons et al., 2015). According to the 

HHblits manual (Remmert et al., 2012), the element s𝑖𝑗  in the profile 

HMM  is calculated via−1000 × log2 𝑠𝑖𝑗
′ , where s𝑖𝑗

′  is the amino acid 

frequencies, and then it is transformed into   s𝑖𝑗
′  via the formula: 

 s𝑖𝑗
′ = 2−0.001×s𝑖𝑗  (6) 

In this study, ACC_HMM is treated as the view of the representation 

of HHblits profile. 

 

2.3.3 Representation of the PSIPRED profile 

The statistical representation of secondary structure (SS) is constructed 

using the PSIPRED (Jones, 1999) profile based on three states: α-helix 

(H), β-strand (E), and random coil (C). The corresponding feature vector 

is represented as follows: 

 SS = [PC, PE, PH, entropy, means, ACC, Bigram, Trigram] (7) 

where the probabilities of the three states in the profile are calculated as 

follows (Xia et al., 2016): 

 PC =
𝑁𝑐

𝐿
, PE =

𝑁𝐸

𝐿
, PH =

𝑁𝐻

𝐿
 (8) 

where 𝑁𝐶 , 𝑁𝐸 , and 𝑁𝐻 represent the occurrences of H, E, and C, respec-

tively. The entropy of the three states (Yang and Chen, 2011) is calculat-

ed as follows: 

 entropy = −(PclnPC + PElnPE + PHlnPH) (9) 

The means of three states H, E, and C (Xia et al., 2016), the ACC 

(Dong et al., 2009), the Bigram (Sharma et al., 2013), the Trigram 

(Paliwal et al., 2014) are also incorporated into SS to represent the pre-

dicted secondary structure. In this study, the feature SS represents the 

view of the PSIPRED profiles. 

 

2.3.4 Representation of the physicochemical profile 

Physicochemical features impact the protein fold recognition using a 

template-based or ab initio folding method (Buchan and Jones, 2017). 

Shen et al. (Shen and Chou, 2006) utilized the physicochemical infor-

mation to obtain the PseAAC. The PseAAC features are calculated via 

the equation(Chou, 2001) 

 PseAAC = [𝑃1, … , 𝑃𝑢 , … , 𝑃20+2𝜌] (10) 

where 𝑃𝑢 is calculated by using the equation (Chou, 2001) 

 𝑃𝑢 = {

𝑓𝑢

∑ 𝑓𝑖
20
𝑖=1 +𝜔 ∑ 𝜏𝑗

2𝜌
𝑗=1

, 𝑢 ∈ [1,20]

𝜔𝜏𝑢

∑ 𝑓𝑖
20
𝑖=1 +𝜔 ∑ 𝜏𝑗

2𝜌
𝑗=1

, 𝑢 ∈ [21,20 + 2𝜌]
 (11) 

where 𝑓𝑖 represents the frequencies of the 20 amino acids and τ𝑗 is asso-

ciated with the hydrophobicity and hydrophilicity information contained 

in the protein sequences. In this study, the feature PseAAC represents the 

view of the physicochemical profile. Fig.1 illustrates the hierarchical 

architecture of MV-fold. 

 

Fig. 1. The flowchart of MV- fold. MV-fold comprises three phases: feature extraction 

phase, training phase and test phase. First, the proteins are embedded into feature matrices, 

which are constructed from different views extracted from different sources, such as the 

PSI-BLAST profile, the HHblits profile, the PSIPRED profile, and the physicochemical 

profile. Second, they are fed into multi-view learning regression method to train the 

model. Then, the transformation matrix 𝐏 is obtained from the model. Finally, the fold of 

the query protein is predicted by the transformation matrix 𝐏, and the predictive results 

are obtained according to the classification rule. Therefore, the MV-fold algorithm utiliz-

es features from different views in a supervised framework.. 

