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a b s t r a c t

Bagging is a simple and effective technique for generating an ensemble of classifiers. It is found there

are a lot of redundant base classifiers in the original Bagging. We design a pruning approach to bagging

for improving its generalization power. The proposed technique introduces the margin distribution

based classification loss as the optimization objective and minimizes the loss on training samples,

which leads to an optimal margin distribution. Meanwhile, in order to derive a sparse ensemble, l1
regularization is introduced to control the size of ensembles. By this way, we can obtain a sparse weight

vector of base classifiers. Then we rank the base classifiers with respect to their weights and combine

the base classifiers with large weights. We call this technique MArgin Distribution base Bagging

pruning (MAD-Bagging). Simple voting and weighted voting are tried to combine the outputs of

selected base classifiers. The performance of this pruned ensemble is evaluated with several UCI

benchmark tasks, where base classifiers are trained with SVM, CART, and the nearest neighbor (1NN)

rule, respectively. The results show that margin distribution based CART pruned Bagging can

significantly improve classification accuracies. However, SVM and 1NN pruned Bagging improve little

compared with single classifiers.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

Bagging is one of the most popular methods in constructing
classifier ensembles [1]. The technique trains a collection of base
classifiers on bootstrap replicates of the training set and combines
the outputs of base classifiers with simple voting. The effective-
ness of the technique has been empirically verified in many
pattern recognition tasks. In general, the error of Bagging
becomes smaller as base classifiers aggregated in the ensemble
increase [2]. Eventually, the error asymptotically approaches a
constant level with a large ensemble size.

In order to get good performance, many base classifiers are
usually required in Bagging. Much computational resources are
occupied. Both space complexity and time complexity are very
high. In fact, majority of base classifiers can be removed from the
original ensemble, in the meanwhile the classification perfor-
mance will not drop. Sparse ensembles were proposed to build
such multiple classifier systems [3]. Sparse ensembles mean
combining the outputs of base classifiers with a sparse weight
vector, where each classifier is assigned a weight value, but only
several weights are nonzero. The base classifiers with zero
weights are not used in the final decision making. Thus most of

the base classifiers are removed from the original ensembles. This
technique is also called pruned ensembles or selective ensembles
[4–7].

Tamon et al. proved that the problem of selecting the best
combination of classifiers from an ensemble was NP-complete [8].
Since some optimization methods, such as GA [9] and semi-
definite programming [10], have been introduced for selecting
base classifiers with heuristic information. Some suboptimal
ensemble pruning methods based on ordered aggregation were
proposed, including reduce-error (RE) pruning [11], margin dis-
tance minimization (MDM) [4], orientation ordering [5], boosting-
based ordering [7], expectation propagation [12], and so on. And
the LP-Adaboost method in Yao and Liu [13], the GA-based
method in [14], and the WV-LP method in [3] can be considered
as sparse ensembles.

In the last decade, it was shown that the generalization perfor-
mance of a classifier is related with the margin distribution on
training samples and the generalization error of a classifier can be
reduced by explicitly optimizing the margin distribution [15,16].
Lodhi et al. designed a boosting method to optimize the margin
distribution based generalization bound [17]. This technique pro-
duced considerable improvements over AdaBoost. In 2010, Shen and
Li proposed a margin-distribution boosting algorithm [18], which
directly optimizes the margin distribution: maximizing the average
margin and at the same time minimizing the variance of the margin
distribution. This technique is built on the assumption that margins
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of samples satisfy Gaussian distribution. However, this assumption
does not hold in real-world applications.

The current ensemble pruning methods for Bagging do not
consider the margin distribution of ensembles. In this paper, we
propose a new sparse ensemble method for Bagging pruning, named
as MArgin Distribution based Bagging (MAD-Bagging) pruning. This
method is similar to the WV-LP method proposed in [3]. Both of
them are focused on the training error of ensembles, instead of the
classification performance of base classifiers. Here, we introduce a
regularized classification loss function, where the margins of sam-
ples in an ensemble is used to compute the classification loss and l1
regularization is added to the optimization objective for obtaining a
sparse weight vector of base classifiers. However, WV-LP uses a
weighted combination method to compute the training error and
the continuous outputs of individual classifier are required. What is
more, WV-LP used multiple feature subsets to generate the ensem-
bles of KNN classifiers. In our work, Bagging is used to build multiple
classifiers. We utilize SVM, CART, and 1NN algorithms in training
base classifiers. Simple voting [19] and weighted voting [20] are
tried in combining the predictions of the selected base classifiers.
The objective is to find an optimal weight training technique and an
effective approach to exploiting the trained weights.

