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Abstract—With the development of deep sequencing, vast 
amounts of RNA-Seq data have been generated. It is crucial 
how to ex-tract and interpret the meaningful information 
contained in deep sequencing data. In this paper, based on 
penalized matrix decomposition (PMD), a novel method, 
named PMDSeq, was proposed to analyze RNA-seq count 
data. Firstly, to obtain the differential expression matrix, the 
matrix of RNA-seq count data was normalized. Secondly, the 
differential expression matrix was decomposed into three factor 
matrices. By imposing appropriate constraint on factor matrices, 
the PMDSeq method can highlight the differentially expressed 
genes. Thirdly, the proposed method can identify the 
differentially expressed genes based on the scaled eigensamples. 
Finally, we used gene ontology tools to check these differentially 
expressed genes. The experimental results on simu-lation and 
three real RNA-seq count data sets demonstrated the 
effectiveness of our method.
Index Terms—Deep sequencing, differential expression analysis,

gene selection, matrix decomposition, RNA-seq data.

I. INTRODUCTION

C HANGES IN transcription are the most important mech-
anisms of differentiation and regulation. Until recently,

the transcriptional activities of a cell are measured by PCR
[1] in the case of few genes, or microarrays [2]–[4] which are 
used to investigate the whole transcriptome of an organism or 
tissue. Both methods require an existing knowledge about the 
organism’s transcripts, either in the form of ESTs or a complete 
reference genome sequence for primer or probe design [5]. 
Moreover, when gene expression levels are very low or high,
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microarrays often lack sensitivity, or result in saturated signal.
RNA-seq can overcome microarray associated problems with
cross hybridization of similar sequences and allow of single
nucleotide resolution, as well as reducing under-representation
or the omission of low abundance sequences [6]. The advent
of new deep sequencing technologies (also called second gen-
eration or next-generation sequencing methods) now allows us
to study the transcriptome in unprecedented detail by directly
sequencing the pool of expressed transcripts with high accuracy
across many orders of expression magnitude [7], [8].
After obtaining tens of millions of short reads from the

transcript population of interest by deep sequencing, RNA-seq
produces digital (count) rather than analog signals by mapping
these reads to a common region of the target genome [9]. For
RNA-seq data, this read count has been found to be (to good
approximation) linearly related to the abundance of the target
transcript [10]. Then, the following issue posed to biologists is
how to find the interesting information from the RNA-seq count
data. The nature of the RNA-seq can result in different samples
with dramatically different total number of sequence reads, so
counts from each experiment should be “normalized” by the
sequencing depth of that experiment before any comparison is
made between experiments [11]–[13].
Problems of differential expression analysis include the iden-

tification of gene expression differences among different tis-
sues, among diseased and healthy tissues, or among different
species. For a given gene, we can consider an observed dif-
ference in read counts significant, when it is greater than what
would be expected just due to natural random variation [14].
To decide whether the differential expression of a gene, the

simplest and most common analysis approach is to compare the
number of reads overlapping the exons in a gene between dif-
ferent biological conditions. The simplest approach solely con-
siders every gene, so it neglects the correlations among genes.
To overcome the drawback, the methods of feature extraction

can be used to obtain the interesting information [15]–[17].
In this paper, the competitive method, PMDSeq, produces
shrunken estimates of differential expression, based on the
penalized matrix decomposition (PMD). PMD has been shown
to be useful for microarray analysis via imposing penalization
on factor matrices [18]. However, for RNA-seq count data,
we are not aware whether the penalization has been carefully
examined or not. An additional danger is posed by sample
outliers, which are more likely to be encountered in large
datasets, and for which the behavior of the existing approaches
is unknown [14]. Similarly, the presence of zero counts (e.g., all
zeros in one of the compared experimental conditions) would
produce missing values or spurious tests.
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To the best of our knowledge, the PMD based method has
never been proposed for analyzing RNA-seq data reported in
the literature. In this article, we describe PMDSeq, an approach
for differential expression analysis of RNA-seq transcriptional
count data. Firstly, to obtain the differential expression matrix
, we normalize the matrix of RNA-seq count data. Then,