2.4 An ensemble-based method MT-fold 

As shown in previous studies, fusion of various predictors is able to 

improve the predictive performance (Liu et al., 2017; Liu et al., 2018; 

Liu and Li, 2018). Inspired by the TA-fold (Xia et al., 2016), we pro-

posed an ensemble learning method called MT-fold that integrates 

dRHP-PseRA (Chen et al., 2016) and MV-fold. The dRHP-PseRA 

method utilizes the HHblits (Remmert et al., 2012) and HMMER (Finn 

et al., 2011) to search the query sequence against the training set and 

detect the homologous proteins. In MT-fold, when the E-values of de-

tected homologous templates are lower than a cutoff threshold 𝑇 (Xia et 

al., 2016), the dRHP-PseRA method is used as the predictor. Otherwise, 

the MV-fold method is used as the predictor. Fig.2 illustrates the 

flowchart of MT-fold. 

In the dRHP-PseRA, we utilize the HHblits (Remmert et al., 2012) 

and HMMER (Finn et al., 2011) to search the homology templates 
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against the query sequence. In those methods, the profiles are generated 

by the Hidden Markov Model (HMM). According to the previous study 

(Chen et al., 2016), the two tools have various ranking hits on the same 

benchmark dataset, and the new framework based on those predictors 

improves the performance. Because HHblits (Remmert et al., 2012) and 

HMMER (Finn et al., 2011) share different properties, their probability 

hits are different. The ranking strategy is adopted to measure the differ-

ent probability hits under the threshold 𝑇 . Those probability hits are 

sorted in descending order according to the E-values, and the proposed 

method chooses the probability hit with the minimum score. The perfor-

mance of MT-fold is directly correlated with the cutoff threshold 𝑇 , 

which will be discussed in section 3.1.  

 

Fig. 2. Flowchart of the MT-fold. The proposed method is divided into two parts: the 

dRHP-PseRA (the left module in the flowchart) and MV-fold (the right module in the 

flowchart with the darker background). The dRHP-PseRA searches the query sequence 

against the dataset using HHblits and HMMER. The MV-fold utilizes the multi-view 

learning model for features from different views. 

2.5 Evaluation indices 

As a multiclass recognition task, the overall accuracy was employed as a 

metric to compare the performance of different methods. Accuracy is 

defined as the ratio of the number of correctly predicted proteins to the 

number of total proteins by using equation (Dong et al., 2009): 

 Accuracy =
𝐶𝑁

𝑁
× 100% (12) 

where 𝐶𝑁 denotes the number of the protein samples which are predicted 

correctly, and 𝑁 is the total number of query samples of the test dataset. 

The standard deviation (SD) is used to measure the dispersion of the 

data from its mean of the Accuracy scores of 𝑘-fold cross-validation 

(Tibshirani et al., 2002): 

 SD = √
1

𝑁
∑ (𝑥𝑖 − �̅�)2𝑁

𝑖=1 × 100% (13) 

where 𝑥𝑖  denotes the value of predicted accuracy of each fold in the 

cross-validation and �̅� is the mean of the accuracies. 

3 Results and Discussion 

3.1 Determination of parameter and cross-validation 

There are two kinds of parameters in the MV-fold method: the parame-

ters associated with the four view data sources, and the parameter λ 

associated with the multi-view learning model. In this study, the parame-

ters associated with the four views data sources were optimized on RDD 

dataset via the 10-fold cross-validation. These parameters were opti-

mized on the validation set, which is dependent with the training and test 

sets. The optimized values of these parameters are shown in Table 1, 

which were also used for other benchmark datasets to reduce the risk of 

the over-fitting. The parameter λ associated with the multi-view learning 

model was optimized on the validation set fully independent with the 

training and test sets on different benchmark datasets, respectively. 10-

fold cross-validation was used for DD, RDD, EDD and TG, and 2-fold 

cross-validation and 3-fold cross-validation were used for LE and YK, 

respectively. For more details of the parameter optimization process and 

the values, please refer to the Supporting Information S3. 

 

Table 1. The parameter values of different views  

Different 

views 

PSI-BLAST 

profile 

HHblits 

profile 

PSIPRED 

profile 

physicochemical 

profile 

Values 𝐿𝐺 = 1  𝐿𝐺 = 5  𝐿𝐺 = 9  ρ = 5, 𝜔 = 0.5  

 

For MT-fold, there is an additional parameter 𝑇 for combining MV-

fold and dRHP-PseRA, which was optimized on EDD dataset, and the 

best performance was achieved when 𝑇 was equal to 0.5. The impact of 

this parameter on the performance of MT-fold is shown in Fig.S1 in 

Supporting Information S3. This value was used for all benchmark da-

tasets to avoid the risk of over-fitting. 

