
1051-8215 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2019.2905373, IEEE
Transactions on Circuits and Systems for Video Technology

1

DSN: A New Deformable Subnetwork for
Object Detection

Shuai Wu, Yong Xu*

Abstract—Although deep convolutional neural networks have
achieved great success in object detection, they depend heavily
on considerable training data and do not have a specific mech-
anism to handle related challenging problems, such as object
deformation. In this paper, we design a Deformable Subnetwork
(DSN) to introduce the Deformable Part-based Model (DPM) in
the deep object detection framework. It is effective for handling
object deformation and is composed of two significant parts: the
deformation coefficient part and the deformation pooling part.
The deformation coefficient part is responsible for generating
the deformation coefficients for each position of the input. The
deformation pooling part calculates the final score for each
position which takes into account its displacement penalty relative
to the root position. DSN is convenient for being embedded
into the most prevalent object detection frameworks such as
Faster-RCNN or RFCN. More importantly, it does not impair
the integrity of the original framework and only cause little time
consumption. We show effectiveness of DSN via experiments on
the PASCAL VOC and COCO datasets, achieving the state-of-
the-art results, 82.7% for PASCAL VOC and 32.1% for COCO.

Index Terms—object detection, deformable subnetwork, defor-
mation coefficient, deformation pooling.

I. INTRODUCTION

RECENTLY, Deep Convolutional Neural Networks (DC-
NNs) have almost dominated computer vision in many

fields such as image classification [1-5], object detection
[6-9] and semantic segmentation [10-13]. In particular for
object detection, proposal-based deep models are currently
the leading methods [14-16]. They always show powerful
performance on both object classification and bounding box
regression. This is mainly due to the Region Rroposal Network
(RPN) and the Region of Interest (ROI) pooling layer [17].
RPN first generates hundreds of candidate proposals. Then,
these proposals are fed into the ROI pooling layer to further ex-
tract features. Although proposal-based models yield excellent
results, they are limited in handling object deformation which
is considered a key challenging problem for object detection
[18]. Objects show different appearances due to various poses
and viewpoints, especially for nonrigid objects. This is because
in the real world, the positions of object parts are not fixed but
are changeable. How to model part alignment is a key point
for handling object deformation. However, ROI pooling acts
as an absolute feature extractor and ignores the part alignment

The work is supported by the National Natural Science Foundation of China
(Grant No. 61876051), (Corresponding author: Yong Xu.)

Shuai Wu is with the Bio-Computing Research Center, Harbin Institute of
Technology, ShenZhen (Email: shuaiwu9@gmail.com;)

Yong Xu is with the Bio-Computing Research Center, Harbin Institute of
Technology, ShenZhen (Email: yongxu@ymail.com;)

process. It separates a candidate proposal into fixed spatial bins
and calculates the average value for each bin. Each position
is equally treated in one bin, and this is adverse for part
alignment.

Fig. 1: The whole framework of the deformable subnetwork.
It consists of two key parts: the deformation coefficient part
and the deformation pooling part.

The Deformable Part-based Model (DPM) [19] is highly
effective in addressing the object deformation problem. Before
the deep convolutional networks are introduced into object
detection, DPM is considered one of the most prevalent
methods in object detection. It models object deformation by
optimizing a star-structure representation. DPM consists of
a root filter and a set of parts filters. Object matching is a
part alignment process. DPM will find the best position for
each part taking into account its displacement penalty relative
to the anchor position. The anchor position for each part
comes from a template that predefines the relative positions
between the root and the parts. In real applications, DPM
always applies dozens of templates for an object category
because of its ever-changing appearance. Few studies have
attempted to integrate the DPM with deep convolutional neural
networks to handle object deformation and further improve
object detection performance [20-24]. These methods can
be called DPM-based deep models. Although these methods
introduce DPM in deep networks to handle object deformation
problem, they have two main drawbacks. First, most methods
only consider the Convolution Neural Network (CNN) as a
feature extraction tool, and object detection is divided into
several independent processes. In other words, the DPM is not
really embedded into the deep detection framework. Second,
to introduce the DPM into the CNN, the detection models



1051-8215 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2019.2905373, IEEE
Transactions on Circuits and Systems for Video Technology

2

in these methods become very complex. This makes the
models time consuming, and it is unclear how to train them
end-to-end. Recently, the convolutional network has become
increasingly deeper. Not only is detection accuracy important,
but the detection efficiency is also significant. The above two
drawbacks make DPM-based deep models hardly to be applied
in real world.

Based on the above observations, we propose a Deformable
Subnetwork (DSN), which is convenient for introducing DPM
in deep detection models such as RFCN and Faster-RCNN.
It can effectively handle object deformation and can improve
the detection accuracy. More importantly, it does not impair
the integrity of the original models and only consumes little
time. Fig.1 illustrates the whole structure of the DSN, which
consists of two key parts: the deformation coefficient part
and the deformation pooling part. The deformation coefficient
part is responsible for generating deformation coefficients
corresponding to the displacement vector. Each position of the
input is assigned N deformation coefficients to calculate its
displacement penalty. These coefficients are generated online
from the convolutional network. This is different from the
original DPM in which deformation coefficients for each
template are fixed after training. Generating deformation co-
efficients online is based on the following considerations.
Although the DPM applies dozens of templates to model an
object category, in real world, they are far from covering
all situations. Moreover, more templates will greatly increase
the computational cost. Generating coefficients online can be
considered as generating fictitious templates for the objects of
a given image. This is not only more robust but also more
efficient than the original DPM. The deformation pooling part
aims at seeking the most appropriate position for each part of
an object. It first separates a candidate proposal into several
bins relative to different parts. Then inside each bin, each
neuron is penalized by its displacement vector relative to the
anchor position. Finally, the position of the maximum value
is considered the part-matching position as Fig. 1 illustrates.
This is consistent with part alignment process in the DPM
model and can help make the deep detection framework robust
to moderate object deformation. Most DPM-based methods
always apply varying size filters to represent different parts
of an object. This is time-consuming and redundant for deep
networks. According to [25], a neuron in the top layers of the
deep convolution networks can completely represent a small
fraction of the original image. Therefore, the deformation
pooling acts on different neurons to perform part alignment
which is more efficient. Normally, the center of each bin is
set as the anchor position when performing part alignment.
To further improve the detection performance, we also design
deformation anchor part to generate anchor position for each
bin from the deep network which is more reasonable and can
get better results.