PMDSeq assumes that the differential expression matrix can
be decomposed into three factor matrices, i.e., eigensamples
, eigenpatterns and singular value matrix , which is

expressed as follows:

(1)

Generally, the matrices and are dense. That is, the eigen-
samples and eigenpatterns have connection with all genes and
samples. For purposes of differential expression analysis, the
sparse matrices of and are expected, so the penalization
will be imposed on and/or . After the sparse eigensamples
are obtained, we give an identification method of differen-

tially expressed genes based on them. Finally, the differentially
expressed genes are verified by using Gene Ontology tools.
Our work has the following contributions: firstly, it uses, for

the first time, the method of PMD to analyze the RNA-seq count
data. Secondly, it gives a practical method to identify the differ-
entially expressed genes on the basis of sparse eigensamples.
Thirdly, a large number of experiments are provided and the re-
sults demonstrate that our method is effective.
The remainder of this paper is organized as follows:

in Section II, we introduce the methodology of PMDSeq.
Section III gives the experimental results and discussion.
Finally, we provide some concluding remarks in Section IV.

II. METHODOLOGY

In this section, we will provide the method of normalizing
RNA-seq count data, the definition of penalized matrix decom-
position (PMD), biological model of PMD and identification
method of differentially expressed genes.

A. Normalizing RNA-Seq Count Data

Let denote an matrix, which consists of RNA-seq
count data corresponding to genes in samples, in general,

. In the case of RNA-seq count data, for the sample
is the expression level of the number of reads overlap-

ping gene included in the Ensembl annotation of the given
organism’s genome [19]. We assume that ,
where the form of is given by a log-linear model as follows:

(2)

Here, is the sequencing depth for sample , and without
loss of generality, we assume that . captures the
non-differential expression of gene , which can be calculated
by . captures the differential expression of
gene in sample .
In order to obtain , the sequencing depth is estimated by

using the method in [11]. Then, the differential expression
of gene in sample can be calculated as follows:

(3)

After obtaining the element of differential expression ma-
trix , we analyze the matrix by PMD method to identify
the differentially expressed genes.

B. Definition of PMD

This subsection briefly introduces the PMDmethod proposed
by Witten et al. [20]. Without loss of generality, let the row
means of be zero, singular value decomposition (SVD) of
matrix [21] can be formulated as (1). The PMD generalizes
SVD via imposing additional constraints on and/or . The
PMD can be formulated as the following optimization problem:

(4)

where is a column vector of is a column vector of
is a diagonal element of is the Frobenius norm, and
are convex penalty functions that can take a variety of forms

[20].
Let the rank of be and be a diagonal matrix with di-

agonal elements , the following equation can be proved [20]:

(5)

Hence, while , we can see that problem (4) can be
equivalent to the maximization problem:

(6)

and the satisfying (4) is .
The objective function in (6) is bilinear in terms of

and , that is, with fixed, it is linear in terms of , and vice
versa. The optimization problem in (6) can be converted into the
biconvex optimization problem as follows [20]:

(7)

It turns out that the solution to (7) satisfies (6) provided that
is chosen appropriately [20]. Equation (7) is called the rank-1

PMD, and it can be solved by the iterative algorithm.
To obtain multiple components of PMD, we can use defla-

tion method to maximize the criterion in (7) repeatedly, each
time using the residual obtained by subtracting the product of
previous factors from , i.e., .
Without the - and -penalty constraints, it can be shown
that the -factor PMD algorithm leads to the rank- SVD of
. The detailed algorithm of PMD can be found in [20].