 

3.2 The performance and properties of MV-fold 

MV-fold utilizes four views to construct the predictor, including ACC, 

ACC_HMM, SS and PseAAC. MV-fold was compared with predictors 

based on four traditional classifiers (LIBSVM with RBF kernel, KNN, 

Random Forest, and RFS) to show the performance of the multi-view 

learning model. We linearly combine the descriptors from different 

views with the same parameters, and then this combination of features is 

fed into those traditional classifiers. The prediction accuracies of those 

methods are listed in Table 2. 

 

Table 2. The performance of MV-fold and other classifiers in terms of 

Accuracy (cf. Eq. 12) 

Method DDa RDDa EDDa TGa LEb YKc 

MV-fold 83.5% 91.7% 94.8% 86.2% 46.6% 46.4% 

LibSVM 69.5% 81.3% 86.5% 70.5% 41.4% 41.9% 

KNN(k=1)  61.2% 73.2% 74.4% 53.0% 33.3% 30.5% 

Random Tree 72.7% 82.9% 89.8% 76.0% 38.9% 40.8% 

RFS 77.0% 85.5% 90.5% 81.9% 40.4% 43.9% 

a from 10-fold cross-validation 
b from 2-fold cross-validation 
c from 3-fold cross-validation 

 

As discussed in section 2.1, the four datasets DD, RDD, EDD, and TG 

are mainly used to evaluate the performance of a predictor for protein 

homology detection, and the two datasets LE and YK are used to evalu-

ate the performance for fold recognition. From Table 2 we can obviously 

see that MV-fold outperforms the other predictors on all the 6 datasets, 

indicating that the multi-view learning model is effective for both fold 

recognition and homology detection. Compared with the traditional 

predictors utilizing a combination of features, MV-fold selects the signif-
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icant features of each view by using the transform matrix 𝐏 and those 

features are critical for the predictive performance improvement. Com-

pared with the RFS method which utilizes the linear regression model 

and selects the discriminative features using the ℓ2,1 norm, the proposed 

MV-fold method applies the ε-dragging technique to enforce the regres-

sion targets of different categories by moving along mutually opposite 

direction to enlarge the margin distances between different protein folds. 

This technique is more powerful than other existing linear regression 

methods, such as RFS. Therefore, MV-fold outperforms traditional pre-

dictors. 

Because only some features in each view are used for the prediction, 

we selected the discriminative features to constitute the latent subspace, 

where the selected features are very important for the prediction. Then, 

the new samples are predicted by the discriminative features through the 

transformation matrices. According to the previous study, the ℓ2,1 norm 

has a row-sparsity property, which is associated with the discriminative 

features (Nie et al., 2010). In the MV-fold, we utilized the regularized 

ℓ2,1 norm to obtain the comprehensive projection matrix 𝐏. Fig.3 shows 

the projection matrices of the special views obtained by the proposed 

method. Fig.3(a) shows the first 125 rows of 𝐏. We calculated the value 

of each row in the former 125 rows of 𝐏 by using the ℓ2 norm. Most of 

the elements displayed in Fig.3(b) have values near zero. The transfor-

mation matrix 𝐏 obtained from the MV-fold method exhibits the row-

sparsity property. The nonzero elements of the transformation matrix are 

directly correlated with the selected features, which have great discrimi-

native power. The features in the transformation matrix are interpretable, 

and the ℓ2,1 norm has the ability to select the most discriminative fea-

tures from original data for feature selection. 

 

 

Fig. 3. The transformation matrix of the special view on the RDD dataset. The subfigure 

(a) shows the transform matrix 𝐏(𝑑) corresponding to the special view. The first 125 rows 

of the transformation matrix are shown. We calculated the values of each row in 𝐏(𝑑) by 

using the ℓ2 norm to show the row-sparsity property. The values of different rows are 

displayed in the subfigure (b). 