In summary, our main contributions are as follows:
1. We propose a deformable subnetwork which can intro-

duce DPM model in deep neural network. It can generate 4
dimensional deformation coefficients and perform part align-
ment to handle object deformation.

2. To make the model more reasonable and robust, we also

design deformation anchor part to generate anchor position for
each bin from the deep network.

3. Our deformable subnetwork is convenient to be embed-
ded into most prevalent proposal based frameworks. It does
not break down the integrity of the original deep detection
frameworks and only consumes little time.

4. We achieve the state-of-the-art results on both PASCAL
and COCO benchmarks.

II. RELATED WORK

Recently, deep network based methods can achieve ex-
cellent performance in object detection. These methods can
be divided into two categories: proposal-based methods and
regression-based methods. The proposal-based methods need
first generate hundreds of candidate proposals and then per-
form classification and bounding box regression on them.
Faster-RCNN [17] is considered the most typical proposal-
based model. It applies RPN, which is both efficient and
accurate, to generate candidate proposals. Many improvements
from different perspectives have been made on Faster-RCNN,
such as FPN [26], ION [27] and Hypernet [28], but the basic
framework is preserved. RFCN [29] designs the position-
sensitive pooling layer to make the whole network fully
convolutionally connected, which dramatically improves the
detection efficiency. Mask-RCNN [30] designs to simultane-
ously train the network with both detection and segmentation
tasks and achieves a large breakthrough. The regression-based
methods do not generate candidate proposals and consider
object detection as a one-step regression process. Szegedy
et al. [31] train a deep network to generate a bitmap with
the object mask being one. Yoo et al. [32] consider object
detection as a corner point regression process. They train the
network to make the initial top left point and the bottom right
point move to the ground truth boxes. Yolo [33] and SSD
[34] are proposed to achieve real-time detection efficiency. In
their final feature maps, each neuron is responsible for directly
predicting a fixed number of anchor boxes.

The Deformable Subnetwork (DSN) is designed for
proposal-based models. The deformation pooling layer need
act on different candidate proposals and perform part align-
ment to handle object deformation. Some other researches
have also attempted to settle object deformation in deep
network. In the following, we briefly introduce these methods.

DPM-Based Deep Models : Several DPM based deep
models have attempted to integrate DPM with deep network.
Savalle et al. [20] replace the HOG [35-37] feature pyramid
with a CNN feature pyramid to improve the DPM perfor-
mance. Girshick et.al [21] and Wan et al. [22] attempt to
realize the DPM in the CNN through a distance transform
layer and the geometry filters. Ouyang et al. [23] introduce
the DPM mechanism in the CNN to settle part deformation
for pedestrian detection and further extend it to generic object
detection [24].

Spatial Transform Network : The Spatial Transform Net-
work (STN) [38, 39] aims to perform spatial transform online
through the deep convolutional network. An additional branch
is added to the base network to generate the transform param-
eters for each position. Then, these parameters are utilized



1051-8215 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2019.2905373, IEEE
Transactions on Circuits and Systems for Video Technology

3

to perform spatial transform across the input. The whole
framework can be trained end-to-end, which means that the
transform parameters can be completely trained from the
training data. STN can achieve good results on handwriting
recognition. However, it is limited to generic object detection.
In the real world, the ever-changing appearance of objects is
too complex to model only by spatial transform.

Deformable Convolution Network : The Deformable Con-
volution Network (DCN) [40] aims to model geometric trans-
formations by applying non-regularly shaped convolution and
pooling. It designs two inspiring structures: deformable convo-
lution and deformable ROI pooling. Deformable convolution
applies an additional convolution branch to generate the de-
formation offset for each position of the input layer. Then,
the convolution is no longer regularly shaped. Deformable
ROI pooling applies an additional fully connected structure
to generate an offset for each ROI bin. At first blush, DSN
is similar to this DCN model. However, the deformation
pooling part of DSN aims to calculate the displacement penalty
for different positions in the ROI region and perform part
alignment for each ROI bin. This is consistent with the idea
of the DPM model and is completely different from DCN.

III. DEFORMABLE SUBNETWORK

This section presents the details of the Deformable Sub-
network (DSN). DSN introduces DPM in the deep detection
model to address the object deformation problem. It consists
of two main parts: the deformation coefficient part and the
deformation pooling part. These two parts play different roles
but are strongly related to each other.

Fig. 2: The detail structure of the deformation coefficient part.

A. The Deformation Coefficient Part

Fig. 2 illustrates the details of the deformation coefficien-
t part. A small network is slided on the input to gener-
ate the deformation coefficients for each position. First, an
n×n spatial window centered at a position is mapped to a
lower-dimensional feature vector (512-d for both VGG16 and

ResNet-101). Then, this low-dimensional feature vector is fed
into a fully connected layer to generate N coefficients. These
coefficients are exploited to calculate the displacement penalty
for the position. This small network operates in a sliding
fashion so that the size of the output feature map is the same
as that of the input feature map. Generally, such a design can
be easily implemented by an n×n convolutional layer with
ReLU layer followed and a 1×1 convolutional layer with N
outputs. To take advantage of the context information for a
single position, n is always larger than 1, and in this paper,
we set n as 3. The value of N needs to correspond to the size
of the displacement vector. To be consistent with the DPM
model, DSN finally exploits the quadratic function, which has
4 values to define the displacement vector. Thus, the number
of N is correspondingly set to 4. The output coefficients are
denoted as wij , i∈{1, ..., N}, j∈{1, ...,W×H}, where W and
H represent the width and height of the output feature map
respectively.

B. The Deformation Pooling Part

The deformation pooling part is based on candidate pro-
posals. The whole deformation pooling process performs part
alignment and generates a more robust representation for
different candidate proposals. In this paper, we embed DSN
into Faster-RCNN and RFCN in which the candidate proposals
come from an effective generator called RPN [17]. DSN
implements the deformation pooling part by a newly designed
layer called the deformation pooling layer. This layer has the
following three inputs: 1. the candidate proposals from RPN;
2. the intermediate feature map L; 3. the coefficient feature
map from the deformation coefficient part.

Fig. 3: The deformation pooling part: the process of deforma-
tion pooling is to perform part alignment for each bin.