The rest of this paper is organized as follows. In Section 2, we
describe the original Bagging method and some current ensemble
pruning techniques. Section 3 presents the framework of MAD-
Bagging, including loss functions, the solution to the optimization
objective, and the combination rule with the weights. Experi-
mental analysis is presented in Section 4. Finally, conclusions are
listed in Section 5.

2. Bagging and related research

Bagging is a popular ensemble method introduced by Breiman
in 1996 [1]. The idea of Bagging is simple and appealing: the
ensemble consists of base classifiers built on bootstrap replicates
of the training set. The outputs of base classifiers are combined
with the technique of the plurality voting.

Assume we have a training set X ¼ fðxi,yiÞ9xiARNf gNi ¼ 1 with
yiAf1;2, . . . ,cg. Nf is the dimensionality of the sample space, c is
the number of classes, and N is the number of training samples.
More precisely, the Bagging algorithm can be described as follows.

1. Generate T bootstrap samples of N points fXjg
T
j ¼ 1 from X with

probability weights p(i). In this paper, we use pðiÞ ¼ 1=N.
2. For j¼ 1, . . . ,T, train a base classifier hj on the bootstrap

sample Xj.
3. Classify new points using the simple majority vote of the

ensemble

ŷðxÞ ¼ max
m ¼ 1;2,���c

XT

j ¼ 1

wjhjmðxÞ, ð1Þ

where wj ¼ 1, and hjmðxÞ is the output of the j-th classifier for
sample x associated with class m.

We can see that the original Bagging method combines the
outputs of all classifiers. And the diversity of base classifiers in
Bagging is generated by using different training data with the
bootstrap method. Bootstrap is a technique for random sampling
with replacement. So some objects could be represented in a new
set once, twice or even more times and some objects may not be
represented at all. Taking a bootstrap replicate of the training
sample set, one can avoid or get less ‘outliers’ in the bootstrap
training set. By this way the bootstrap estimates of the data
distribution parameters are robust [21].

However, Bagging is not always effective. Breiman provided a
qualitative description of the learners with which Bagging can be
expected to work [1]: they have to be unstable, in the sense that
small variations in the training set can lead to produce signifi-
cantly different models. Decision trees and neural networks are
examples of such learners. In contrast, the nearest-neighbor
method is stable. Bagging is of little value when applied to stable
classifiers. Domingos thought that Bagging worked because it
effectively shifted the prior to a more appropriate region of model
space [22]. The effectiveness of Bagging was also investigated
by Tibshirani [23], and Wolpert and Macready [24], with the
bias–variance decomposition to estimate the generalization error.

As to the size of Bagging, only some empirical guidelines have
been given. It is well known that the misclassification rate of Bagging
tends to an asymptotic value as the ensemble size increases. In 2008,
Fumera, Roli and Serrau offered an analytical model of Bagging
misclassification probability as a function of the ensemble size and
showed preserving a few base classifiers is enough for obtaining
good performance [25]. Several other researchers also proposed
methods to select base classifiers generated by Bagging, with the
aim of improving the ensemble accuracy and reducing its size.

There are six main algorithms for Bagging pruning. In 1997,
Margineantu and Dietterich introduced some techniques for
ensemble pruning [11], where reduce-error (RE) pruning was
considered as a sophisticated algorithm. They proposed a back-
fitting search strategy, which starts with the best base classifier,
and then adds a base classifier such that the voted combination
has the lowest error. These two steps are the same as the greedy
search. After that, backfitting revisits the selected classifiers one
by one and replaces each selected classifier with another candi-
date for obtaining the best classification performance. Obviously,
the time complexity of backfitting is very high.

In 2002, Zhou et al. derived a conclusion that selective
ensemble is better than combining all base classifiers and devel-
oped a genetic algorithm based selectors GASEN, where the
estimated error is used as the optimization objective [9].