C. Biological Model Based on PMD

As mentioned in Section II-B, the PMD algorithm decom-
poses the matrix of differential expression into two base ma-
trices and . and are the left and right singular vectors,
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Fig. 1. Graphical description of PMD of a matrix . and are the left and right singular vectors, respectively. is a singular value matrix.

respectively. Following the convention [22], the left singular
vectors , i.e., the columns of , are known as eigensamples
and the rows of are known as eigengenes. The right singular
vectors , i.e., the columns of are known as eigenpatterns.
Eigensamples, eigengenes, eigenpatterns and other definitions
are shown in Fig. 1.
The goal of differential expression analysis is to highlight

genes that have significantly changed in abundance across ex-
perimental conditions. According to the definition of PMD, the
interest signals in this case are the sample expression profile .
By (4), the PMD equation for is

(8)

which is a linear combination of the eigensamples .
By (4), the PMD equation for the gene transcriptional re-

sponse is

(9)

which is a linear combination of the eigengenes .
Referring to the definition of SVD, we know that the left sin-

gular vectors span the space of the sample profiles and the
right singular vectors span the differentially expressed space of
the genes (see Fig. 1). So the left singular vectors
reflect the intensity of these interest signals. For differential ex-
pression analysis, can be used as the identification basis
of differentially expressed genes.

D. Identification of Differentially Expressed Genes

In order to reconstruct the original matrix, we need the eigen-
samples which are m-dimensional vectors. By choosing
appropriate penalty function , the sparse vectors can
be obtained.
The nonzero entries in can be positive or negative,

which may reflect the up- or down-regulations of gene expres-
sion. Here, our goal is to identify differentially expressed genes,
so we only consider the absolute values of nonzero entries in

. Because eigensamples have different importance [17],
the power of for exponent value are used to
weight the eigensamples, where . According to (8),
the sample can be represented by the scaled eigensamples

. Then the absolute values of entries in the scaled

eigensamples are utilized to identify differentially
expressed genes.
As absolute values of the entries in row of the scaled eigen-

samples somewhat represent the importance of gene ,
the absolute value sum of all the entries in row is viewed as the
evaluating element of gene . In particular, if the dimensionality
of the gene set is , the evaluating vector has entries.
The can be formulated as follows:

(10)

where .

Consequently, we sort the entries in in descending order
and obtain the new evaluating vector . Without loss of gener-
ality, suppose that the first entries in are non-zero, that is,

(11)

The idea of feature selection is as follows: if some elements
of the evaluating vector are zero, the deletion of the associated
input variables does not increase the reconstruction error of the
original matrix for the remaining variables. Even the element is
not zero, if its value is small enough, the deletion of the associ-
ated input variable does not affect very much for the reconstruc-
tion error. That is, the larger the entry in is, the more influence
on the reconstruction error is. So, the genes corresponding to the
first largest entries in can be selected as dif-
ferentially expressed genes.

E. Experimental Scheme of PMDSeq

In order to identify differentially expressed genes, our exper-
imental scheme of PMDSeq is set as follows.
Firstly, to avoid performing log-transform on zeros, we add

1 to all the entries in count data matrix. To lessen the natural
random variation, we filter out the genes that have too small
counts in the count matrix by comparing the row mean value in
count data matrix with a threshold.
Secondly, to obtain the differential expression matrix , the

count matrix is normalized according to (3). Then, the rows
of matrix are centered.
Thirdly, the real rank of differential expression matrix is

identified using the method in the Section III-B2.
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Fourthly, the matrix is decomposed into three factor ma-
trices: and by using PMD method.
Fifthly, differentially expressed genes are identified on the

basis of the evaluating vector in (11).
Finally, these differentially expressed genes are analyzed by

using gene ontology tools.

III. RESULTS AND DISCUSSION

This section shows the experimental results on simulation and
RNA-seq count data. On RNA-seq data, the differentially ex-
pressed genes identified by PMDSeqwill be verified using Gene
Ontology (GO) tools.