Fig. 3 visualizes the whole process of the deformation pool-
ing layer. It first maps a candidate proposal on the intermediate
feature map L and then partitions the corresponding region in-
to k×k bins. Each bin is responsible for predicting a latent part
(e.g. the left top bin is responsible for predicting the dog ear in



1051-8215 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2019.2905373, IEEE
Transactions on Circuits and Systems for Video Technology

4

Fig. 3). According to [25], in a deep convolutional network,
although the receptive field of top layers is very large, the
effective receptive field occupies only a small fraction. Thus, a
neuron on L is completely capable for representing an object
part. Owing to object deformation, different neurons in one
bin are considered as all the possible positions for the latent
part as Fig. 3 (a) illustrates. The deformation pooling aims to
find the correct position for the latent part. This is consistent
with the idea of DPM. For one bin, deformation pooling first
calculates the displacement vector {dx, dy, dx2, dy2} for each
neuron as (1).

dx = x− ax
dy = y − ay
dx2 = (x− ax)2

dy2 = (y − ay)2

(1)

where (ax, ay) represents the anchor position of the bin.
Normally, we set the center position as the bin’s root position.
(x, y) is the neuron’s position, and it is also considered as
the center position of the neuron’s effective receptive field, as
illustrated in Fig. 3 (b). Once the displacement vector for a
neuron is obtained, the corresponding deformation coefficients
are integrated to calculate its displacement penalty by (2),
where p is the position index for a neuron, and fp represents
the neuron value at position p. {w1p, w2p, w3p, w4p} represents
the corresponding deformation coefficients from the deforma-
tion coefficient part. λ is the predefined scalar to modulate
the magnitude of the deformation costs. Then, each neuron
is penalized by its displacement penalty and fdp denotes the
result. Finally, the maximum value f∗ of one bin is set as its
output as in (3). This means that the position of the maximum
value is considered the matching position of the latent part.
The deformation pooling aims to find the best position of the
latent part for each bin, as illustrated in Fig. 3 (c).

fd
p = fp + λ(w1pdx+ w2pdy + w3pdx

2 + w4pdy
2) (2)

f∗ = max
p∈bin

(fd
p ) (3)

Formulas (2) and (3) indicate that deformation pooling
includes max ROI pooling. If the deformation coefficients
are all set to zero, deformation pooling is equal to max ROI
pooling. There are three inputs for our deformation pooling
layer. Except for the candidate proposals, the other two inputs
need to perform back propagation. The specific formulations
are as follows.

∂fd
p

∂fp
=
∂(fp + λ(w1pdx+ w2pdy + w3pdx

2 + w4pdy
2))

∂fp
= 1 (4)

∂fd
p

∂w1p

=
∂(fp + λ(w1pdx+ w2pdy + w3pdx

2 + w4pdy
2))

∂w1p

=λdx

∂fd
p

∂w2p

=
∂(fp + λ(w1pdx+ w2pdy + w3pdx

2 + w4pdy
2))

∂w2p

=λdy

∂fd
p

∂w3p

=
∂(fp + λ(w1pdx+ w2pdy + w3pdx

2 + w4pdy
2))

∂w3p

=λdx
2

∂fd
p

∂w4p

=
∂(fp + λ(w1pdx+ w2pdy + w3pdx

2 + w4pdy
2))

∂w4p

=λdy
2

(5)

The backward process for the deformation pooling layer is
simple and consumes little time at the training stage.

C. Understanding The Deformation Subnetwork

The deformation coefficient part and the deformation pool-
ing part are based closely on each other. They jointly introduce
DPM in the deep neural network. As illustrated in Fig. 1,
they both take the intermetiate layer L as the input. In
terms of one neuron on L, the deformation coefficient part
is responsible for assigning it N (4 in this paper) coefficients.
Such coefficients are of great significance in calculating the
neuron’s displacement penalty. In the deformation pooling
part, once a candidate region is located on L, every neuron
inside the region is viewed as a possible position of the latent
parts for an object. The deformation pooling makes use of
the clustering concept, which makes one bin responsible for
predicting one latent part. Then, for one bin, all the neurons
are considered as the possible positions of the latent part and
will be penalized by their displacement penalty as in (2).

Formulas (2) and (3) indicate that the deformation coef-
ficients are the crucial factor that finally determines which
neuron is the best position of the latent part. In the original
DPM, the deformation coefficients are tied together with the
template and are fixed once training is complete. Although
DPM applies multiple templates to represent an object cat-
egory, they are still limited in their ability to cover all the
ever-changing appearances. Moreover, more templates result
in considerable computational costs. DSN generates defor-
mation coefficients online from the convolutional network.
Actually, the deformation coefficient part can be considered
as generating fictitious templates online for the objects of
a given image. The deformation pooling is used to perform
part alignment according to the fictitious templates. In the
deformation pooling step, one bin corresponds to one latent
part of an object. However, the corresponding relationship is
not fixed, and it is determined by the fictitious templates,
which are independent of the candidate proposals. Thus, for
one neuron, the deformation coefficients are only related to its
contextual information. RPN generates thousands of candidate
proposals with various sizes and positions. A neuron may have
different displacement vectors relative to different proposals.
However, its deformation coefficients do not change with the
candidate proposals. They are totally trained from the data
and converge to the ground truth box. Thus, DSN is more
effective and robust than DPM. Moreover, it is very beneficial
for obtaining the optimal bounding box for an object and
consumes little time.

D. The Baseline Framework

It is convenient for the deformable subnetwork to be em-
bedded in the prevalent proposal-based frameworks for object
detection. In this paper, we choose Faster-RCNN and RFCN
to verify the effectiveness of the deformable subnetwork. Fig.
4 illustrates the specific structure.