In MV-fold, different views of proteins provide complicated projec-

tion matrices. Different feature groups without data integration are fed 

into MV-fold for the four datasets, including DD, RDD, EDD, and TG, 

to investigate the contributions of four views to the performance of MV-

fold. Fig.S2 in Supporting Information S3 shows the performance of 

different views on the four datasets. The accuracy of MV-fold is im-

proved by utilizing the different view feature groups. In each view, we 

extracted the discriminative features to constitute the latent subspace and 

then predicted the query protein sequence in the latent subspace. 

In our experiments, the multi-view learning model selected the im-

portant features by using the ℓ2,1 norm term and achieved a more dis-

criminative regression target by using the ε-dragging technique.  

 

Table 3. The performance of proposed methods on different datasets in 

terms of Accuracy (cf. Eq. 12) and SD (cf. Eq.13) 

Dataset MV-fold dRHP-PseRA MT-fold 

DDa 83.5±3.4% 82.4±2.4% 88.2±3.3% 

RDDa 91.7±2.2% 85.5±4.0% 96.7±2.1% 

EDDa 94.8±1.5% 93.9±1.3% 97.1±1.4% 

TGa 85.1±2.4% 85.4±2.9% 92.0±3.3% 

LEb 46.6±2.2% 37.3±0.3% 54.1±4.9% 

YKc 46.4±4.8% 34.1±4.5% 50.5±4.4% 

a from 10-fold cross-validation 
b from 2-fold cross-validation 
c from 3-fold cross-validation 

 

3.3 The performance of MT-fold 

As an ensemble method, MT-fold combines MV-fold and dRHP-PseRA. 

In MT-fold, the E-value from dRHP-PseRA is used to evaluate the ho-

mologous sequences between the templates and query sample. The re-

sults of MT-fold on the six benchmark datasets are shown in Table 3, 

and MT-fold obviously outperforms the MV-fold and dRHP-PseRA 

methods on the six benchmark datasets. 

 

3.4 Comparison with other methods for protein homology 

detection 

The performance of MV-fold and MT-fold was compared with other 

state-of-the-art methods for protein homology detection, including the 

ACCFOLD (Dong et al., 2009), Taxfold (Yang and Chen, 2011), PFPA 

(Wei et al., 2015), HMMFold (Lyons et al., 2015), NiRecor (Cheung et 

al., 2016), SVM-fold (Xia et al., 2016), and TA-fold (Xia et al., 2016) to 

show the effectiveness of our methods. The performance of these meth-

ods is described in Table 4 and Fig.S3 in Supporting Information S3. As 

shown in Table 4, MT-fold and MV-fold obviously outperform other 

state-of-the-art methods for protein homology detection on the four 

benchmark datasets. 

 

Table 4. The performance of MV-fold, MT-fold and other taxonomy 

methods for protein homology detection via 10-fold cross-validation on 

the four datasets, including DD RDD, EDD, and TG in terms of Accura-

cy (cf. Eq. 12) 

Method DD RDD EDD TG 

ACCFold_ACC 70.1% 73.8% 85.9% 66.4% 

Taxfold 71.5% 83.2% 90.0% NA 

PFPA 73.6% NA 92.6% NA 

HMMFold 75.8% NA 93.8% 86.0% 

NiRecor 81.2% NA 91.7% 84.6% 

SVM-fold 77.3% 90.0% 94.5% 86.5% 

TA-fold 79.9% 93.2% 97.1% 92.7% 

MV-fold 83.5% 91.7% 94.8%  85.1% 

MT-fold 88.2% 96.7% 97.1% 92.0% 

The multi-view model exhibits better performance than the data inte-

gration frameworks, such as Tax-fold and SVM-fold. These methods 

embed comprehensive features from different profiles into SVM classifi-

ers. The transformation matrices corresponding to different views effec-

tively improve the performance of data integration by selecting the dis-
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criminative features from a single view, and the ε- dragging technique is 

more reliable for fitting the regression targets. The MT-fold method 

combines the advantages of the MV-fold and dRHP-PseRA methods. 

Therefore, MT-fold is better than the MV-fold method. 