In 2004, Martinez-Muoz and Suarez proposed a margin dis-
tance minimization algorithm (MDM) [4], where a matrix is
defined. The element eij in the matrix is 1 or �1. If sample xj is
correctly classified by base classifier hi, eij ¼ 1; otherwise, eij ¼�1.
In this case, the mean of the jth column is the classification margin
of sample xj. Obviously, the margin takes values in [�1, 1]. If the
samples are correctly classified by the ensemble, the margin is larger
than zero. If we view the vector of sample margins as a point in N-
dimensional space, then the samples are correctly classified when the
corresponding points are located in the first quadrant. With this
observation, the authors set a point in the first quadrant as an
objective point. They selected the base classifier minimizing the
distance between the objective point and the margin vectors in
each step.

In 2006, Martı́nez-Muñoz and Suárez introduced a quantity to
measure how a classifier maximizes the alignment of a signature
vector of the ensemble with a direction that corresponds to
perfect classification performance on the training set. Then they
used this quantity to sort the base classifiers [5]. In 2007, boosting
was introduced to compute ordering of base classifiers [7]. In
2009, Chen et al. designed an expectation propagation algorithm
to approximate the posterior estimation of the weight vector and
get a sparse weight vector [12].

3. Weight learning based on margin distribution

Much work on learning machines has been devoted to study
how to control the generalization performance these years.
Schapire et al. [26] gave an upper bound for the generalization
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error of a voting classifier. This bound does not depend on how
many classifiers are combined, but depends on the margin
distribution over the training set, the number of the training
examples and the VC dimension of base classifiers. This theory
indicates that good margin distribution is the key to the success of
AdaBoost. Some other results from the theoretical analysis also
suggest that good margin distributions lead to good general-
ization performances [15,17,27–29].

Provided we have a training sample set X ¼ fðxi,yiÞg
N
i ¼ 1 with

yiAf�1;1g for a binary classification task. Here, a base classifier hj

is a mapping from X to f�1;1g. The voted ensemble f(x) is of the
form

f ðxÞ ¼
XT

j ¼ 1

wjhjðxÞ

XT

j ¼ 1

wj ¼ 1, wjZ0, j¼ 1;2, . . . ,T , ð2Þ

where wj is the weight assigned to the base classifier hj and T is
the number of base classifiers in the system. An error occurs to
sample xi if and only if the output of voting classifier and the label
yi do not have the same sign, i.e.

yif ðxiÞr0: ð3Þ

Since hjAf�1;1g,

yif ðxiÞ ¼
X

i:yi ¼ hiðxiÞ

wi�
X

i:yi ahiðxiÞ

wi:

Hence yif ðxiÞ is the difference between the weights assigned to the
correct label and the weights assigned to the wrong label. yif ðxiÞ is
considered as the sample margin ri with respect to the voting
classifier f [26]. Obviously, ri takes values in the interval [�1,1].
We have

ri ¼ yif ðxiÞ ¼ yi

XT

j ¼ 1

wjhjðxiÞ ¼
XT

j ¼ 1

wjyihjðxiÞ: ð4Þ

With this definition, we can see if wj is large, the base classifier
hj contributes much to the margin of samples. So the classifiers
with larger weights play a more important role than others. We
should select the base classifiers with large weights in selective
ensembles.

Note that yihjðxiÞAf�1;1g can reflect whether xi is correctly
classified by classifier hj. If yihjðxiÞ ¼ 1 xi is correctly classified
while yihjðxiÞ ¼�1 xi is misclassified. yihjðxiÞ is the margin with
respect to the base classifier dij. We obtain that the margin r on

the whole training set is

r¼

r1

r2

^

rN

2
66664

3
77775
¼

d11,d12, . . . ,d1T

d21,d22, . . . ,d2T

^, ^,&,^

dN1,dN2, . . . ,dNT

2
66664

3
77775

w1

w2

^

wT

2
66664

3
77775

¼ ½D1,D2, . . . ,Dj, . . . ,DT �w¼Dw ð5Þ

where Dj is the vector of margins with respect to the base
classifier hj on the whole training set.

As to multi-class tasks, yAf1;2, . . . ,cg. dij cannot be computed
through yihjðxiÞ directly. We define that dij ¼ 1 if xi is correctly
classified by the individual classifier hj; otherwise dij ¼�1.

In order to obtain better generalization ability, the above
voting model f(x) should minimize the loss criterion

P
iCðyif ðxiÞÞ

which is a function of the margin distribution ri ¼ yif ðxiÞ of this
model on the data. Here, we use the squared hinge loss
X

i

Cðyif ðxiÞÞ ¼
X

i

ð1�yif ðxiÞÞ
2
¼
X

i

ð1�riÞ
2
¼ J1�DwJ2: ð6Þ

The above optimization cannot output sparse weight vectors.
The regularization technique can be utilized to control the
complexity of the model f(x). Thus, the quantity actually mini-
mized on the data is a regularized version of the loss function:

wðlÞ ¼min
w

X
i

Cðyif ðxiÞÞþlJwJp
p

¼min
w

J1�DwJ2
þlJwJp

p

s:t: wjZ0 ð7Þ

BootstrapTraining
set

.