In terms of Faster-RCNN, we apply VGG16 [41] and
ResNet101 [42] as the backbone network. We follow the
design in [17] and set the last layer of res4 (conv5 for VGG16)



1051-8215 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2019.2905373, IEEE
Transactions on Circuits and Systems for Video Technology

5

(a) Deformable subnetwork with Faster-RCNN

(b) Deformable subnetwork with RFCN

Fig. 4: The Deformable subnetwork with Faster-RCNN and
RFCN

Fig. 5: Generating anchor position for each bin from the
network

as the intermediate feature map L. In other words, this layer is
set as the input layer for the deformation coefficient part and
the deformation pooling part. Then, the deformation pooling
output is fed into res5 (conv5 for VGG16), which finally
generates the confidence score and bounding box regression
results. For RFCN, we only apply ResNet101 [42] as its
backbone network. RFCN designs a position-sensitive pooling
layer that makes the whole framework fully convolutional.
The core idea of the position-sensitive pooling layer is that
the k×k bins do not originate from a single feature map
but from k×k corresponding feature maps. The deformable
subnetwork is very appropriate for such design because the
deformation pooling for each bin is relatively independent.
Thus, for RFCN, DSN performs the deformation pooling
on k×k feature maps. We call this design the “position-
sensitive deformation pooling layer”. Moreover, RFCN applies
the “hole algorithm” [11] to ensure that res4 and res5 have the
same size. Then it adds a new convolutional layer after res5
which we set as the input of our deformation subnetwork.
Finally, similar to RFCN, the output of the position sensitive
deformation pooling layer votes for the confidence score. This
is mainly implemented by averaging the output for each bin.

E. Generating Anchor Positions from The Network

The deformation pooling layer sets the center position for
each bin as its anchor position, this is inspired by [24].

Fig. 6: Calculating the anchor position for each bin

To further strengthen the performance and rationality of the
deformable subnetwork, we design an improved version in
which the anchor position for each bin is generated from
the network and is totally trained from the dataset. In this
improved version, a new additional branch is added to the de-
formation subnetwork. It is mainly responsible for generating
the anchor position for each bin and is called the deformation
anchor part.

Fig. 5 shows the detailed structure of the deformation
anchor part. In terms of a candidate proposal, ROI pooling
is first applied to extract features. Then, the output will be fed
into two 3×3 convolutional layers and one fully connected
layer to generate a 2k2 sized vector for k×k bins. Each bin
corresponds to 2 outputs σx and σy which will be finally
transformed to the anchor position. We apply the sigmoid
activation function after the fully connected layer, so the
outputs are all between 0 and 1. Fig. 6 illustrates the detailed
process to calculate the anchor position for each bin. (Bsx, B

s
y)

represents the coordinate of the left top neuron for each bin. H
and W represent the height and width for each bin. (Bax, B

a
y )

stands for the final anchor position for each bin. This improved
version makes our deformation subnetwork more reasonable,
and generating anchors can help the model better represent an
object.

IV. EXPERIMENTS

A. Experimental Setup

DSN is embedded in Faster-RCNN and RFCN and is
evaluated on PASCAL VOC [44] and COCO [45] datasets.

In terms of PASCAL VOC, the mAP scores with 0.5 IoU
threshold are reported. For Faster-RCNN, the joint training
strategy is applied [17] to train the whole model. The images
are resized to have a shorter side of 600 pixels. Considering
RPN and the detection network, 256 and 128 proposals are
sampled respectively. For deformation pooling, 14×14 bins
are are adopted. A total of 110k iterations are performed on
2 GPUs, 80k for the 0.001 learning rate, and 30k for 0.0001
learning rate. The momentum and weight decay are set to 0.9
and 0.0001 respectively. For RFCN, we follow the training
strategy in [26] and exploit pretrained and fixed proposals to
train the whole model. Such proposals are generated from the
first stage of the procedure in [17]. 7×7 bins are utilized in
the deformation pooling. 120k iterations are performed on 2
GPUs, 80k for 0.001 learning rate, and 40k for 0.0001 learning
rate. The momentum and weight decay are set the same values
as those of Faster-RCNN.

For COCO, mAP@[0.5:0.95] are exploited as the final
evaluation index. For both Faster-RCNN and RFCN, 7×7
bins are utilized in deformation pooling. The momentum and
weight decay are set to 0.9 and 0.0001 respectively. Tow GPUs
are used to perform 960k iterations, and the learning rates are



1051-8215 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2019.2905373, IEEE
Transactions on Circuits and Systems for Video Technology

6

TABLE I: Detailed comparisons on PASCAL VOC 2007 test in average precision (%). The training data is the union set of
07 trainval and 12 trainval.

Method mAP areo bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train Tv

C-DPM [20] 48.2 50.9 64.4 43.4 29.8 40.3 56.9 58.6 46.3 33.3 40.5 47.3 43.4 65.2 60.5 42.2 31.4 35.2 54.5 61.6 58.6
DeepID [24] 64.1 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

SSD 513 [43] 80.6 84.3 87.6 82.6 71.6 59.0 88.2 88.1 89.3 64.4 85.6 76.2 88.5 88.9 87.5 83.0 53.6 83.9 82.2 87.2 81.3
DSSD 513 [43] 81.5 86.6 86.2 82.6 74.9 62.5 89.0 88.7 88.8 65.2 87.0 78.7 88.2 89.0 87.5 83.7 51.1 86.3 81.6 85.7 83.7

HyperNet [28] 76.5 77.4 83.3 75 69.1 62.4 83.1 87.4 87.4 57.1 79.8 71.4 85.1 85.1 80 79.1 51.2 79.1 75.7 80.9 76.5
ION [27] 77.6 82.5 86.2 79.9 71.3 67.2 88.6 87.5 88.7 60.8 84.7 72.3 87.6 87.7 83.6 82.1 53.8 81.9 74.9 85.8 81.2

Faster-RCNN [42] 76.4 79.8 80.7 76.2 68.3 55.9 85.1 85.3 89.8 56.7 87.8 69.4 88.3 88.9 80.9 78.4 41.7 78.6 79.8 85.3 72.0
DCN-Faster-RCNN [40] 78.7 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

DSN-Faster-RCNN 79.5 82.7 85.2 79.0 72.2 66.4 88.3 87.7 88.0 64.9 86.1 72.4 88.2 87.9 84.1 79.7 51.4 81.4 79.3 84.8 80.4
DSN-A-Faster-RCNN 79.9 83.7 85.7 79.5 73.2 67.4 88.2 88.2 88.0 65.5 86.6 72.8 88.3 87.4 85.2 80.1 52.4 83.4 78.3 83.3 80.1

RFCN [29] 80.5 50.9 64.4 43.4 29.8 40.3 56.9 58.6 46.3 33.3 40.5 47.3 43.4 65.2 60.5 42.2 31.4 35.2 54.5 61.6 58.6
DCN-RFCN [40] 82.6 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