A. Results on Simulation Data

1) Simulation Data: We simulate data with
genes (roughly equal to the number of genes in the human
genome) and samples. To generate the mean counts
of the samples , we let

, which gives us between 1 million and 8 mil-
lion total counts per sample. To generate the gene expression
profile which is analogous to a real RNA-seq dataset, we
let , where are
the counts of all the genes in the Wang dataset [23]. In the
two-class case, we assign half of the samples to each class. We
let , where is the label of each class. For 90%
genes of non-differential expression, , and 7% genes are
up-regulated with , and 3% genes are down-regulated
with . The indices of differentially expressed genes
are assigned by randomizing non-negative integer numbers.
Finally, the simulation data are generated by using (2).
2) Simulation Results: In this paper, differentially expressed

genes are identified by the scaled eigensamples , so we
only impose constraint on , i.e., , and don’t impose
constraint on . According to the algorithm in [20], generally
speaking, the ranges of should be restricted in . Let

should be restricted to the ranges .
Here, we test in the ranges and in the ranges

. To verify the performance of PMDSeq, we iterate 30
times to randomly generate the simulation data. Table I lists the
identification accuracies of our method on the simulation data
with different and in terms of a percentage. As listed in
Table I, while and , the identification accu-
racies can reach above 95%, so in the following experiments on
RNA-seq data, we will set and .

B. Results on RNA-Seq Data

1) Data Source: Three publicly available RNA-seq datasets
are used: Wang [23], Sultan [24] and Blekhman [25]. All se-
quence read data can be downloaded from the GEO database
at NCBI under accession numbers GSE12946, GSE11892 and
GSE17274 [26]. An overview of the RNA-seq data sets can be
found in Table II. Here, we download the RNA-seq count data
from http://bowtie-bio.sf.net/recount [27].
The Wang data set contains 22 samples; here we only use 9

samples which are derived from the following tissues: adipose,
brain, breast, colon, heart, liver, lymph node, skeletal muscle
and testes.

TABLE I
THE TEST ACCURACY WITH DIFFERENT AND

TABLE II
AN OVERVIEW OF THE RNA-SEQ DATA SETS

The Sultan data set consists of 4 samples which are extracted
from Ramos B cells and human embryonic kidney (HEK) 293T
tissues.
The Blekhman data set contains 6 samples which are used

to study transcript levels in humans, chimpanzees and rhesus
macaques, using liver RNA samples from male and female de-
rived from each species.
2) Parameters Selection: The number of components, i.e.,

the real rank of differential expression matrix , is the most
important parameter of PMDSeq. Following the rules for de-
ciding how many principal components of PCA, our strategy is
given as follows. Firstly, the singular values (SVs) are obtained
by SVD of the matrix . Secondly, the differences among the
SVs, i.e., , are cal-
culated. Then, the number of the components is decided against
the following criterion: when the shows the first in-
flection point, is selected as the real rank of the matrix .
Table III lists the real ranks of the three differential expression
matrices selected by this strategy.
In this paper, differentially expressed genes are identified ac-

cording to scaled eigensamples , so we only impose con-
straint on , i.e., , and don’t impose constraint on
. According to Section III-A2, we let and .
For purposes of simplifying comparison, we roughly select 1000
genes as differentially expressed ones.
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TABLE III
THE REAL RANKS OF THE THREE DIFFERENTIAL EXPRESSION MATRICES

TABLE IV
THE GO TERMS ASSOCIATED WITH THE FUNDAMENTAL DIFFERENCES ON

WANG DATA SET

3) Experimental Results: In this subsection, we will show
the experimental results on the real RNA-seq data sets.

a) Experiments on Wang Data Set: On Wang data set,
our method is firstly used to identify differentially expressed
genes. Then the genes of differential expression are input into
Gene Ontology (GO) tool: ToppGene Suite [28], whose P-value
cutoff is set to 0.01, other parameters are set to default values.
The results of gene list enrichment analysis are given in sup-
plementary 1 (Supp1.xls). Wang et al. argued that differentially
expressed genes were enriched for GO functional categories
including “developmental processes,” “cell communication,”
“signal transduction,” and “regulation of metabolism” that were
likely to contribute to fundamental differences in the biology
of different human tissues [23]. Here, the terms associated with
the above categories are listed in Table IV. From Table IV, we
can see that these categories are included in our GO results with
very lower P-values. For example, the P-value of “multicellular
organismal signaling” is . As shown in Table IV,
our method can identify the differentially expressed genes
closely related to the fundamental differences.
Table V shows the GO terms of coexpression associated with

human different tissues. As shown in Table V, with very lower
P-value, our method can identify the differentially expressed
genes of specific-tissue, associated with brain, liver, breast,
heart and colon. These GO results are consistent with the exper-
imental tissues of Wang data set. Furthermore, the enrichment
term of “Mesenchymal Stem Cells Yamamoto 08 1252 genes”
has the lowest P-value , which may reflect the
specific-tissue genes’ affinity with Stem-Cell ones.