.

.

X1

XT

X2

Base classifier 1

Base classifier 2
.
.
.

Base classifier T

.

.

.

. . 0, 1, 2, ,js t w j T
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1min ||1 || || ||

w
Dw w
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ŷ
Former S(1 )S T

Fig. 1. Framework of MAD-Bagging.

Table 1
Data sets.

Number Data Samples Features Classes

1 Credit 690 15 2

2 German 1000 20 2

3 Glass 214 9 6

4 Heart 270 13 2

5 Hepatitis 155 19 2

6 Horse 368 22 2

7 Iono 351 34 2

8 Sonar 208 60 2

9 Votes 435 16 2

10 WDBC 569 31 2

11 Wine 178 13 3

12 WPBC 198 33 2
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where the second term penalizes the lp norm of the coefficient vector
w (pZ1, and in practice usually pAf1;2g), and lZ0 is a tuning
regularization parameter. In order to get a sparse solution, we set
p¼1 [18].

The above optimization task is an l1 regularized least square
problems (l1-LS) [30]. Here, all weights should be no smaller than
zero. The l1-LS problem with nonnegativity constraints can be
rewritten as

min JAx�yJ2
þl

Xn

i ¼ 1

xi

s:t: xiZ0, i¼ 1;2, . . . ,n: ð8Þ

where the variable xARn and the data are AARm�n and yARm.
Let y¼1 and A¼D in Eq. (8), it is easy to see Eq. (8) is equal to

Eq. (7) when p¼1. Thus, we can obtain the solutions of this
optimization task with some existing algorithms [31].

When the weights of base classifiers are obtained, we can
rank the base classifiers in the descending order with respect
to their weights. As pointed out before, the base classifiers
with larger weights contribute more to the margin than other

Table 2
Number of selected base classifiers in different ensembles.

Data SVM CART 1NN

RE MDM SV WV RE MDM SV WV RE MDM SV WV

Credit 7.0 7.4 2.2 3.1 11.6 11.3 13.3 10.3 3.9 4.3 3.8 3.6

German 15.9 23.0 12.5 7.3 29.7 64.1 20.8 21.0 5.1 3.9 4.8 7.3

Glass 17.0 1.9 6.8 2.8 13.6 9.8 47.5 4.0 3.0 2.5 3.3 3.9

Heart 3.8 3.0 4.0 2.4 13.1 24.6 10.7 5.6 2.8 2.7 2.7 2.4

Hepatitis 20.7 15.9 20.9 1.9 2.2 10.1 4.6 3.3 2.0 2.6 1.5 1.8

Horse 3.1 3.5 16.1 4.2 2.2 14.2 8.3 2.4 2.3 1.8 1.8 1.6

Iono 3.5 3.6 1.8 1.8 14.1 9.5 16.8 3.3 1.6 3.7 1.5 2.6

Sonar 1.9 11.0 4.9 2.3 35.8 32.0 18.7 7.6 4.9 2.8 3.4 3.2

Votes 2.3 2.3 2.3 1.8 12.6 2.0 2.7 4.5 3.0 6.1 4.3 3.4

WDBC 16.7 9.5 10.3 1.4 29.8 11.9 11.8 7.2 2.9 2.5 2.0 4.6

Wine 2.3 1.5 10.6 1.0 15.6 6.0 17.4 4.6 1.0 1.0 1.5 1.5

WPBC 1.0 1.0 1.0 1.0 40.8 46.3 28.0 11.1 4.1 3.6 5.7 7.3

Ave. 7.9 7.0 7.8 2.58 18.4 20.1 16.7 7.1 3.1 3.1 3.0 3.6

Table 3
Classification performance with SVM and its ensembles.