DSN-RFCN 82.0 84.9 88.7 82.2 76.0 71.3 87.5 88.3 89.7 68.1 87.7 73.9 89.2 87.5 86.5 85.4 57.5 84.3 81.7 87.6 82.1
DSN-A-RFCN 82.7 86.7 88.8 84.2 75.6 71.7 87.5 88.6 89.8 69.2 88.7 76.1 89.3 89.0 86.9 85.4 58.5 84.7 83.3 88.2 81.5

TABLE II: Comparisons on PASCAL VOC 2012 test in average precision (%). 07++12 represents the
union set of 07 trainval+test and 12 trainval. o:http://host.robots.ox.ac.uk:8080/anonymous/HK3FIL.html
†:http://host.robots.ox.ac.uk:8080/anonymous/SRLUTV.html ‡:http://host.robots.ox.ac.uk:8080/anonymous/LRZXXT.html

Method Backbone Net Training data mAP

SSD [43] ResNet-101 07++12 75.4
DSSD [43] ResNet-101 07++12 76.3

Faster-RCNN [42] ResNet-101 07++12 73.8
DSN-Faster-RCNN ResNet-101 07++12 75.9o

RFCN [29] ResNet-101 07++12 77.6
DSN-RFCN ResNet-101 07++12 78.3†

DSN-A-RFCN ResNet-101 07++12 78.8‡

set as 0.0005 and 0.00005 in the first 2/3 and the last 1/3
iterations, respectively.

B. Experiments on PASCAL VOC

The experiments are performed on VOC 2007 and VOC
2012. The 2007 dataset is composed of approximately 5000
trainval images and 5000 test images over 20 object categories.
The 2012 dataset contains more than 10 thousand trainval
images. DSN-Faster-RCNN and DSN-RFCN represent the
plain counterparts with the deformable subnetwork for Faster-
RCNN and RFCN respectively. The improved version DSN
whose anchor position are generated from the convolution net-
work are also embedded in Faster-RCNN and RFCN and the
corresponding models are denoted as DSN-A-Faster-RCNN
and DSN-A-RFCN.

Table I reports the comparison results between the de-
formable subnetwork and other state-of-the-art methods. For
a fair comparison, all the models are trained on VOC 07+12,
which contains VOC 2007 and VOC 2012 trainval datasets.
C-DPM [20] and DeepID [24] are the typical DPM-based
deep models. These models are very complex, and the de-
tection results are relatively lower than other methods. DSN-
Faster-RCNN outperforms Faster-RCNN by 3.1%. Further-
more, DSN-Faster-RCNN also outperforms HyperNet and
ION by 3.0% and 1.9% respectively. SSD [34] is the typical
regression based method and DSSD [43] is its improved
version. Our DSN-RFCN outperforms SSD by 1.4% and
also has better performance than DSSD. DSN-RFCN also
outperforms RFCN by 1.5%. DCN [40] is a similar work

that can handle object deformation, it can also be applied to
Faster-RCNN and RFCN. Although DSN-RFCN obtains lower
result than DCN-RFCN, DSN-A-RFCN can slightly outper-
form DCN-RFCN. Moreover, DSN-Faster-RCNN and DSN-
A-Faster-RCNN can both outperform DCN-Faster-RCNN by
0.8% and 1.2% respectively. Generating anchor positions from
network can slightly improve the performance of DSN, DSN-
A-Faster-RCNN and DSN-A-RFCN could outperform DSN-
Faster-RCNN and DSN-RFCN by 0.4% and 0.7% respectively.
Furthermore, DSN-A-RFCN can achieve best results on 13
categories, especially for nonrigid objects like dog, cat, horse,
bird and people. our deformable subnetwork aims at introduc-
ing DPM in deep network to handle with object deformation.
So it has powerful ability to detect nonrigid object and this
has been proved by the experiments.

Table II shows the results of different methods on VOC
2012 test. All the models are trained on VOC 07++12 which
contains the VOC 2007 test, VOC 2007 trainval and VOC 2012
trainval datasets. DSN-Faster-RCNN can outperform Faster-
RCNN by 2.1%. DSN-A-RFCN obtains the best result, and
can outperform SSD, DSSD and RFCN by 3.4%, 2.5% and
1.2% respectively. Table I and Table II clearly demonstrate that
the deformable subnetwork can effectively improve the object
detection performance. Not only can DSN-Faster-RCNN and
DSN-RFCN outperform Faster-RCNN and RFCN, but they
can also outperform other state-of-the-art methods such as
SSD and DSSD.

Table III shows the detection efficiency of DSN and the
related DCN [40]. All the results are acquired on a work-
station with GeForce GTX 1080 GPU and Intel E5-2650 v4



1051-8215 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2019.2905373, IEEE
Transactions on Circuits and Systems for Video Technology

7

TABLE IV: Comprehensive comparisons on PASCAL VOC 2007 test. The training datasets are 07 trainval and 12 trainval.
Net: Backbone network. O: Online hard example mining. M: Multi-scale training

Method Net O M mAP areo bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train Tv

Faster-RCNN [17] VGG16 no no 73.2 76.5 79.0 70.9 65.5 52.1 83.1 86.7 86.4 52.0 81.9 65.7 84.8 84.6 77.5 76.7 38.8 73.6 73.9 83.0 72.6
DSN-Faster-RCNN VGG16 no no 76.7 78.1 83.1 77.9 66.6 62.9 85.5 86.8 87.7 59.6 83.1 71.2 86.2 87.1 77.6 78.4 50.7 77.5 74.5 82.6 75.8

Faster-RCNN [42] Res101 no no 76.4 79.8 80.7 76.2 68.3 55.9 85.1 85.3 87.8 56.7 85.8 69.4 88.3 86.9 80.9 78.4 43.7 80.6 79.8 85.3 72
DSN-Faster-RCNN Res101 no no 79.5 82.7 85.2 79.0 72.2 66.4 88.3 87.7 88.0 64.9 86.1 72.4 88.2 87.9 84.1 79.7 51.4 81.4 79.3 84.8 80.4

DSN-A-Faster-RCNN Res101 no no 79.9 83.7 85.7 79.5 73.2 67.4 88.2 88.2 88.0 65.5 86.6 72.8 88.3 87.4 85.2 80.1 52.4 83.4 78.3 83.3 80.1

Faster-RCNN [46] Res101 yes no 78.9 80.4 85.7 79.8 69.9 60.8 88.3 87.9 89.3 59.7 85.1 76.5 87.1 87.3 82.4 78.8 53.7 80.5 78.7 84.5 80.4
DSN-Faster-RCNN Res101 yes no 80.5 82.7 85.7 80.0 71.3 66.4 88.3 87.9 89.4 63.8 86.1 72.4 88.2 87.9 84.1 79.7 51.4 81.4 79.3 84.8 80.4