b) Experiments on Sultan Data Set: Sultan data set only
includes 4 samples derived from a human embryonic kidney
and a B cell line. On Sultan data set, our method is firstly used to
identify differentially expressed genes. Then the differentially
expressed genes are input into ToppGene Suite [28], whose
P-value cutoff is set to 0.01, other parameters are set to default
values. The results of gene enrichment analysis are given in

TABLE V
THE COEXPRESSION TERMS CLOSELY RELATED TO DIFFERENT TISSUES ON

WANG DATA SET

TABLE VI
THE GO TERMS CLOSELY RELATED TO HEK AND B CELL LINE ON SULTAN

DATA SET

supplementary 2 (Supp2.xls). Table VI lists the significant
terms.
From Table VI, we can see that many GO terms can

be identified with very lower P-value, such as “DNA
binding,” “regulation of developmental process,” “regula-
tion of cell differentiation,” and so on. In addition, another
three terms have considerable P-values, which are “Human
StemCell_Cai06_1370genes,” “Genes up-regulated in the
normal-like subtype of breast cancer,” and “Human Sar-
coma_Missiaglia10_176genes.”
Finally, the GO enrichment has many terms about disease,

for example, breast cancer, sarcoma, AIDS, leukemia, prostate
cancer, etc. It is well known lymph nodes are garrisons of B,
T and other immune cells. They act as filters or traps for for-
eign particles and are important in the proper functioning of the
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TABLE VII
THE GO TERMS CLOSELY RELATED TO CONSERVED SEXUALLY DIMORPHIC

GENE REGULATION ON BLEKHMAN DATA SET

immune system. So, many differentially expressed genes asso-
ciated with tumor or disease are included in the GO terms.

c) Experiments on Blekhman Data Set: On Blekhman data
set, our method is firstly used to identify differentially expressed
genes. Then the differentially expressed genes are input into
ToppGene Suite [28], whose P-value cutoff is set to 0.01, other
parameters are set to default values. The results of gene enrich-
ment analysis are given in supplementary 3 (Supp3.xls). Con-
sequently, we focus on enriched categories at the top of ranked
lists and only report qualitative results that are consistent with
data from [25], which are listed in Table VII.
In Table VII, the two GO terms of the smallest P-value are

“Genes up-regulated in pulpal tissue extracted from carious
teeth” and “Genes down-regulated in the luminal B subtype of
breast cancer.” As shown in Table VII, many GO terms are rel-
ative to metabolism and catabolism of lipids, such as “response
to lipid,” etc. In addition, as Blekhman et al. argued in [25],
some enrichments of genes involved in “immune response,” “
defense response,” and so on. From Table VII, we can draw
a conclusion that our method can identify the differentially
expressed genes with expression patterns that are consistent
with conserved sexually dimorphic gene regulation.

IV. CONCLUSION

In this paper, we proposed a novel method, PMDSeq, to iden-
tify the differentially expressed genes on RNA-seq count data.
In our method, we firstly filter out the genes that have too small
counts in the count matrix. Then to obtain the differential ex-
pression matrix, the matrix of count data was normalized. The
differential expression matrix was decomposed into three factor
matrices by PMD method. With the sparse constraint on the de-
composition factor, we can identify the genes associated with
the special biological progress or condition. Finally, these genes
were analyzed by using the gene ontology tool. The experi-
mental results on simulation and real RNA-seq data sets demon-
strated that our method can effectively highlight the differen-

tially expressed genes, which verified that PMDSeq was a 
powerful tool for analysis of differential expression.
In future, we will focus on the biological interpretation of

these differentially expressed genes.
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