Data SingleSVM Bagging RE MDM MAD-SV(l) MAD-WV(l)

Credit 82.46710.67 82.17710.88 84.64710.16 85.2178.75 85.5178.32(10) 84.9377.95(10)

German 74.0073.40 74.2073.22 75.9073.41 76.7073.33 77.0073.13(10) 75.7073.37(10)

Glass 63.83714.81 64.22713.45 70.19711.21 68.83711.28 70.74710.30(10) 68.37710.90(10)

Heart 82.9676.10 82.9676.10 85.1975.52 84.8175.90 85.9375.47(0.01) 84.4473.83(10)

Hepatitis 83.8373.34 84.3373.87 89.0076.30 89.6776.37 89.0077.04(1) 87.3377.98(10)

Horse 90.4973.86 90.4974.08 92.6873.36 92.9573.40 92.9473.64(50) 92.3973.78(1)

Iono 84.9977.05 85.2977.11 88.6875.18 89.2374.69 89.5475.04(1) 89.2475.01(10)

Sonar 69.6979.23 70.14710.13 83.2178.59 82.6976.51 83.6977.85(50) 82.2678.69(50)

Votes 96.2673.63 96.0373.77 97.4572.33 96.7572.55 97.2172.68(1) 96.7572.53(1)

WDBC 95.2672.75 95.2672.75 95.6172.38 95.9672.49 96.1472.16(10) 95.7972.21(1)

Wine 98.3372.68 98.3372.68 98.8972.34 98.8972.34 99.4471.76(10) 98.3372.68(0.01)

WPBC 76.3273.04 76.3273.04 76.3273.04 76.3273.04 76.3273.04(0.01) 76.3273.04(0.01)

Ave. 83.20 83.31 86.48 86.50 86.95 85.99

Table 4
Classification performance with 1NN and its ensembles.

Data Single1NN Bagging RE MDM MAD-SV(l) MAD-WV(l)

Credit 79.10711.62 79.10711.62 82.59710.68 81.58710.86 82.16711.41(0.01) 81.73711.06(0.01)

German 68.8073.22 68.8073.22 72.4073.10 71.4072.22 72.5072.22(1) 71.1073.07(10)

Glass 65.42712.85 65.42712.85 70.12712.95 72.57712.11 70.55714.37(50) 69.64713.53(50)

Heart 76.6779.41 76.6779.41 80.37710.04 81.48710.90 81.1177.08(100) 78.8978.56(100)

Hepatitis 82.5077.59 82.5077.59 85.6778.61 86.1776.28 85.1778.62(10) 85.1778.62(10)

Horse 87.2674.22 87.2674.22 88.8672.37 90.2374.01 90.5174.40(50) 89.4374.76(50)

Iono 86.4074.93 86.4074.93 88.3774.78 88.4075.70 88.0975.65(100) 88.0975.35(1)

Sonar 87.0577.56 87.0577.56 88.9875.10 89.0076.36 90.4075.10(50) 88.9576.89(0.01)

Votes 93.3275.54 93.5374.63 94.9074.00 95.8275.36 95.6073.23(50) 94.9074.00(100)

WDBC 95.4473.32 95.4473.32 95.9673.09 96.6772.39 96.8472.72(1) 96.6772.67(1)

Wine 94.8675.07 94.8675.07 96.6073.93 95.4274.63 96.6072.94(10) 96.6072.94(10)

WPBC 70.6876.67 70.6876.67 76.2974.59 74.2476.85 75.7978.37(0.01) 75.7979.31(0.01)

Ave. 82.29 82.31 85.09 85.25 85.44 84.75
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classifiers, we should first consider the base classifiers with large
weights. So the classifier with the largest weight is first selected,
then classifiers are sequentially included in the ensemble one by

one until the accuracy of combined voting does not increase. The
simple plurality voting and weighted voting methods are used to
combine the predictions of classifiers.

Table 5
Classification performance with CART and its ensembles.

Data SingleCART Bagging RE MDM MAD-SV(l) MAD-WV(l)

Credit 82.88714.92 84.04715.68 86.95714.14 87.66714.00 88.11712.12(50) 87.09713.50(0.01)

German 70.8073.49 76.4073.27 79.2073.94 79.7073.20 80.1074.70(50) 78.4074.60(50)

Glass 43.62715.68 49.80712.40 57.9577.96 56.9079.21 57.81711.64(1) 51.57714.99(10)

Heart 74.0776.30 82.2279.53 85.1977.41 85.9379.69 86.3078.56(10) 85.1979.88(0.01)

Hepatitis 91.6776.14 92.3378.02 95.0075.72 95.5075.44 96.8374.61(10) 95.5075.45(10)