RFCN [29] Res101 yes no 79.5 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
DSN-RFCN Res101 yes no 81.3 82.0 87.6 81.5 75.2 70.3 86.5 87.7 88.9 67.1 88.0 74.4 89.5 87.8 85.3 84.6 56.4 83.6 81.6 86.8 80.4
RFCN [29] Res101 yes yes 80.5 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
DSN-RFCN Res101 yes yes 82.0 84.9 88.7 82.2 76.0 71.3 87.5 88.3 89.7 68.1 87.7 73.9 89.2 87.5 86.5 85.4 57.5 84.3 81.7 87.6 82.1

DSN-A-RFCN Res101 yes yes 82.7 86.7 88.8 84.1 75.5 71.7 87.5 88.6 89.3 69.2 88.7 76.1 89.3 88.4 86.9 85.4 58.5 84.7 83.3 88.2 81.5

TABLE III: Test efficiency comparisons. The net.forward time
and runtime are the average processing time of VOC 2007. the
backbone network is ResNet-101.

Method mAP(%) Net.forward (sec) test time (sec)

Faster-RCNN 76.4 0.119 0.135
DSN-Faster-RCNN 79.5 0.126 0.141

DSN-A-Faster-RCNN 79.9 0.141 0.154
DCN-Faster-RCNN 78.7 0.142 0.155

RFCN 80.5 0.078 0.101
DSN-RFCN 82.0 0.086 0.110

DSN-A-RFCN 82.7 0.112 0.121
DCN-RFCN 82.6 0.113 0.121

CPU. The overall runtime includes image resizing, network
forward, and postprocessing(e.g., NMS for object detection).
For both Faster-RCNN and RFCN, it is obvious that DSN
only causes a slightly loss in detection time but achieves
efficient gains in detection accuracy. Compared to DCN, DSN
is superior in terms of detection efficiency. This is reasonable,
as we mentioned above, DCN has two key parts: deformable
convolution and deformable ROI pooling. The deformable
convolution generates an offset which contributes to irregularly
sized convolution for each position of the input. This is
similar with the deformation coefficient part of DSN in terms
of computational cost. However, DCN performs deformable
convolution on three layers (res5a, res5b, res5c), while DSN
only generates deformation coefficients through one layer.
Moreover, DCN exploits bilinear interpolation to handle with
the fractional problem, this is more complex than DSN and
is relatively time consuming. Generating the anchor position
can help increase the detection accuracy, but it is to some
extent time consuming. This is mainly because the deformation
anchor part is on the basis of ROI pooling. Thus, the post
process (two convolutional layers and a fully connected layer)
need act on all the candidate proposals. This is relatively time
consuming and DCN suffers the similar problem, because the
deformable ROI pooling part in DCN is also on the basis
of ROI pooling. Thus, we can see that DSN-A-RFCN has
similar detection efficiency as DCN-RFCN. Although DSN-
RFCN obtains relative lower accuracy than DCN-RFCN and
DSN-A-RFCN, it is much faster. Thus, DSN-RFCN is a trade-
off between the detection accuracy and the detection efficiency.

C. Ablation Study on VOC 2007

To further validate the efficiency of DSN, comprehensive
experiments are performed on VOC 2007.

Comprehensive comparisons: Table IV clearly demon-

strates that the models with DSN always achieve better per-
formance than the corresponding counterparts in all situations.
In terms of Faster-RCNN baseline, regardless of whether the
backbone network is VGG16 or ResNet-101, DSN-Faster-
RCNN always outperform Faster-RCNN by more than 3%.
The deformable subnetwork has no effect on the application
of online hard example mining (OHEM) [46] during train-
ing. After introducing online hard example mining (OHEM),
DSN-Faster-RCNN still outperforms Faster-RCNN by 1.6%.
Moreover, it is obvious that the deformable subnetwork can
obtain better results on most of the 20 categories, especially for
nonrigid object. DSN aims to introduce DPM model to handle
object detection. Thus, it has more powerful capability for
detecting nonrigid objects. The results in Table IV completely
demonstrate this, because the deformable subnetwork always
obtains better results for all nonrigid objects like dog, person
and so on. As for RFCN baseline, DSN-RFCN can achieve
the mAP of 81.3% and outperform RFCN by 1.8%. Multiscale
training can be very helpful to improve the detection accuracy,
and it is introduced to train the DSN. The images are resized
in each training iteration such that their scales are randomly
sampled from 400,500,600,700,800 pixels. However, a single
scale of 600 pixels is still applied at the test stage. Thus,
multiscale training will not add test-time costs. After intro-
ducing multiscale training, DSN-RFCN and DSN-A-RFCN
can achieve obvious gain and outperform RFCN by 1.5% and
2.2% respectively.

TABLE V: Influence of the displacement vector to the de-
formable subnetwork

Method Backbone Net Deformation Cost mAP

Faster-RCNN ResNet-101 0 distance costs 76.4
DSN-Faster-RCNN ResNet-101 4 distance costs 79.5
DSN-Faster-RCNN ResNet-101 8 distance costs 78.7

RFCN ResNet-101 0 distance costs 79
DSN-RFCN ResNet-101 4 distance costs 81.3
DSN-RFCN ResNet-101 8 distance costs 80.6

Visualization analysis: To better understand the deformable
subnetwork, Fig. 7 visualizes the deformation pooling results.
The left column of Fig. 7 illustrates the original images,
the middle column illustrates the position of the maximum
neuron before deformation pooling for each bin, and the
right column illustrates the position of the maximum neuron
after deformation pooling. The red solid circles represent the
maximum neuron for each bin and the ellipses stand for their
effective receptive field. Luo et al. [25] proposed that the



1051-8215 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2019.2905373, IEEE
Transactions on Circuits and Systems for Video Technology

8

TABLE VI: Influence of parameter λ to the deformable subnetwork

Method Net data ohem MutiScale mAP(λ = 0.2) mAP(λ = 0.3) mAP(λ = 0.5) mAP(λ = 0.7) mAP(λ = 1)