 

3.5 Comparison with other methods for protein fold recog-

nition 

The proposed methods were further tested on the LE dataset to evaluate 

their performance for protein fold recognition. Their performance was 

compared with other 11 state-of-the-art methods, including HHpred 

(Söding, 2005), FFAS-3D (Xu et al., 2014), SPARKS-X (Yang et al., 

2011), HH-fold (Xia et al., 2016), TA-fold (Xia et al., 2016), FOLDpro 

(Cheng and Baldi, 2006), DN-Fold (Jo et al., 2015), RFDN-Fold (Jo et 

al., 2015), RF-fold (Jo and Cheng, 2014), DeepFR (with strategy 1) (Zhu 

et al., 2017), and dRHP-PseRA (Chen et al., 2016). 

The experimental results of different methods on LE dataset are listed 

in Table 5, showing that MT-fold outperforms all the other compared 

methods. MT-fold is able to capture the discriminative features of differ-

ent folds, which would provide useful information for researchers who 

are interested in exploring the characteristics of protein folds. 

 

Table 5. The performance of MV-fold, MT-fold and other methods for 

protein fold recognition on LE dataset via 2-fold cross-validation in 

terms of Accuracy (cf. Eq. 12) 

Methods LE 

HHpred 25.2% 

FFAS-3D 35.8% 

SPARKS-X 45.2% 

HH-fold 42.1% 

TA-fold 53.9% 

FOLDpro 26.5% 

DN-Fold 33.6% 

RFDN-Fold 37.7% 

RF-fold 40.8% 

DeepFR 44.5% 

dRHP-PseRA 34.9% 

MV-fold 46.6% 

MT-fold 54.1% 

 

Compared with the results listed in Table 4 and Table 5, we can ob-

viously observed that for the three common methods (TA-fold, MV-fold 

and MT-fold), their performance on the four benchmark datasets (DD, 

RDD, EDD and TG) is obviously higher than that of on the LE bench-

mark dataset. In order to explore the reasons, we further analyzed the 

five benchmark datasets, and found that for the four benchmark datasets 

(DD, RDD, EDD and TG), some proteins in the training set and test set 

are in the same superfamily. For example, on the TG benchmark dataset, 

25 protein sequences from the Cytochrome C fold have the same super-

family a.3.1 according to the SCOPe 2.07. Therefore, the performance of 

the three predictors on the four benchmarks was overestimated. In fact, 

these four datasets are actually used to evaluate the performance for 

protein homology detection, an easier task than protein fold recognition. 

In contrast, the LE dataset is the only rigorous dataset for fold recogni-

tion. We constructed an update and rigorous dataset (YK) and the per-

formance of MV-fold and MT-fold was evaluated on the YK dataset. A 

3-fold cross-validation was adopted, and the whole dataset was divided 

into three subsets at the fold-level. In other words, the proteins in the 

training, validation, and test datasets come from different superfamilies. 

The results are listed in Table 6 and show that MT-fold can achieve 

stable performance in comparison with the results on LE dataset. 

 

Table 6. The performance of MV-fold and MT-fold on YK dataset via 3-

fold cross-validation in terms of Accuracy (cf. Eq. 12) 

Methods YK 

dRHP-PseRA 34.1% 

MV-fold 46.4% 

MT-fold 50.5% 

4. Conclusion 

Protein fold recognition and homology detection is important for under-

standing the protein structures (Wei et al., 2015; Zou, 2016). In this 

paper, we introduce two novel recognition algorithms: MV-fold and MT-

fold. MV-fold employs the multi-view learning model based on the 

discriminative linear regression framework. MT-fold combines the MV-

fold and the dRHP-PseRA. The MV-fold utilizes four features as repre-

sentations of the corresponding views and extracts significant features 

from each view of the data source. Then, the new samples are mapped 

into the views-agreement space, and their protein folds are predicted 

based on the selected discriminative features obtained by the transfor-

mation matrices. Unlike conventional linear regression methods, the 

MV-fold applies the ε -dragging technique by enlarging the margins 

between different categories of protein folds. As an ensemble method, 

MT-fold outperforms MV-fold. In the future, we will try to accelerate 

our methods with a parallel framework, such as Map-Reduce (Zou et al., 

2014). It can be anticipated that the multi-view framework will have 

many potential applications in the field of bioinformatics, such as DNA 

binding protein identification (Zhang and Liu, 2017), protein remote 

homology detection (Liu et al., 2015; Chen et al., 2017), disordered 

region detection (Liu et al., 2018), protein sequence analysis (Wang et 

al., 2016; Song et al., 2018), etc. 
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