Horse 95.6572.61 96.7371.73 97.8271.74 98.3671.92 98.3671.92(0.01) 97.8271.74(1.00)

Iono 86.4377.22 91.2274.85 95.7473.87 95.4673.04 94.6173.87(100) 93.7875.42(50)

Sonar 73.02714.91 80.2978.05 85.07710.25 86.0776.58 88.9076.10(1.00) 86.98711.13(50)

Votes 96.5073.04 96.9672.81 97.8972.39 97.8872.91 98.1272.23(0.01) 97.8972.13(0.01)

WDBC 90.5074.55 95.6073.64 96.6672.68 97.5471.89 98.0771.54(10) 96.8372.16(50)

Wine 89.8676.35 96.6072.94 97.1573.01 98.3372.68 98.2672.80(0.01) 97.1573.01(0.01)

WPBC 70.6377.54 78.2176.69 81.2476.62 82.3474.23 84.3974.85(1) 80.3273.62(0.01)

Ave. 80.47 85.03 87.99 88.47 89.16 87.38
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Fig. 2. Relation of accuracy and weights of Credit dataset with l¼ 0:001.
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The whole framework of MAD-Bagging is described in Fig. 1.
There are four main steps in the framework:

1. Obtaining the bootstrap sample Xj from training set.
2. Computing the margin vector Dj with respect to each base

classifier on the whole Xj.
3. Computing the weight vector w with l1-LS optimal methods.
4. Combining the sorted base classifiers one by one to give the

prediction of test data.

4. Experimental analysis

In order to test the performance of MAD-Bagging, experiments
on 12 UCI data sets [32] are performed. The information about
these data sets is listed in Table 1. These data sets are normalized
in advance so that continuous features are valued in the interval
[0,1]. In the experiment, 10-fold cross validation method is used
to compute the performance of each dataset. First, the samples in
each class are divided into 10 subsets randomly. Second, we carry
out 10 trials for each dataset. In every trial, 9 subsets of each class

are composed as training dataset and the left one is used
as test dataset. For a given parameter l, we can construct an
optimization problem as Formulation (7) according to margin
distribution and use l1-LS algorithm to obtain the weights of each
base classifier wj. We sort the base classifier according to the
weights in the descending order. And the sizes of ensembles
producing the best accuracy are output. Third, the mean accuracy
and mean size of ensembles of the 10 trials are computed. Fourth,
we repeat the above process for different values of l. Finally, the
results presented in the tables are the best average accuracies
among all l and size of ensembles according to the accuracy.

In order to compare with the proposed technique, we perform
the same processing to RE and MDM. We sort the base classifier
according to the accuracies of base classifiers in RE and distance
to the optimal solution in MDM, respectively. Then we add the
first k classifiers one by one and use the test set to estimate the
classification performance. We output the best accuracies of the
nested classification systems.

In this work, we try both stable (1NN and SVM) and unstable
CART learners in training base classifiers. We discuss the
influence of these algorithms on the final performance of
MAD-Bagging. SVM is implemented by LIBSVM software [33]
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Fig. 3. Relation of accuracy and weights of Sonar dataset with l¼ 0:01.

Z. Xie et al. / Neurocomputing 85 (2012) 11–1916



Author's personal copy

with default parameters. We use the functions of decision tree
method in matlab 7.1 with default parameters to model CART
classifiers, and 1NN classifier employs the Euclidean distance.

We compare the performance of MAD-Bagging using simple
voting (MAD-SV), and MAD-Bagging using weighted voting (MAD-
WV) with single classifiers, Bagging, RE, and MDM. For all ensembles
in our experiments, we train 200 base classifiers at first. For pruned
ensemble, the sizes of ensembles producing the best accuracy are
reported. The results are shown in Tables 2–5, respectively.

From Table 2, we can see that the ensemble size of four pruned
ensemble methods is much smaller than 200. Most base classi-
fiers are removed from the ensembles. These methods only utilize
a small part of classifiers in the ensemble. For SVM and CART
classifiers, the ensembles of MAD-WV method are the smallest,
and the sizes of the other three methods are nearly the same. For
1NN classifiers, the ensemble size of the four pruned ensemble
methods is much smaller. We also can see that SVM and 1NN
based MAD-Bagging consist of much fewer base classifiers than
CART based MAD-Bagging. This result suggests ensemble of many
stable classifiers is not useful for improving classification perfor-
mance. If the base classifiers are diverse, more base classifiers
would enhance the classification power of the ensembles.