DSN-Faster-RCNN VGG16 712 no no 75.75 76.65 76.1 76.06 76.23
DSN-Faster-RCNN ResNet-101 712 no no 78.63 79.50 78.99 78.97 79.09
DSN-Faster-RCNN ResNet-101 712 yes yes 80.17 80.52 80.03 80.36 79.58

DSN-RFCN ResNet-101 712 yes no 80.90 81.30 80.83 80.67 81.20
DSN-RFCN ResNet-101 712 yes yes 81.91 82.00 81.63 81.87 81.76

TABLE VII: Comparisons on COCO dataset using ResNet-101. The COCO-style AP is evaluated @∈ [0.5,0.95]

Method training data test data AP@0.5 AP@0.5:0.9 AP(small) AP(medium) AP(large)

Faster-RCNN [42] train val 48.4 27.2 6.6 28.6 45
DSN-Faster-RCNN train val 48.7 27.9 7.8 30.2 44.3

RFCN [29] train val 48.9 27.5 8.7 30.3 42
DSN-RFCN train val 48.6 28.6 10.3 31.4 40.7

SSD [43] trainval test-dev 45.4 28.0 6.2 28.3 49.6
DSSD [43] trainval test-dev 46.1 28.0 7.4 28.1 47.6

RFCN [29] trainval test-dev 51.9 29.9 10.8 32.8 45.0
DSN-RFCN trainval test-dev 53.8 31.6 12.5 34.9 46.5

DSN-A-RFCN trainval test-dev 54.3 32.1 12.9 35.2 47.1

Fig. 7: Visualization Analysis. Left column: the original im-
ages. Middle column: the position of the maximum neuron
before deformation pooling for each bin. Right column: the
position of the maximum neuron after deformation pooling
for each bin. The ellipses represent the effective receptive field
centered at the maximum neurons

effective receptive field only occupy a small fraction of the
receptive field. So we apply ellipse to approximately represent
the effective field for a neuron. The effective field of the
maximum value for each bin can be seen as different parts
for an object. Fig. 7 clearly illustrates that the deformation
pooling is beneficial for part alignment for each bin. Part
alignment is the kernel idea of DPM and is considered an
effective solution to handle object deformation. Each bin is
responsible for predicting one latent part for an object, and

the latent part is possible to be any position inside a bin. The
deformation pooling is to find the right position for the latent
part taking into account its displacement penalty relative to
the anchor position. Therefore, DSN can effectively handle
modest object deformation.

Influence of the displacement vector: DSN mainly
applies a quadratic function {dx, dy, dx2, dy2} to
represent the displacement vector. However, this
strategy is not fixed. In this paper, we attempted
to extend the size of the displacement vector to 8
{dx, dy, dx2, dy2, logdx, logdy,

√
dx2 + dy2, log

√
dx2 + dy2},

which means that the corresponding deformation coefficient
channel number is extended to 8. Nevertheless, such an
extension is not efficient in terms of improving the detection
performance. In contrast, it causes accuracy losses on
both Faster-RCNN and RFCN frameworks, as illustrated
in Table V. More kinds of displacement may sometimes
introduce redundant information, which is unfavorable for the
model in the training process.

The influence of λ: The parameter λ in the deformation
pooling layer is of great significance. It not only has a influ-
ence on the deformation pooling results, but also determines
the learning rate of the deformation coefficient feature map.
Table VI illustrates the detection results of the deformable
subnetwork under different λ. The results slightly change with
the value of λ under different situations, and the deformable
subnetwork can will always get the best results on λ = 0.3.

D. Experiment on COCO

The deformable subnetwork is also evaluated on the COCO
dataset. The experiments involve an 80k training set, a 40k val
set, and a 20k test-dev set. Table VII shows the specific results.
First, we set the 80k train set as the training data and set 40k
val as the test data. mAP(@0.5:0.9) is applied as the final
evaluation index. DSN-Faster-RCNN and DSN-RFCN outper-
form Faster-RCNN and RFCN by 0.7% and 1.1% respectively.



1051-8215 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2019.2905373, IEEE
Transactions on Circuits and Systems for Video Technology

9

Second, we set both the 80k train set and the 40k val set
as the training data and evaluate the deformable sub-network
on the 20k test-dev set. In this situation, the deformable
subnetwork is also compared with SSD and DSSD, and it
can always get better performance in terms of AP(@0.5:0.9)
as illustrated in Table VII. DSN-RFCN outperforms RFCN,
SSD and DSSD by 1.7%, 3.6% and 3.6% respectively. DSN-
A-RFCN can slightly improve the detection accuracy of DSN-
RFCN by 0.5%. The experiments on COCO datasets can also
demonstrate that the deformable subnetwork is effective. It can
achieve great accuracy gain on Faster-RCNN and RFCN.

V. CONCLUSION

In this paper, we propose a deformable subnetwork which
is consistent with the idea of the DPM model. It aims
to introduce the DPM technique into the deep network to
handle object deformation. Moreover, it is succinct and is very
convenient for being embedded in the popular proposal based
frameworks. The experimental results on both the PASCAL
VOC and COCO datasets show that the deformable subnet-
work can efficiently improve the performance of Faster-RFCN
and RFCN and only consumes little time.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[2] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolu-
tional networks,” in European conference on computer vision. Springer,
2014, pp. 818–833.

[3] J. Wen, Y. Xu, and H. Liu, “Incomplete multiview spectral clustering
with adaptive graph learning,” IEEE transactions on cybernetics, 2018.

[4] J. Wen, X. Fang, J. Cui, L. Fei, K. Yan, Y. Chen, and Y. Xu, “Robust
sparse linear discriminant analysis,” IEEE Transactions on Circuits and
Systems for Video Technology, 2018.

[5] J. Wen, Y. Xu, Z. Li, Z. Ma, and Y. Xu, “Inter-class sparsity based
discriminative least square regression,” Neural Networks, vol. 102, pp.
36–47, 2018.

[6] P. Dollár, R. Appel, S. Belongie, and P. Perona, “Fast feature pyramids
for object detection,” IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, vol. 36, no. 8, pp. 1532–1545, 2014.

[7] A. Jazayeri, H. Cai, J. Y. Zheng, and M. Tuceryan, “Vehicle detection
and tracking in car video based on motion model,” IEEE Transactions
on Intelligent Transportation Systems, vol. 12, no. 2, pp. 583–595, 2011.

[8] X. Zhou, C. Yang, and W. Yu, “Moving object detection by detecting
contiguous outliers in the low-rank representation,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 35, no. 3, pp. 597–
610, 2013.