Now we discuss the classification performance of different
ensembles. From Tables 3 to 5, we can see that the average accuracy
of single SVMs or 1NN is higher than that of CART, however the
performance of CART based Bagging is the best. Compared with single
classifiers, the performances of SVM and 1NN based ensembles do
not improve much, which shows us unstable weak classification
algorithms are more useful for constructing powerful ensembles.

Among different ensemble techniques, it is easy to derive that
MAD-SV obtains the best average performance, which is better
than a single CART by 9%. Then MDM and MAD-WV also obtain
significant improvement. As a whole, we see all these four pruned
ensembles outperform single classifiers and the original Bagging.
This result tells us that pruning is effective for improving
performances of ensemble learning.

It is interesting to know which base classifiers are selected by
the optimization technique. Figs. 2 and 3 give the relation
between weights of base classifiers and their training accuracies.
From Table 2, we know that the ensemble size of pruned
ensembles is smaller than 50. Thus, we just give the best 50
classifiers with respect to the weights in these figures. If the base
classifiers are selected with the pruning techniques, they are
marked in the figures. We see that MAD-SV and MAD-WV are not
necessary to select the accurate base classifiers. That is to say, the
base classifiers with high classification accuracies do not neces-
sarily obtain large weights, which are computed with margin
distribution. Thus some base classifiers producing good perfor-
mances are not selected by MAD-SV or MAD-WV. However, RE
usually selects the best base classifiers.

As to SVM, MAD-SV and MDM produce the best performance,
followed by MAD-WV and RE for Credit dataset. There are 37 base
classifiers in MDM ensembles, MAD-SV just uses 2 classifiers to
obtain the same accuracy. For Sonar dataset, MAD-SV and MAD-
WV get the best performance, followed by MDM and RE.

For 1NN classifiers, MAD-SV, MAD-WV, RE, and MDM obtain
the same accuracy with selecting the same one classifier for
Credit dataset. As to Sonar dataset, these four ensemble methods
obtain the same accuracy. But there are only one classifier in
MAD-WV and MAD-SV ensembles. MDM includes 15 classifiers
and RE uses 10 classifiers to obtain the same accuracy.

As to CART, MAD-WV gets the best performance, followed by
MDM, MAD-SV, and RE for Credit dataset. However, the number
of classifiers selected by MAD-WV is the most. For Sonar, RE and
MAD-SV get the best performance, followed by MAD-WV and
MDM. 6 base classifiers are selected by MAD-SV, more than that
selected by RE.

Fig. 4 presents the sparseness of the learned weights with
different parameter values for l. It is easy to see if l increases,
the number of nonzero weights decreases. As to MAD-WV, the
ensemble size is smaller if l increases. However, as to MAD-SV,
there is no significant difference when l varies.
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Fig. 4. Sparse characteristic of weights.
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5. Conclusion and future work

In this paper, we introduce margin distribution of ensembles to
select the subset of base classifiers for Bagging. The squared hinge
loss and l1 regularization are combined in the objective function. The
large margin leads to a smaller classification loss. We optimize the
weights of base classifiers such that the classification loss is mini-
mized. At the same time, the sizes of ensembles are also controlled
through l1 regularization. This optimal problem is converted to an
l1-LS problem. Thus, a collect of existing techniques can be intro-
duced to derive the solution. It is notable that there is a parameter l
to be set for controlling the sparsity of weights. If l increases, the
solution may become sparser.

In the experiments, we compare our methods MAD-SV and
MAD-WV with single classifiers, Bagging, RE and MDM on
classification algorithms SVM, CART, and 1NN. Experimental
results on 12 UCI datasets are given. We can draw some conclu-
sions from the analysis. First, unstable base classifiers can lead to
more powerful ensembles. Second, the base classifiers producing
high classification accuracies may not be useful for constructing
powerful ensembles. Both diversity and accuracy should be
considered. Third, pruning is very effective for improving perfor-
mance of ensembles. Last, optimizing margin distribution, instead
of minimal margin or classification accuracy, improves the classi-
fication of ensembles. We should learn the weights of base
classifiers based on margin distribution.

In this work, we just consider the squared hinge loss in the
optimization objective. In fact there are a collection of loss functions
to be used, such as the exponential loss and logistic loss. Moreover l2
regularization can also be considered and combined with different
loss functions. We will work along these directions in future.
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