[9] O. Oreifej, X. Li, and M. Shah, “Simultaneous video stabilization and
moving object detection in turbulence,” IEEE transactions on pattern
analysis and machine intelligence, vol. 35, no. 2, pp. 450–462, 2013.

[10] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“Deeplab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected crfs,” IEEE transactions on
pattern analysis and machine intelligence, vol. 40, no. 4, pp. 834–848,
2018.

[11] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2015, pp. 3431–3440.

[12] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in International Conference on
Medical image computing and computer-assisted intervention. Springer,
2015, pp. 234–241.

[13] H. Noh, S. Hong, and B. Han, “Learning deconvolution network
for semantic segmentation,” in Proceedings of the IEEE international
conference on computer vision, 2015, pp. 1520–1528.

[14] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2014, pp. 580–587.

[15] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE international
conference on computer vision, 2015, pp. 1440–1448.

[16] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in deep
convolutional networks for visual recognition,” in European conference
on computer vision. Springer, 2014, pp. 346–361.

[17] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” in Advances in neural
information processing systems, 2015, pp. 91–99.

[18] T. Mordan, N. Thome, M. Cord, and G. Henaff, “Deformable part-
based fully convolutional network for object detection,” arXiv preprint
arXiv:1707.06175, 2017.

[19] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan,
“Object detection with discriminatively trained part-based models,”
IEEE transactions on pattern analysis and machine intelligence, vol. 32,
no. 9, pp. 1627–1645, 2010.

[20] P.-A. Savalle, S. Tsogkas, G. Papandreou, and I. Kokkinos, “Deformable
part models with cnn features,” in European Conference on Computer
Vision, Parts and Attributes Workshop, 2014.

[21] R. Girshick, F. Iandola, T. Darrell, and J. Malik, “Deformable part
models are convolutional neural networks,” in Proceedings of the IEEE
conference on Computer Vision and Pattern Recognition, 2015, pp. 437–
446.

[22] L. Wan, D. Eigen, and R. Fergus, “End-to-end integration of a convolu-
tion network, deformable parts model and non-maximum suppression,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2015, pp. 851–859.

[23] W. Ouyang and X. Wang, “Joint deep learning for pedestrian detection,”
in Proceedings of the IEEE International Conference on Computer
Vision, 2013, pp. 2056–2063.

[24] W. Ouyang, X. Wang, X. Zeng, S. Qiu, P. Luo, Y. Tian, H. Li, S. Yang,
Z. Wang, C.-C. Loy et al., “Deepid-net: Deformable deep convolutional
neural networks for object detection,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2015, pp.
2403–2412.

[25] W. Luo, Y. Li, R. Urtasun, and R. Zemel, “Understanding the effective
receptive field in deep convolutional neural networks,” in Advances in
neural information processing systems, 2016, pp. 4898–4906.

[26] T.-Y. Lin, P. Dollár, R. B. Girshick, K. He, B. Hariharan, and S. J.
Belongie, “Feature pyramid networks for object detection.” in CVPR,
vol. 1, no. 2, 2017, p. 4.

[27] S. Bell, C. Lawrence Zitnick, K. Bala, and R. Girshick, “Inside-outside
net: Detecting objects in context with skip pooling and recurrent neural
networks,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 2874–2883.

[28] T. Kong, A. Yao, Y. Chen, and F. Sun, “Hypernet: Towards accurate
region proposal generation and joint object detection,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2016, pp. 845–853.

[29] J. Dai, Y. Li, K. He, and J. Sun, “R-fcn: Object detection via region-
based fully convolutional networks,” in Advances in neural information
processing systems, 2016, pp. 379–387.

[30] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in
Computer Vision (ICCV), 2017 IEEE International Conference on.
IEEE, 2017, pp. 2980–2988.

[31] C. Szegedy, A. Toshev, and D. Erhan, “Deep neural networks for object
detection,” in Advances in neural information processing systems, 2013,
pp. 2553–2561.

[32] D. Yoo, S. Park, J.-Y. Lee, A. S. Paek, and I. So Kweon, “Attentionnet:
Aggregating weak directions for accurate object detection,” in Proceed-
ings of the IEEE International Conference on Computer Vision, 2015,
pp. 2659–2667.

[33] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 779–
788.

[34] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.
Berg, “Ssd: Single shot multibox detector,” in European conference on
computer vision. Springer, 2016, pp. 21–37.

[35] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in Computer Vision and Pattern Recognition, 2005. CVPR
2005. IEEE Computer Society Conference on, vol. 1. IEEE, 2005, pp.
886–893.



1051-8215 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2019.2905373, IEEE
Transactions on Circuits and Systems for Video Technology

10

[36] X. Wang, T. X. Han, and S. Yan, “An hog-lbp human detector with
partial occlusion handling,” in Computer Vision, 2009 IEEE 12th Inter-
national Conference on. IEEE, 2009, pp. 32–39.

[37] J. Wen, Z. Zhong, Z. Zhang, L. Fei, Z. Lai, and R. Chen, “Adaptive
locality preserving regression,” IEEE Transactions on Circuits and
Systems for Video Technology, 2018.

[38] M. Jaderberg, K. Simonyan, A. Zisserman et al., “Spatial transformer
networks,” in Advances in neural information processing systems, 2015,
pp. 2017–2025.

[39] C.-H. Lin and S. Lucey, “Inverse compositional spatial transformer
networks,” arXiv preprint arXiv:1612.03897, 2016.

[40] J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, and Y. Wei, “Deformable
convolutional networks,” CoRR, abs/1703.06211, vol. 1, no. 2, p. 3,
2017.

[41] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[42] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[43] C.-Y. Fu, W. Liu, A. Ranga, A. Tyagi, and A. C. Berg, “Dssd:
Deconvolutional single shot detector,” arXiv preprint arXiv:1701.06659,
2017.

[44] M. Everingham, L. V. Gool, C. K. I. Williams, J. Winn, and A. Zisser-
man, “The pascal visual object classes (voc) challenge,” International
Journal of Computer Vision, vol. 88, no. 2, pp. 303–338, 2010.

[45] T. Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollr, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” vol. 8693, pp. 740–755, 2014.

[46] A. Shrivastava, A. Gupta, and R. Girshick, “Training region-based object
detectors with online hard example mining,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2016, pp. 761–
769.


